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Abstract A key goal of geroscience research is to iden-
tify effective interventions to extend human healthspan,
the years of healthy life. Currently, majority of the
geroprotectors are found by screening compounds in
model organisms; whether they will be effective in
humans is largely unknown. Here we present a new
strategy called ANDRU (aging network based drug
discovery) to help the discovery of human
geroprotectors. It first identifies human aging subnet-
works that putatively function at the interface between

aging and age-related diseases; it then screens for phar-
macological interventions that may “reverse” the age-
associated transcriptional changes occurred in these sub-
networks. We applied ANDRU to human adipose gene
expression data from the Genotype Tissue Expression
(GTEx) project. For the top 31 identified compounds,
19 of them showed at least some evidence supporting
their function in improving metabolic traits or lifespan,
which include type 2 diabetes drugs such as pioglita-
zone. As the query aging genes were refined to the ones
with more intimate links to diseases, ANDRU identified
more meaningful drug hits than the general approach
without considering the underlying network structures.
In summary, ANDRU represents a promising human
data-driven strategy that may speed up the discovery
of interventions to extend human healthspan.

Keywords Aging . Age-related diseases . Drug
repurposing . Network pharmacology.

Pharmacogenomics . Geroscience

Introduction

Aging is a major risk factor for age-related diseases
(ARDs) and the ultimate cause for most human mortal-
ities (Kennedy et al. 2014). It has been demonstrated in
model organisms, that genetic, environmental, and phar-
macological interventions capable of extending lifespan
are associated with delayed onset and progression of
multiple age-related diseases (Everitt et al. 2006). Such
observations have laid the foundations for the
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hypothesis of geroscience (Kennedy et al. 2014), which
states that aging is the major modifiable risk factor for
most chronic diseases, and it could be possible to simul-
taneously prevent multiple age-related diseases by
targeting the basic biology of aging.

Through drug screening and testing in model organ-
isms, more than four hundred “anti-aging” drugs have
been identified (Moskalev et al. 2015; Barardo et al.
2017). Despite the progress, the development of human
geroprotectors is facing significant challenges (Kumar
and Lombard 2016). Since majori ty of the
geroprotectors were identified in model organisms with
little human data support, their effectiveness in promot-
ing human healthspan remains largely unknown. Such
uncertainty poses high risk for the pharmaceutical in-
dustry to engage in the very costly clinical trials (Kumar
and Lombard 2016).

Human aging is a complex process with a large
number of genes and pathways being involved. For
example, our and other groups have shown that the
expression of hundreds to thousands of genes changes
with age in various tissues (Glass et al. 2013; Yang et al.
2015). To achieve a holistic understanding of the aging
process and to better elucidate the complex interconnec-
tions between aging and ARDs, systems and network
approaches have been explored (Zhang et al. 2016;
Fernandes et al. 2016). For example,Wang et al. showed
that age-related disease genes are closer to aging genes
in a protein-protein interaction (PPI) network (Wang
et al. 2009). We found that age-related disease catego-
ries shared functional terms including canonical aging
pathways, suggesting that conserved pathways of aging
might simultaneously influence multiple ARDs in
humans (Johnson et al. 2015). We also developed a
network algorithm called GeroNet to prioritize biologi-
cal processes mediating the connections between aging
and ARDs (Yang et al. 2016). Despite these progresses,
most existing models neither considered tissue specific-
ity nor incorporated the network dynamics associated
with aging. Therefore, they could only capture human
aging systems with limited accuracy. Although more
recent work has started to address the tissue specificity
in human aging (Johnson et al. 2016), quantitative tissue
specific aging network models are yet to be developed
to allow more accurate characterization of the interplay
between aging and ARDs.

In addition to providing biological insights into
aging and disease mechanisms, network biology
can also be used to facilitate drug discovery

(Csermely et al. 2013). A promising area under
active development is based on the concept of
Connectivity Map (CMap) (Lamb 2007), which
uses compound perturbation-induced gene expres-
sion changes to identify drug candidates for treating
human diseases (Iorio et al. 2010). An increasing
number of successful studies have been reported
which provide a strong proof-of-concept, which
include a study in C. elegans that identified com-
pounds mimicking the effect of caloric restriction
on extending lifespan (Dudley et al. 2011; Wagner
et al. 2015; Calvert et al. 2016).

