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Abstract Metformin is the safest and the most widely
prescribed first-line therapy for managing hyperglyce-
mia due to different underlying causes, primarily type 2
diabetes mellitus. In addition to its euglycemic proper-
ties, metformin has stimulated a wave of clinical trials to
investigate benefits on aging-related diseases and lon-
gevity. Such an impact on the lifespan extension would
undoubtedly expand the therapeutic utility of metformin
regardless of glycemic status. However, there is a scar-
city of studies evaluating whether metformin has differ-
ential cognitive effects across age, sex, glycemic status,
metformin dose, and duration of metformin treatment

and associated pathological conditions. By scrutinizing
the available literature on animal and human studies for
metformin and brain function, we expect to shed light on
the potential impact of metformin on cognition across
age, sex, and pathological conditions. This review aims
to provide readers with a broader insight of (a) how
metformin differentially affects cognition and (b) why
there is a need for more translational and clinical studies
examining multifactorial interactions. The outcomes of
such comprehensive studies will streamline precision
medicine practices, avoiding “fit for all” approach, and
optimizing metformin use for longevity benefit irrespec-
tive of hyperglycemia.
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Introduction

In recent years, the prescription rate for metformin is
increased to 235/1000 population for the FDA-approved
indications and up to 20.3/1000 person for off-label use
(Le and Lee 2019). Apart from the role in maintaining
glucose homeostasis, metformin has several potential
anti-aging properties. The longevity benefit was ob-
served in diabetic patients taking metformin when com-
pared with diabetic subjects on non-metformin proto-
cols, as well as non-diabetic subjects not taking metfor-
min (Bannister et al. 2014). Recently, metformin has
been purported to have a detrimental effect on cognition
in male mice, supported by findings in recent clinical
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studies (Hervas et al. 2017; Kuan et al. 2017;
Thangthaeng et al. 2017). Such surprising results that
can affect the overall quality of life may outweigh
metformin’s longevity benefits, especially if the target
population for such benefit is non-diabetic.

At NIH RePORTER (https://projectreporter.nih.
gov/reporter.cfm), there are currently 85 projects
funded for “metformin and aging” and 17 of these or
other projects involved targeting metformin and
cognition. Further, there are currently eleven registered
clinical trials (https://clinicaltrials.gov/ct2/home)
focused on metformin, aging, and longevity. Of the
trials identified, eight are directly addressing the
benefit of metformin on age-related problems and their
underlying molecular mechanisms (Table 1). Six clini-
cal trials included both men and women. There is no
information regarding the assessment of beneficial or
harmful effects of metformin across sexes in any of
these clinical trials. None of these longevity studies
has focused on cognition or psychomotor elements of
brain functions.

As a near obligate glucose consumer, the brain is one
of the most metabolically active organs in the body.
Therefore, the brain is more susceptible to manipulation
of energymetabolism by glucose-lowering medicines. It
is unclear whether the beneficial or deleterious effects
on brain function accompanies the improved longevity
associated with metformin. It is also ambiguous whether
the effects of metformin on brain function are universal
across broad demographics, such as sex, age, and
existing pathological conditions. We attempt to address
this critical concern by considering the effects of sex,
age, and pathological conditions on metformin-
dependent changes in brain function. Previous findings
from in vitro studies, in vivo studies in rodents, cross-
sectional and longitudinal data analysis, and clinical
trials relevant to these questions were scrutinized. The
goal of this update is to provide precision medicine-
based insight for metformin treatment, optimizing lon-
gevity and cognitive benefits, and mitigating risks.

Metformin increases lifespan

Barzilai et al. 2016 and Novelle et al. 2016, in two separate
papers, discussed the detail mechanisms for the anti-aging
benefit of metformin (Barzilai et al. 2016; Novelle et al.
2016). Metformin collectively influences inflammation,
cellular survival, stress, autophagy, and protein synthesis,

