Skip to main content
. 2020 Feb 13;8:69. doi: 10.3389/fcell.2020.00069

FIGURE 2.

FIGURE 2

Mechanisms supporting dynein cytoplasmic pulling force exertion on MTs. (A) Aster centration by dynein-mediated forces in bulk. Dynein may transport vesicle-cargos (e.g., endosomes or lysosomes) or large endomembrane networks like the endoplasmic reticulum (orange insets). The motion of those cargos in the viscous cytoplasm creates flows and drag forces that pull on MTs and ultimately centrosomes. This module coupled to front-rear asymmetries in MT length in asters generates a net centering force. Similar cytoplasmic forces may also transport MTs to the periphery of the asters, contributing to aster expansion (purple insets). (B) Specific subunits of the dynein-dynactin complex and adaptors thought to mediate dynein-cargo loading as well as cargo motion, during C. elegans pro-nuclear centration. The cytoplasmic dynein-cargo is loaded onto MTs by interacting with EB proteins at the plus end or tyrosinated α-tubulin along the MTs. Modified according to Kimura and Kimura (2011) and Barbosa et al. (2017). Scale bar, 20 μm.