Previously, we worked on a large human genomic
dataset generated by the Gene-Tissue Expression
(GTEx) project (The GTEx Consortium 2015). This
dataset allows a comprehensive survey of tissue-
specific aging mechanisms and we showed that it could
recapitulate multiple well-established aging hallmarks
(Yang et al. 2015). In this study, we further demonstrate
a novel framework called ANDRU (aging network
based drug discovery) to integrate GTEx with other
pharmacogenomic datasets to identify possible interven-
tions to extend human healthspan.

Materials and methods

Data collection and processing

Gene expression data

Human tissue gene expression data were obtained
from the GTEx portal (The GTEx Consortium
2015). We performed a few data processing steps
to consider genes having at least 0.1 RPKM (Reads
Per Kilobase Million) in 2 or more individuals
followed by a quantile normalization across genes.
Similar to published GTEx study (The GTEx
Consortium 2015), we adjusted several confounding
factors, including: (1) gender, (2) collection center,
(3) RIN (RNA Integrity Number), (4) ischemic time,
and (5) top 3 genotype principal components (PCs).

Genotype data

To correct for population stratification, the top 3 geno-
type PCs used as covariates in gene expression analysis
were constructed using GCTA (Yang et al. 2011a) on
non-autosomal SNPs (Yang et al. 2011b). Several
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quality control steps were performed using plink to
exclude those variants with MAF < 1%, HWE p < 1e-
6, and variant missing rate > 5%.

Age-group division and construction of young and old
gene co-expression networks

We divided samples into four groups based on donor’s
chronological age, namely, Young (age < =35),
mid.Young (35 < age < = 50), mid.Old (50 < age < =
65), and Old (age > 65). We used Young and Old groups
to define age-associated differentially expressed genes
(DEGs) and construct co-expression networks for the
ANDRU pipeline. For each gene, its expression values
were quantile normalized into a standard normal distri-
bution. We removed outlier samples by a hierarchical
clustering provided by the weighted gene correlation
network analysis (WGCNA) (Zhang and Horvath
2005). We set the soft power in WGCNA to 5 for
adipose and 4 for artery aorta, respectively to construct
the co-expression networks.

Differential gene expression and differential
connectivity analysis

Read counts were used to call differential expression genes
by HTSeq/DESeq (Anders and Huber 2010) and edgeR/
limma (Robinson et al. 2010; Law et al. 2014) between
young and old samples (adjusted p value less than 0.05
was set as threshold). We used TMM (the weighted
trimmed mean of M-values) normalization in edgeR, the
batch effect due to collection center was corrected using
ComBat in the sva Bioconductor package (Leek et al.
2012). We applied DGCA (Differential Gene Correlation
Analysis) for a differential connectivity analysis
(McKenzie et al. 2016). DGCA computes differentially
correlated gene pairs between two groups of samples. We
performed a permutation analysis to evaluate the enrich-
ment of differentially connected gene pairs in eachmodule.

Rank candidate compounds based on drug
perturbation-induced gene expression signatures

We used 5170 drug perturbation-induced gene ex-
pression signatures collected in Crowd Extracted
Expression of Differential Signatures (CREEDS)
for our analysis (Wang et al. 2016). We also consid-
ered 6100 expression profiles covering 1309 com-
pounds from CMap (Lamb 2007).

Since the two perturbation gene expression signa-
ture databases have different data contents, i.e., the
CREEDS only provides DEG gene names while
CMap contains the whole array expression data, we
used different approaches to query and rank candi-
date compounds. For CMap, we used its web-based
query tool to rank candidate drugs. This web-tool
used a modified Kolmogorov-Smirnov test statistics
to calculate the similarity between drug-perturbation
induced gene expression changes and aging DEGs.
For signatures from CREEDS, we considered three
methods to rank them. These methods included the
Signed Jaccard Index as implemented by the
CREEDs web query tool; the Gene Set Enrichment
Analysis (GSEA), and Fisher’s Exact Test based cal-
culation. For GSEA, we first sorted every gene in a
tissue based on their differential expression between
old and young samples, so highly up-regulated genes
in old individuals were ranked at top and down-
regulated in the old individuals were ranked at the
bottom. We used the fgsea R package to calculate
GSEA enrichment scores and adjusted p-values. A
positive enrichment score indicates that drug pertur-
bation signature is enriched in the top ranked genes
while a negative enrichment score indicates the op-
posite case. For Fisher’s Exact Test, we calculated
the significance of overlap between up- and down-
regulated aging genes with drug perturbation-
induced up- and down-regulated genes. A drug was
ranked to the top if drug induced genes significantly
overlapped with aging DEGs (in each direction).