which are significant players in aging/longevity (Algire
et al. 2012; Batandier et al. 2006; Bridges et al. 2014;
Cho et al. 2015; Duca et al. 2015; Foretz et al. 2010;
Jadhav et al. 2013; Kickstein et al. 2010; Lien et al.
2014; Liu et al. 2011; Lu et al. 2015; Moiseeva et al.
2013; Nair et al. 2014; Perez-Revuelta et al. 2014; Saisho
2015; Song et al. 2015; Xie et al. 2011; Zheng et al. 2012).
There is mounting evidence to suggest that metformin
prolongs the lifespan of many species, ranging from
nematodes-to-rodents (Anisimov et al. 2008; Anisimov
et al. 2011; Cabreiro et al. 2013; De Haes et al. 2014).
This longevity benefit is dependent on genotype, age, sex,
dose, and duration of metformin therapy. Metformin sub-
stantially prolonged lifespan in female outbred mice by
nearly 40% (Anisimov et al. 2008). The longevity benefit
is higher by 14% when metformin treatment was initiated
earlier rather than later in old age (Anisimov et al. 2011). In
129/sv and R6/2 mice, metformin extended the lifespan in
male mice with only a subtle effect in female mice
(Anisimov et al. 2010b; Ma et al. 2007). Although this
effect occurred across several mouse breeds, not all dem-
onstrated consistent prolongation of lifespan (Martin-
Montalvo et al. 2013). This disparity could be due to
metformin dose or genetic variation across studies. Dro-
sophila, mice, and rats treated with very high doses did not
extend lifespan, suggesting the need to fine-tune the dos-
age scheduling for longevity benefits (Martin-Montalvo
et al. 2013; Slack et al. 2012; Smith Jr. et al. 2010). The
strain used by Smith et al. 2010 to understand metformin-
associated longevity also failed to replicate the CR benefit
on longevity, further emphasizing underlying genetics for
longevity benefit and further need for precision medicine-
based approach. It is often discussed that metformin both
directly (by altering genetics) and indirectly (by lowering
disease burden) provides longevity benefit. The NIA’s
intervention testing program (ITP) tested for longevity
benefit in both male and female UM-HET3 mice using
metformin (1000 ppm; 0.1%) alone or in combinationwith
rapamycin (14 ppm) (Strong et al. 2016). Interestingly they
observed metformin-associated 7% increase in longevity
only in male mice (data pooled from all sites, statistically
not significant, p= 0.35) and no such effect (0% change) in
female mice irrespective of site. The major limitation of
this study was site-specific variation in the benefit, which
ranged from − 1 to 13%.While rapamycin alone treatment
led to a uniform 10% increased longevity in both sexes.
Further, the combination of metformin and rapamycin had
synergistic longevity benefit up to 23% (statistically sig-
nificant p = 0) in both male and female mice. These
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findings from ITP studies could suggest that when metfor-
min may have failed to increase longevity in female in one
particular strain, combination with other modality might
help to achieve the same amount of benefit as that of male.

In humans, there are indirect pieces of evidence for
metformin-associated increased lifespan. Metformin
early treatment can delay or prevent the onset of diabe-
tes (Diabetes Prevention Program Research 2015). Met-
formin also improved health indicators for cardiovascu-
lar disease and atherosclerosis in males (Goldberg et al.
2013; Goldberg et al. 2017; Haffner et al. 2005). The
cardiovascular risk reduction across the UK Prospective
Diabetes Study (UKPDS) and the HOME Trial
(NCT00375388) may justify the use of metformin as
safe longevity-promoting therapy in patients with and
without diabetes (Effect of intensive blood-glucose con-
trol with metformin on complications in overweight
patients with type 2 diabetes (UKPDS 34). UK Prospec-
tive Diabetes Study (UKPDS) Group 1998; Kooy et al.
2009). To make this assertion, these findings will need
to be reconciled with other studies conducted in non-
diabetic subjects, such as the GIPS III study
(NCT01217307), which demonstrated a little-to-no ben-
eficial effect of metformin on cardiovascular health
(Hartman et al. 2017; Lexis et al. 2014). In the CAM-
ERA trial (NCT00723307), chronic metformin treat-
ment for 18 months did not show any beneficial effect
on cardiovascular health (Preiss et al. 2014). Interest-
ingly, Han et al. 2019, meta-analyzed 40 studies com-
prising 1,066,408 patients and concluded that metfor-
min reduced all-cause mortality and cardiovascular
events in coronary artery disease patients. However,
the authors also reported that overall, metformin did
not effectively reduce the incidence of cardiovascular
events in myocardial infarction and coronary artery
disease patients in the absence of T2D (Han et al.
2019). There is a need to understand why metformin
showed beneficial outcome in some studies and why
showed no such effects in other studies. The answers to
these questions could be deciding factors for precision
medicine-based prescription of metformin for longevity
benefits, especially in the absence of diabetes.

Metformin acts on neurons, astrocytes,
and microglia (Fig. 1)

As the major cells of the brain, neurons are among
the most metabolically active cells in the body.

