FIGURE 1.
Experimental evidences of the role of MT cytoplasmic pulling forces for aster motion. (A) A Sand dollar embryo is fertilized in the presence of the MT drug Colcemid. Using UV light, MTs are allowed to polymerize in specific regions. When moving the UV region, the sperm aster migrates to the center of the new region, following the direction of longer MTs. As MTs do not contact any cortex, those experiments support that forces exerted by MTs in bulk cytoplasm can drive aster motion and positioning. Modified from Hamaguchi and Hiramoto (1986). (B) Zebrafish 2-cell stage blastomeres are incubated in caged combretastatin 4A. Local UV-based uncaging allows for locally depolymerizing MTs in asters. Asters move following their longer MTs, long before those contact the cortex, supporting MT cytoplasmic force exertion. Modified from Wuhr et al. (2010). (C) Sea urchin embryos are fertilized, and MT centering asters are cut with a UV-laser along the indicated lines while they move to the cell center. Laser ablation on the side of asters causes a transient deviation toward the top of the cell, supporting MT bulk pulling. MT regrowth promote a return of the aster to the centration path. Similarly, laser cuts at aster front cause aster to transiently step back, and move again to the cell center upon MT regrowth. Modified from Tanimoto et al. (2016).