To jointly consider the output from all methods
and further narrow down the candidate list, we pri-
oritized drugs that were ranked at the top by at least
two methods. To compare ANDRU with general
approach without considering the underlying net-
work structures, we performed queries using either
DEGs from turquoise module or all DEGs as input
genes and compared the results.

Results

An overview of the ANDRU pipeline

ANDRU takes tissue specific transcriptomic data
from young- and old-age human samples as input. It
outputs a list of candidate compounds that may help
to slow aging and provide geroprotection in the
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corresponding tissue. A network model is generated
to reveal the underlying subnetworks that may func-
tion at the interface between aging and ARDs, which
will be used to prioritize compounds to achieve
geroprotection. As shown in Fig. 1., for a tissue
under consideration, we first construct gene co-
expression networks (Zhang and Horvath 2005) in
young and old tissue samples, respectively. The sub-
networks (also called modules) are constructed based
on correlations among gene expressions and their
topological overlaps. This is a data-driven approach
to unbiasedly divide genome/transcriptome into
smaller modules that are often enriched for specific
biological functions. Second, using aging DEGs,
known disease gene sets and a few other criteria,
we prioritize subnetworks that are influenced by both
aging and diseases (we consider them as the putative
interface between aging and diseases). Third, the
aging DEGs in the prioritized subnetworks are used
to query pharmacogenomic datasets to identify inter-
ventions that may “reverse” the age-associated ex-
pression changes in the corresponding subnetworks.
The top ranked compounds are further evaluated
based on independent data and/or literatures.

We applied ANDRU to subcutaneous adipose tissue
samples from GTEx. Adipose is a dynamic tissue show-
ing profound changes with aging and can play important
roles in the development of multiple ARDs such as
diabetes (Palmer and Kirkland 2016).

Samples in the old-age group showed strongest
age-associated gene expression changes compared
to samples in other age groups

To gain insight into the overall age-associated gene
expression changes, we first divided adipose samples
into four groups based on donor’s chronological ages:
Young (age < = 35, n = 40), mid.Young (35 < age < =
50, n = 93), mid.Old (50 < age < = 65, n = 171), and
Old (age > 65, n = 46) (n is the number of samples).
We compared the three older groups (mid.Young,
mid.Old and Old) with the Young group to define DEGs
in each group. It is of note that the sample size of each
group is different which may lead to different statistical
power in DEG calculation. To adjust for this, we ran-
domly selected 40 samples in each of the three older
groups to ensure same number of samples across all the
groups. We then performed DEG calling based on the
down-sampled data. The process was repeated 10 times
and results are summarized in Tables S1 and S2. Using
Old group as an example (which had 46 samples), the
number of DEGs based on down-sampling ranged from
673 to 2198 with a mean of 1555.6 and standard
deviation(SD) of 578.8. This is slightly smaller than
1619, the number of DEGs called using all Old samples.
Although the change in the number of DEGs due to
down-sampling is not particularly large for the Old
group, the change is more significant in Mid.Old and
Mid.Young (Table S2). For example, the number of
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DEGs using all Mid.Old samples was 3471, but it re-
duced to 1194.4 ± 830.5 in down-sampling, indicating
that sample size indeed has a strong effect on the num-
ber of DEGs. Therefore, we used DEGs called based on
down-sampling for the cross-group comparison.

Based on DEG results from down-sampling runs,
Old group showed the largest number of DEGs (mean
± SD: 1555.6 ± 578.8) (Table S2). The mid.Young
group had the least number of DEGs, with only 2.3
DEGs being found on average.