Energy regulator-AMP-activated protein kinase
(AMPK) signaling is highly expressed in the neu-
rons. Within neurons, metformin primarily acts via
AMPK to maintain energy homeostasis (Hardie
2014). Many recent studies explored AMPK-depen-
dent, AMPK-independent, and energy independent
effects of metformin in neuronal activity, differenti-
ation, toxicity, autophagy, and survival. These dif-
ferential effects on neurons were dose, duration, and
disease-dependent (Aatsinki et al. 2014; Bayliss
et al. 2016; Canto et al. 2009; Fatt et al. 2015; Ge
et al. 2017; Hawley et al. 2010; Isakovic et al. 2007;
Jang and Park 2018; Katila et al. 2017; Khedr et al.
2018; Kickstein et al. 2010; Matthes et al. 2018; Ou
et al. 2018; Potts and Lim 2012; Price et al. 2012;
Sesen et al. 2015; Song et al. 2015; St-Pierre et al.
2006; Wang et al. 2012; Wang et al. 2018b; Yan
et al. 2017; Zhang et al. 2016; Zhu et al. 2015).

Apart from neurons, metformin also affects astro-
cytes and microglia. A higher concentration at 10 mM
metformin increased glucose consumption, lactate pro-
duction, and decreased oxygen consumption leading the
primary astrocytes toward more glycolytic metabolism.
(Hohnholt et al. 2017; Westhaus et al. 2017) Similarly,
ketogenic activation in terms of increased acetoacetate
and β-hydroxybutyrate production occurred at 1 mM
metformin concentration. (Takahashi et al. 2014) De-
spite these metabolic changes, metformin was found to
be protecting the astrocytes against apoptosis and cell
death induced by oxygen and glucose deprivation.
(Gabryel and Liber 2018).

It is well known that AMPK regulates the energy
balance as well as the functional phenotype of mi-
croglia. (Lu et al. 2010; Sag et al. 2008) The mi-
croglia are highly plastic in response to micro-
environment changes. Metformin-induced AMPK
activation changes the microglia polarization toward
M2 phenotype, which helps in tissue repair follow-
ing an injury such as middle cerebral artery occlu-
sion. (Jin et al. 2014). Further detailed refining of
the underlying mechanism of metformin in microg-
lia indicated AMPK-dependent release of TNF-α
and AMPK-independent regulation IL-1β, IL-6, IL-
10, TGF-β, nitric oxide, reactive oxygen species,
NF-κB, p65, and PGC-1α. Interestingly, sex of the
species and location of microglia determine the im-
pact of metformin on microglia, as shown by selec-
tive microglial activation and reversal of neuropathic
pain in male mice. (Inyang et al. 2019).
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Metformin differently affects cognition (Table 2)

Human studies

Metformin has shown potential cognitive benefits in
some disease conditions. There are very few pre-
clinical or clinical studies, which have investigated the
cognitive effect across age, sex, and blood glucose as
individual factors or interfactorial interaction. Existing
studies report changes across various cognitive evalua-
tions, but with insufficient direct translational value to
the broader population.

In a pilot cross-over study design using 2000 mg/day
metformin for 8 weeks, Koenig et al. 2017 observed
statistically significant favorable effect of metformin on
executive function (Trail B test) and beneficial trends on
measures of learning and memory (PAL total errors) and
attention (DMS percent correct simultaneous) in non-
diabetic MCI and AD patients. (Koenig et al. 2017) The
study included 9 women and 11 men. The strength of
the study was a cross-over design. The major limitation
of the study was the pilot design with a small sample
size. Similarly, in the Diabetes Prevention Program

(DPP study), 2280 participants (776 on metformin,
and 755 on placebo) were assessed for metformin and
cognition relation. Overall this study observed no rela-
tion between metformin and cognition, which means
that metformin was neither beneficial nor harmful in
this study participants, and the authors concluded that
metformin is cognitively safe. (Luchsinger et al. 2017)
The cognitively safer outcome will support the use of
metformin for longevity benefit. When looked at spe-
cific groups within the population, not all groups
responded unequivocally. Especially the groups with
higher hyperglycemia had worse cognition, and the
aged population has consistently poor (non-significant)
cognitive tests outcomes across all tests. (supplementary
table 2 of the citation) Overall, men had significantly
poor cognitive outcomes compared with women.
(supplementary table 3 of the citation). Collectively,
these factors indicate the role of hyperglycemia, age,
and sex in cognitive outcomes in the presence of
metformin.

On the contrary, metformin treatment was also asso-
ciated with cognitive decline in diabetic subjects receiv-
ing at least 1 g metformin per day for over 6 months

Fig. 1 Mechanisms of action of metformin in the neuro-glial
environment. Metformin via AMPKα-dependent pathways pro-
mote cell survival, neural differentiation, autophagy, neuroprotec-
tion, proliferation, and self-renewal. Metformin inhibits amyloid-

β-plaque formation via AMPKα. Metformin inhibits inflamma-
tion via inhibiting NF-κB.Metformin activates apoptosis via PI3K
pathway and inhibits apoptosis via the ERK1/2 pathway. Metfor-
min promotes Tau dephosphorylation via PP2A pathway

GeroScience (2020) 42:97–116 101



when compared with untreated, non-diabetic controls
(Khattar et al. 2016). This study had several limitations.
Firstly, the effects of age, sex, and disease severity were
not controlled. Secondly, the controls used in this study
were healthy, non-diabetic, age-matched subjects not
receiving metformin medication, suggesting that cogni-
tive effects observed in this study could be attributed to
the severity of diabetes alone and may not be related to
metformin. Future studies should consider using con-
trols with pre-diabetic blood glucose levels with and
without metformin treatment. Such an evaluation would
provide a complete and more direct picture of the cog-
nitive effects of metformin.

Similarly, the dementia screening program suggested
an increased risk for cognitive impairment associated
with diabetes andmetformin, especially after adjustment
for the age, sex, educational level, baseline test scores,
hypertension, dyslipidemia, BMI, and baseline brain
imaging abnormality (Koo et al. 2019). Kuan et al.
(2017) used the Multivariate Cox proportional hazards
regression model and supported the notion that metfor-
min increased the risk for AD, vascular dementia, and
Parkinson’s disease (PD) (Kuan et al. 2017). The
strength of this study was a large sample size (4651
patients), adjustment for several confounding factors,
and 12-year follow-up. The authors reported that higher
doses (> 385 g per year) and longer duration of metfor-
min treatment increased the risk for developing PD
(3.54 times) and dementia (1.97 times). Although this
was a large sample size study, which controls for both
age (54–75 years) and sex, the authors did not elucidate
age-sex interaction effects in their data analysis.

In another study, the authors reported a higher risk of
cognitive impairment in diabetic patients taking metfor-
min (Moore et al. 2013). However, the authors also
acknowledged study limitations, such as the lack of data
on diabetes duration, severity, metformin treatment du-
ration, and use of concomitant anti-diabetic agents.
Careful consideration and further assessment of the
study by Hervas et al. 2017 provide more insight into
metformin’s effect on cognition. The control group
(without motor manifestation) showed cognitive impair-
ment with metformin compared with the non-metformin
group and beneficial effect of metformin on cognition in
the Huntington’s disease (HD) group (Fig. 1 in the
citation) (Hervas et al. 2017). In a clinical cohort of
67,731 elderly patients (> 65 years old), the results
demonstrated an association between diabetic status
and dementia, which was mitigated with prolonged

metformin therapy (Cheng et al. 2014). However, there
was no consideration of metformin dose or sex-
dependent analysis. Another two observational studies
involving T2DM patients suggested that metformin was
associated with impaired cognitive performance due to
vitamin B12 deficiency (Biemans et al. 2015; Moore
et al. 2013). However, Khattar et al. ruled out such a
notion (Khattar et al. 2016).

Overall, there were mixed and complex reporting of
metformin-induced alterations in cognition in human
studies. This further provides strength to the argument
that metformin may not be “fit for all” cognitively safe
medication when under consideration for longevity ben-
efits. Individual risk and benefit assessment are neces-
sary for such utilization.

Animal studies

Often animal experiments are performed for better-
controlled study design. In the adult, male Wistar rats,
100 mg/kg/day metformin reversed scopolamine-
induced cognitive impairment (Mostafa et al. 2016).
Metformin attenuated impairments of spatial learning
and memory, as well as short-term working memory.
This effect was associated with reduced inflammation
and oxidative stress-mediated through Akt activation.
Similarly, metformin (100 mg/kg) reduced cisplatin-
induced cognitive impairment in young (8–10 weeks)
female C57BL/6 mice during novel object recognition
and social discrimination testing (Zhou et al. 2016). The
positive aspect of this study was the use of female mice,
as behavioral studies tend to neglect females due to
phenotype variability across the estrous cycle. However,
the authors failed to mention a possible trend of a
deleterious effect of metformin compared with saline
control in behavior tests (Fig. 1 in the citation) (Zhou
et al. 2016).