In order to ensure that our grouping of GTEx samples
based on age and DEG calling provide biological mean-
ingful results with very few false positives, we per-
formed a randomization test. For each group (Young,
mid-Young, mid-Old, and Old group), we randomly
split samples into two subgroups of equal size for 100
times, we then performed the DEG analysis by compar-
ing the gene expression between these two subgroups.
Except for the mid-Young group in which we detected 1
significant DEG in 2 runs, there were no significant
DEGs detected in all the other 3 groups. This indicates
that samples within each age group are similar for their
age-related gene expression and the between-group
DEGs should contain very few false positives.

In addition to DEG analysis, we also compared
the three older-age groups with Young using a dif-
ferential gene correlation analysis (DGCA). DGCA
identifies significant change of correlations among
gene-pairs under two conditions, which provides
information on the transcriptional changes from a
different angle compared with the DEG (McKenzie
et al. 2016). The DGCA results also indicated a
similar pattern as observed in the DEG analysis
(Fig. S1), i.e., Old group showed the largest number
of significant differential correlations compared with
the two middle-age groups (mid.Young and
mid.Old). Given that the Old group manifested the
greatest aging effect at the transcriptome level, and
older individuals are likely to benefit the most from
pro-longevity interventions, we decided to focus on
comparing the Old and Young groups for the down-
stream analyses.

For the Young and Old groups, we identified 4
and 2 outlier samples, respectively and they were
removed from further analysis. 36 samples in the
Young group (age < = 35) and 52 samples in the
Old group (age > =65) were used for the following
analyses. The sample information of age and sex
distribution are shown in Fig. S2.

Deriving and comparing young and old adipose tissue
gene co-expression networks

We constructed gene co-expression network using
WGCNA and obtained 103 and 85 subnetworks in
young and old adipose tissues respectively (Zhang and
Horvath 2005). The largest module from the old group
is “turquoise” (denoted hereafter as turquoiseold), which
consists of 1299 protein-coding genes (see Fig. 2A).
This module is significantly enriched for “mitochondrial
matrix” (FDR =1.90E-13) and “oxidoreductase”
(FDR = 8.34E-13) (Table S3). Other largemodules from
the old group are enriched for “cell junction”, “Ubl
conjugation pathway”, and “signal peptide” (see details
in Table S4). The top modules in the young adipose
tissue (see Fig. 2B) include “turquoise” module (1010
protein-coding genes), which is enriched for “DNA
repair” (FDR = 1.58E-04); “yellow” module (939
protein-coding genes), which is enriched for “WD re-
peat” (FDR = 1.46E-09), and “magenta” module (604
prote in-coding genes , denoted hereaf ter as
magentayoung), which is enriched for “mitochondrion”
(FDR = 7.99E-32) (Table S4).

Since we constructed networks from young and old
samples separately, the subnetwork IDs (in color names)
were assigned independently and did not match between
the young and old networks. To map and compare the
global network structures in young and old tissues, we
considered gene overlap between the two networks. We
found that turquoiseold most significantly overlapped with
magentayoung with Jaccard index of 0.12 (see Table S5).
Both modules are significantly enriched for “mitochon-
dria” related (“GO:0005759~mitochondrial matrix” for
turquioseold and “GO:0005739~mitochondrion” for
magentayoung) and “transition peptide” terms (see
Table S4). Since the magentayoung and turquoiseold show
quite different sizes, this could imply that the co-
expression wiring has changed substantially due to aging
for genes in this subnetwork. For a further investigation,
we performed a differential connectivity analysis
(McKenzie et al. 2016). Specifically, we aimed to identify
the significant differentially co-expressed gene pairs be-
tween young and old networks. From this analysis, 1051
significant differential co-expressions (p value ≤5.0E-4)
involving 643 unique genes were found (Fig. 2C. and
Dataset 1). The 643 genes are significantly enriched for
“ o x i d o r e d u c t a s e ” ( F D R o f 1 . 6 6 E - 6 ) ,
“GO:0005759~mitochondrial matrix” (FDR of 5.26E-
5), and “hsa00350:tyrosine metabolism” (FDR of
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6.85E-3) (Table S6). For these significantly changed co-
expression pairs, the majority of them show gained co-
expression in the old network. For example, 708 gene-
gene pairs showed significant correlations only in old
samples but not in young samples. In contrast, only 38
gene-gene pairs are significantly correlated in young sam-
ples and no longer significantly correlated in old tissues
(loss of correlation). For the 505 genes in the 708 gene
pairs with gained correlation in old adipose (regardless of
the sign of the correlation), they are enriched for “mito-
chondrion” (FDR = 5.2E-5), “oxidoreductase” (FDR =
3.6E-5), and “fatty acid degradation” (FDR = 4.5E-2).
For the 1051 significant differential co-expressions, ma-
jority of them show changes in their co-expression direc-
tions. For example, there are 472 negative correlations in
the young samples but they become positively correlated

in the old samples (in the 2nd quadrant in Fig. 2C).
Similarly, 414 positive co-expressions in the young tis-
sues became negatively correlated in the old tissues (in the
4th quadrant in Fig. 2C). This result indicates that sub-
stantial network re-wiring occurred in the adipose tissue
during aging. The enriched functions of the re-wired
genes suggest potential link with age-dependent adipose
function declines in insulin sensitivity, lipolytic and fatty
acid responsiveness (Tchkonia et al. 2010). Since we had
imbalanced number of samples for young vs. old adipose
tissues, to ensure the gain of co-expression was not due to
larger sample size for old adipose, we performed a down-
sampling calculation. Specifically, we randomly se-
lected 36 samples from the old adipose tissue for 20
times, and calculated the co-expression values for
the same 1051 gene pairs. We found that the results
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were consistent with the ones obtained from using
all the 52 old adipose samples (Dataset 1). There-
fore, the gain of co-expression in the old adipose
was not caused by the larger sample size.

Prioritizing subnetworks that may function
as the interface between aging and age-related diseases

As co-expression network divides transcriptome into a
number of non-overlapping subnetworks, it is unclear if
all these subnetworks contribute equally to aging and
ARDs. Based on our previous work (Yang et al. 2016),
we hypothesize that subnetworks are differentially in-
volved in aging and make distinct contribution to the
development of age-related diseases. To evaluate the
relative importance of each subnetwork, we considered
multiple criteria and applied them to the old tissue
sample derived co-expression network. We focused on
old network since ARDs mainly occur in older individ-
uals and therefore, modules derived from the old tissue
samples are more likely to reveal the interconnection
between aging and ARDs. We describe the details of
each criterion below.

Criterion 1. Enrichment for GenAge genes:
GenAge database (Build 18) contains 305
literature-based manually curated putative human
aging genes (Tacutu et al. 2013), and has been used
as a reference aging gene list by several studies
(Zhang et al. 2016; Wang et al. 2009). We calculat-
ed the enrichment of GenAge genes for each sub-
network (see Table S7). The top three overlap were
seen in the hotpinkold (FDR = 5.36E-01),
turquoiseold (FDR = 5.36E-01), and yellowold

(FDR = 5.71E-01). These subnetworks are strongly
enriched for cell cycle genes, mitochondrial matrix,
and signal peptide/glycoprotein, respectively
(Table S7). Although the enrichment for GenAge
genes was not particularly strong as FDRs were
greater than 0.01, it is still suggestive that some
modules are more enriched for human “aging
genes” compared to others. It is of note that
turquoiseold contains APOE (apolipoprotein E),
which is one of the very few genes that are repro-
ducible in genome-wide association studies for hu-
man longevity (Table S8) (Schachter et al. 1994).
Criterion 2. Enrichment for differential expressed
aging genes: We applied DESeq (Anders and
Huber 2010) to identify differentially expressed

genes (DEGs) between young and old adipose tis-
sue samples. At FDR 0.05, there were 382 DEGs,
among which 265 were protein-coding genes with
148 up-regulated and 117 down-regulated
(Table S9). We also performed sample down-
sampling to ensure that the DEGs were robust and
did not dependent on the difference in sample size
(see Supplementary Table S1 and S2). The up-
regulated protein coding DEGs are significant
enriched for functions like “extracellular matrix”
(FDR 6.74E-6), “glycoprotein” (FDR 1.05E-5),
and “signal peptide” (FDR 2.43E-3), and the
down-regulated genes are significant enriched for
“transmembrane” (FDR 2.56E-3) (Table S10). It is
of note that the top ranked DEG was CDKN2A,
whose expression levels increased more than three-
fold from young to old adipose tissues (FDR 1.75E-
6). CDKN2A encodes p16INK4A, which is a com-
monly used biomarker for cellular senescence
(Sharpless and Sherr 2015). Studies have shown
that by clearing p16INK4A-positive cells, mice could
have a longer lifespan with delayed onset of age-
related disorders (Baker et al. 2016).