Another study compared middle-aged male
(12 months) C57BL/6 mice receiving chronic metfor-
min treatment and chronic high-fat diet (HFD). Results
suggested an improved spatial learning, coordinated
running performance, and reduced memory impair-
ments (Allard et al. 2016). However, this study lacks
the inclusion of a “control+metformin” treatment group.
Metformin treatment lowered body weight, which may
confound the outcome of cognitive tests (latency to
reach platform parameter). The coordinated running
performance is negatively influenced by higher body
weights (Cook et al. 2002; Mao et al. 2015; McFadyen
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et al. 2003). The body weights of the mice in HFD with
metformin treatment were significantly lower than HFD
without metformin treatment (Allard et al. 2016). Sim-
ilarly, in the Morris water maze test, the authors used
latency to reach the platform, rather than path length as a
learning measure. Higher body weight, reduced motor
function, or slower swim speeds may influence escape
latency, thereby skewing its utility as a learning measure
in treatments that influence these variables.

These escape latency results were replicated in adult
male Wistar rats receiving HFD and metformin treat-
ment (Pintana et al. 2012). Alzoubi et al. reported sim-
ilar preventative effects of metformin after chronic L-
methionine-induced cognitive impairment using radial
arm maze performance, spatial learning, and memory
metric (Alzoubi et al. 2014). Metformin treatment at
100mg/kg/day reversed the cognitive decline associated
with HFD and chronic restraint stress in maleWistar rats
(Khedr et al. 2018). However, the cognitive assessment
parameter used in the Morris water maze testing was a
latency to reach the escape platform. Since HFD, chron-
ic restraint stress, as well as metformin treatment altered
the body weight in these rats the latency, may not be an
accurate estimate for cognition. This confound of
weight can be removed by re-analyzing the data using
body weights as co-variate. Contrastingly, another study
using Wistar rats reported no influence of metformin
fortified diet on cognition, despite improving insulin
sensitivity (McNeilly et al. 2012). The study used
Matched-the-Position tasks for cognitive assessment.

Overall, Table 2 B and C indicates cognitively ben-
eficial effects of metformin in the presence of major
disease models and possible deleterious effects in the
absence of disease model. This further suggests that
metformin could be useful, cognitively safer, and even
beneficial as longevity medicine in the presence of
certain disease conditions. However, caution needs to
be taken in the absence of such major diseases when it
could be possible that longevity benefit is accompanied
by cognitive deterioration and reduced quality of life.

The sex-dependent actions of metformin

Despite a higher prevalence of type 2 diabetes in men
(CDC 2015), women with T2DM have poorer glycemic
control and underachievement of desired hemoglobin
A1c (HbA1c) levels (Chiu and Wray 2011; Nilsson et al.
2004). Women with diabetes have higher mortality,

reduced lifespan, and more complications compared
with men (Deshpande et al. 2008; Gregg et al. 2007).
The influence of sex steroids may underlie the sex-
specific differences in disease progression and treatment
responses (Arnetz et al. 2014). Hormone-based sex dif-
ferences are evident in the most oral anti-hyperglycemic
agents on the market today, including metformin
(Arnetz et al. 2014).

Previous work demonstrates that metformin’s bio-
availability and glycemic control does not vary across
sex or ethnicity in young adults (Karim et al. 2007).
However, differences have been reported between sexes
for metformin’s non-diabetic effects on physiology. In
men, metformin increased plasma fatty acid levels,
myocardial fatty acid utilization, and oxidation, and
lower myocardial glucose utilization, indicating de-
creased fatty acid clearance (Lyons et al. 2013). Despite
similar glucose control, only in men with lower testos-
terone levels, metformin decreased thyrotropin levels,
Jostel’s thyrotropin index, and increased SPINA-GT
when compared with normal testosterone level group
(Krysiak et al. 2019). Another study found that men
admitted to the intensive care unit for metformin-
induced lactic acidosis had higher mortality compared
with women (Biradar et al. 2010). Similarly, males with
colorectal cancer had higher mortality when they were
taking metformin compared with females colorectal pa-
tients on metformin (Park et al. 2017). On the other
hand, in the Diabetes Prevention Program study, women
receiving metformin to prevent T2DM were less adher-
ent to treatment and reported a higher rate of adverse
events (Walker et al. 2006). Metformin has also been
associated with higher hospitalization and mortality
rates in women (Pongwecharak et al. 2009).

Metformin exerted strong sex-dependent survival
benefit in cases of colorectal cancer (CRC). This benefit
was associated with longer duration of treatment with
metformin (more than 22 months). After controlling for
other clinically relevant factors, female diabetic patients
with advanced stage CRC who had been treated with
metformin had significantly lower CRC-related mortal-
ity, as compared with male counterparts (Park et al.
2017). In the Taiwanese population, Lee et al. (2011)
reported similar findings with female CRC patients
benefitting more than male CRC patients. However,
the authors further reported the opposite sex effect with
male hepatocellular cancer patients benefitting more
than females (Lee et al. 2011). Interestingly, this differ-
ential effect on cancer-relatedmortality across sexes was
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associated with lower dose metformin (500 mg/day)
(Lee et al. 2011).

There are also potential sex-specific differences in
the effect of metformin on longevity dependent on the
strain of the mice. In female mice, the highest to lowest
longevity benefit with metformin was reported in SHR
(+ 37.9%) (Anisimov et al. 2008), FVB/N (+ 8.0% and
+ 6.7%) (Anisimov et al. 2005; Anisimov et al. 2010a),
129/Sv (+ 4.4%) (Anisimov et al. 2010b), and HD (0%)
(Ma et al. 2007) strains, while in male mice, the high to
low longevity effect was noted in HD (+ 20.1%) (Ma
et al. 2007) and 129/Sv (− 13.4%) (Anisimov et al.
2010b) strains.

Few pre-clinical or clinical studies have investigated
the effect of metformin on cognitive function. The
available data shows mixed results of metformin-
induced cognitive alterations. (Table 2 A, B, and C)
(Guo et al. 2014; Kuan et al. 2017; Moore et al. 2013;
Mostafa et al. 2016; Ng et al. 2014; Ying et al. 2014;
Zhou et al. 2016). In our lab, we found learning and
memory impairments in non-diabetic, young adult and
aged C57BL/6 male mice after receiving metformin at
human equivalent doses (1.5–2.0 g/day). Data analysis
has suggested that this cognitive impairment was nearly
exclusive to male mice, suggesting sex as a critical
determinant for future investigation.

The role of organic cation transporters in the sex
difference of metformin

The transport of metformin across organs occurs
through organic cation transporters (OCTs). There is
increasing evidence that sex steroids affect the expres-
sion and function of OCTs. OCT2 expression is lower in
female rat kidneys compared with males, resulting in a
lower urinary excretion rate for metformin (Ma et al.
2016). The reduced elimination of metformin could lead
to higher metformin accumulation in other organ sys-
tems of females, underscoring some of the aforemen-
tioned sex-dependent complications. Daily administra-
tion of testosterone (10 mg/0.1ml of olive oil) for 7 days
increased OCT2 mRNA levels, OCT2 protein expres-
sion, and OCT2 transport activity in both males (signif-
icant p < 0.05) and females (not significant p > 0.05) in
Wistar rats. Conversely, daily administration of 17β-
estradiol (1 mg/0.1 ml of olive oil) for 7 days decreased
transport activity of the OCT2 protein in male rats only
(Urakami et al. 1999). Given that sex hormone levels

vary among men and women across the lifespan, it is
possible that metformin effects could be age-dependent.
However, metformin is also the substrate for MATE1
and MATE2. Estrogen therapy in ovariectomized mice
decreased the expression on MATE2 transporters
(Meetam et al. 2009b). In contrary to above discussion,
a recent study found no sex differences in metformin
accumulation in the kidney, liver, brain, intestine, heart,
and lung within 2 h after a single dose of metformin (Ma
et al. 2016). However, the time point of 2 h may not be a
good indicator for chronically prescribed drug like
metformin.

We determined the expression of OCT2 in the hip-
pocampus of young (3months),middle age (12months),
and old (22 months) male mice.We observed that OCT2
expression decreased over age in the hippocampus
(Supplemental Fig. 2). Further, we assessed the OCT2
mRNA expression variation using qPCR in adult male
and female mice (6 months). We noticed that the female
cortex and hippocampus had higher OCT2 mRNA ex-
pression compared with male. However, when checked
the translation of this OCT2 mRNA to proteins, we
observed that at the age of 6 months, the OCT2a and b
protein expression in hippocampus did not vary in male
and female. This could be due to the inhibition of
translation of mRNA to protein by higher estrogen in
female mice at a younger age when compared with age-
matched male mice. However, the translation inhibition
may be reversed in an older female with lower levels of
inhibitory estrogen.