We mapped the aging DEGs to the old adipose tissue
co-expression network and summarized the results in
Table 1. There are 3 modules significantly enriched for
the aging DEGs, i.e., turquoiseold (97common genes
with FDR 3.02E-42), magentaold (31 genes with FDR
1.49E-13), and yellowold (28 genes with FDR 1.18E-
04). Turquoiseold contained about two fifth of all the
significant aging DEGs (97out of 265), indicating that
aging had a very strong influence on gene expression in
this subnetwork among all the subnetworks.

Criterion 3. Enrichment for disease genes: We
previously manually curated genes associated with
277 diseases and traits, among which 84 diseases
and traits had at least 20 associated genes (Yang
et al. 2016).We evaluated the enrichment of disease
genes in each subnetwork for all the 84 diseases/
traits (Table S11). As shown in Fig. 3, there exists
significant enrichment of disease genes in multiple
subnetworks. For example, the greenyellowold sub-
network overlapped with multiple immune related
diseases (e.g., vitiligo, ulcerative colitis, inflamma-
tory bowel disease, and Alzheimer’s disease) while
it is highly enriched for “immunity” (adjusted p
value = 4.3E-34). The turquoiseold subnetwork
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significantly overlapped with genes associated
with obesity-related traits, Parkinson’s disease,
metabolite traits, and was the only subnetwork
that significantly overlapped with type 2 diabe-
tes genes, indicating it may play an important
function in mediating the development of these
metabolic related diseases.
Criterion 4. Strong connection with age-related
diseases by GeroNet calculation: GeroNet is a
method that allows the consideration of connec-
tions between aging and disease genes through
network connections. Different from criteria 3, it
considers indirect interactions (i.e., interactions me-
diated by other genes) between aging and disease
genes (Yang et al. 2016). We performed GeroNet
analysis using GenAge genes as aging genes and

disease genes from 277 disease and trait categories.
We used the HPRD (human protein reference data-
base) as a reference PPI network (Yang et al. 2016).
The results from GeroNet showed that turquoiseold

was the most important subnetwork in mediating
the connections between aging and multiple dis-
eases in all the 85 subnetworks. This result further
suggests that turquoiseold subnetwork plays a criti-
cal role inmediating the connections between aging
and age-related disease including metabolic dis-
eases such as type 2 diabetes.
Criterion 5. Enrichment for differential co-expres-
sions: As we have shown in the previous section,
we observed profound co-expression re-wiring be-
tween magentayoung and turquoiseold modules. To
assess the significance level of re-wiring, we
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performed a permutation analysis. Briefly, for a
subnetwork of size n, we randomly selected n genes
from all the genes in the transcriptome to form a
random subnetwork. Using the same set of young
and old tissue samples, we calculated the number of
significant differential co-expressions for this “ran-
dom” subnetwork between young and old ages. By
running this permutation test for 1000 times, we
estimated a p value for observing the actual number
of differentially co-expressed gene-gene pairs in
our real data. A gene pair was called differentially
connected if p value was less than or equal to 5E-4.
Using this permutation estimation, the estimated p
value for observing 1051 differential co-
expressions was close to 0 (p < 0.001), which indi-
cates that co-expression rewiring in the turquoiseold

module was highly significant.

To summarize, we listed the results for the top 10
modules with more than 50 protein coding genes in
Table 1 (sorted based on the enrichment for aging
DEGs). By a joint consideration of all the criteria, par-
ticularly on the criteria that reported significant modules
(FDR < 0.05), the turquoiseold stood out as the top sub-
network (Table 1) in which aging and a group of meta-
bolic diseases like type 2 diabetes were connected,
suggesting it is a key subnetwork function as the inter-
face between aging and ARDs in adipose tissue.