In rats, metformin shows variable accumulation in
the brain depending on the duration of metformin ther-
apy (Labuzek et al. 2010—Table 2, columns 1 and 3)
(Labuzek et al. 2010). At 2 h following a single dose of
metformin, there was 2.5-fold increased concentration
in the CSF, and 1.3-fold increased concentration in the
cerebellum, as compared with plasma. Meanwhile, the
hippocampus and frontal cortex had lower concentra-
tions than plasma, with 0.3- and 0.5-fold differences
respectively (Labuzek et al. 2010). At 3-week treatment,
there was a 2.5- to 4-fold increased metformin concen-
tration in the hippocampus, cerebellum, and frontal
cortex, as well as a 14.5-fold increased concentration
in the CSF, as compared with plasma (Labuzek et al.
2010). Regardless of the duration of metformin therapy,
CSF always had the highest concentration of metformin,
which is likely due to having the highest expression of
OCT2 transporters. For diabetic and pre-diabetic pa-
tients, metformin is routinely administered chronically
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for months to years. It is possible that the long-term use
could likely lead to rising accumulation of metformin in
the brain, ultimately impacting the brain function in a
time-dependent manner (Thangthaeng et al. 2017;
Wenjun Li et al. 2019). We observed sex-dependent
negative impact of metformin on short-term memory,
cognitive flexibility, and delayed reversal in non-
diabetic young adult C57BL6 male mice only and no
such effect in females (Supplemental Fig. 3). In the male
mice, although metformin enhanced locomotor, bal-
anced performance, and induced anxiolytic effect, met-
formin impaired both short-term cognition, cognitive
flexibility, and long-term spatial cognitive function
(Wenjun Li et al. 2019).

Aging affects metformin

Aging is associated with a physiological functional
decline in various organ systems, including the
hepatorenal metabolic-excretory system, psychomo-
tor, and cognitive brain function (Costa et al. 2013;
Shetty et al. 2014). With aging, sex hormonal decline
occurs in both men and women (Bungum et al. 2011;
Resnick et al. 2017). Sex hormones affect the expres-
sion and function ofOCTs. Castrated rats showedOCT
function loss, which is restoredwith the administration
of testosterone (Meetam et al. 2009a). InmaleC57BL6
mice, OCTs are downregulated in the aging brain, as
shown by lower mRNA and protein expression and
activity (Wu et al. 2015). Contrastingly, the OCT func-
tion in ovariectomized mice was higher when com-
pared with control and estrogen supplementation
(Meetam et al. 2009b). In females, the sex hormone
profile changes drastically across the lifespan. Near
menopause initiation, there is a sudden drop in the
estrogen:androgen ratio. This phase is dubbed as
post-menopausal hyperandrogenism as characterized
by higher levels of dehydroepiandrosterone and testos-
terone. This would necessarily mean that peri- and
post-menopausal females may have a sudden increase
in OCT expression and activity, further leading to sig-
nificant differences in metformin bioaccumulation
throughout the body and urinary excretion rates.
Therefore, the age-associated altered sex steroids
might affect the pharmacokinetics ofmetformin differ-
ently in men versus women requiring the specific cal-
culation of the optimum dose to avoid any deleterious
effects.T
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The direct action of metformin versus secondary
glucose-lowering effect on cognition

Are the effects of metformin on longevity-related bene-
fits universal? This critical question is thoroughly
discussed by Konopka et al. 2019 and further supported
by other studies (Konopka and Miller 2019). Metformin
exerts antagonistic pleiotropy dependent on the pres-
ence or absence of pre-existing disease conditions such
as T2DM, Alzheimer ’s, aging, Huntington’s,
Parkinson’s disease, or cancers or concomitant interven-
tions such as exercise (Table 2A) (Konopka et al. 2019;
Konopka and Miller 2019; Walton et al. 2019). The
impact of metformin, whether it is due to control of
sugar levels or more direct, is ambiguous.

Alteration in glucose levels has an impact on cogni-
tion in both males and females across the lifespan. Both
acute and chronic blood sugar aberrations lead to cog-
nitive impairment (Davis et al. 1996; Draelos et al.
1995; Frier 2001; Gonder-Frederick et al. 1994; Ryan
and Geckle 2000; Sheen and Sheu 2016; Sommerfield
et al. 2004). A homeostatic normoglycemic range

between 4 and 15 mmol/l is necessary to achieve opti-
mum cognitive and psychomotor function (Cox et al.
2005). This range could represent an analog similar to
routine physiological parameters, such as blood pressure
and body temperature. Thus, a metformin-induced
normoglycemic range higher or lower than the endoge-
nous, homeostatic limits may be a critical determinant of
altered cognitive function observed in previous studies.

It is possible that the metformin-associated increased
risk of dementia, cognitive loss, and AD progression is
not related to glucose controlling effect. In a mechanistic
study using cell line and primary neurons, Chen et al.
2009 found that metformin increased Aβ generation by
upregulating beta-secretase 1 (BACE1) promoter activ-
ity in an AMPK-dependent manner (Chen et al. 2009).
Similar studies performed on non-diabetic AD mouse
models (APP/PS1) found the opposite effect by improv-
ing cognition and memory benefits of short-term and
long-term metformin therapy. These cognitive benefits
were unrelated to glycemic control and were due to the
prevention of both amyloid plaque formation and tau
phosphorylation via multiple AMPK-dependent

Fig. 2 Multifactorial interaction on the effect of metformin on
cognition. The effect of metformin on cognition is mediated by a
variety of factors, including age, sex, blood sugar levels, and
associated disease condition. The color-coding in this predictive
model is a summary of existing evidence on known mediators of

metformin-induced cognitive changes. A more substantial clinical
investigation should aim to extend these data to achieve a more
accurate precision medicine approach to metformin
pharmacotherapy
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pathways (Matthes et al. 2018; Ou et al. 2018), which
suggest that the experimental design and model plays a
critical role in outcome and conclusion.

Microvascular injury can lead to cerebrovascular in-
flammation and lead to vascular cognitive impairment
(Fulop et al. 2018). Co-existing conditions such as hy-
pertension might induce microvascular injury leading to
an acceleration of AD pathophysiology as well as VCI
(Csiszar et al. 2017). Metformin has been found to
improve cognitive function in patients with non-
dementia VCI, abnormal glucose metabolism by im-
proving insulin resistance index (Lin et al. 2018). Sim-
ilarly, cerebral ischemia leads to cognitive alterations by
fluctuating brain energy metabolism via AMPK activa-
tion. It is currently unclear whether this activity is pro-
tective or deleterious for neural tissues, and if AMPK
manipulation could be helpful (Pineda-Ramirez et al.
2017). Metformin has been examined as a means to
affect the ischemia-related cognitive decline. One study
found that sub-chronic metformin pre-treatment en-
hanced novel object recognition performance in a rat
model of forebrain ischemia (Ashabi et al. 2014). An-
other study demonstrated that long-term pre-treatment
with metformin in global cerebral ischemia-induced
upregulation of the AMPK-BDNF-P70S6K pathway,
subsequently enhancing learning and memory
(Ghadernezhad et al. 2016). It was also shown that 7-
day metformin pre-treatment (10 mg/kg) significantly
reduced AMPK activation in ischemic brains. This ef-
fect was not observed with other dosages or duration of
administration. These findings suggest an association
between metformin, AMPK, and neuroprotection in
cerebral ischemia, but also demonstrate a need to opti-
mize intervention initiation time, duration, and the dose
of metformin (Deng et al. 2016).

Conclusion: (Fig. 2)

Based on this available information, it is clear that
metformin affects longevity and neuro-cognition via
AMPK-dependent and -independent mechanisms. Al-
though various AMPK-independent mechanisms have
been described over many years, these have not been
well scrutinized in relation to cognition (Viollet et al.
2012). These effects of metformin were inconsistent and
varied depending upon species (mice, rat, and human),
sex, age, metformin dose, treatment duration, and asso-
ciated pathological conditions (diabetes, stroke, AD,

etc.). Figure 2 is not perfect and perhaps at the most
primitive state just to put forth an idea that such a design
and some form of the equation involving multiple fac-
tors may be useful in the future. There is a need for more
translational studies that address these factors, to devel-
op a comprehensive metformin dosing formula to
achieve optimum anti-aging benefits and mitigate side
effects. The differential and controversial impact of
metformin on brain function described across the litera-
ture warrants a precision medicine-based approach to
establish novel individualized therapy guidelines.
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