To visualize the turquoiseold subnetwork, we
mapped its genes onto the HPRD protein-protein
interaction (PPI) network (Fig. S3) and showed the
largest connected component in Fig. 4A. We anno-
tated the diabetes genes (square shaped nodes),
significantly DEGs between young and old samples
(nodes in red color for up-regulated and green
color for down-regulated gene expressions in old
adipose tissue samples) and APOE-perturbed genes
(nodes with thick border, the APOE knockout
DEGs were derived from GSE44653) in Fig. 4A.
It is of note that signaling pathways important in
growth regulation and metabolic function such as
the PPARG and GHR/AKT pathway are contained
in this PPI subnetwork. Similarly, we show the
greenyellowold PPI network in Fig. 4B and genes
associated with inflammatory diseases are
highlighted with thicker borders.

Prioritize compounds using a network
pharmacogenomic approach

An important goal of human aging and geroscience
research is to identify effective interventions to slow
aging and delay the onset of age-related diseases. To
a c h i e v e t h i s g o a l , w e a d o p t a n e two r k
pharmacogenomic approach based on the concept of
Connectivity Map (CMap) (Lamb 2007). CMap con-
tains more than 6000 drug-perturbation induced gene
expression profiles generated from multiple human cell
lines, with a coverage of 1309 compounds. The CMap
has been used to query various disease-associated gene
expression signatures to identify drugs that may “re-
verse” the gene expression changes observed in the
disease conditions. Such identified drugs are considered
candidates to treat the corresponding disease. The CMap
concept has been successful applied to an increasing
number of disease areas (Dudley et al. 2011; Mirza
et al. 2017). These success further stimulated efforts to
construct even larger scale perturbation-induced expres-
sion databases, e.g., The Library of Network-Based
Cellular Signatures (LINCS) Program (Duan et al.
2016), and a crowd extracted expression of differential
signatures (CREEDS) (Wang et al. 2016). Here, we
hypothesize that if a drug or gene perturbation could
modulate aging DEGs in our prioritized aging subnet-
works toward their youthful states, then this drug/gene is
likely to be geroprotective for the tissue under investi-
gation. To test this hypothesis, we considered age-
related DEGs in the turquoiseold module (21 up-
regulated and 76 down-regulated genes) to query vari-
ous pharmacogenomic datasets. We also considered

�Fig. 4 Protein-protein interaction network view of two
subnetworks derived from old adipose tissue. a turquoiseold

module and its association to aging, diabetes, and APOE
perturbed genes. Each node denotes a gene and each edge
denotes a protein-protein interaction. The nodes in square shape
(e.g., AKT2) are diabetes associated genes obtained from GWAS
catalog and OMIM; the nodes with filled red-(up) or green-(down)
(e.g., MAPT) are significantly differentially expressed genes (at
FDR < = 0.05 by DESeq) between young and old samples; the
nodes with blue thick border (e.g., APOE and GDA) are APOE
perturbed genes as defined in CREEDS. b greenyellowold module
mapped to PPI network and genes associated with inflammatory
diseases (nodes with thicker border), including vitiligo, ulcerative
colitis, multiple sclerosis, inflammatory bowel disease, Crohn’s
disease, celiac disease, Alzheimer’s disease, and systemic lupus
erythematosus
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using all the DEGs as query input (265 differential
genes with 148 up-regulated genes and 117 down-
regulated genes) (Table S9) and compared the re-
sults from these two inputs.

We relied on CREEDS database which contains 5170
single-drug perturbation-induced gene expression sig-
natures (875 manually curated and 4295 automatically
extracted) collected from Gene Expression Omnibus
(Wang et al. 2016). Specifically, we screened the
CREEDS to identify drug perturbations that could re-
verse the aging DEGs (i.e., perturbations that up-
regulate those repressed aging gene expressions and/or
down-regulate those elevated aging gene expressions).
We considered three methods to rank a drug-
perturbation signature. The first method is a Signed
Jaccard Index provided by CREEDS itself (Wang et al.
2016). In this method, the age-associated up- and down-
regulated genes are jointly compared with drug-induced
up- and down-regulated genes. When there is a perfect
match between both up- and down-regulated genes, the
Signed Jaccard Index is 1. If genes in the opposite
direction match perfectly, the Signed Jaccard Index is
−1. For all other situations the score is somewhere
between −1 and 1. Since CREEDS only provides
Signed Jaccard Index without its associated p-values,
we decided to only include the top 50 records based on
the Signed Jaccard Index for further consideration. The
cutoff at 50 is mainly for practical consideration since in
many cases, we can only experimentally follow-up with
a limited number of top hits. The second method is
based on Gene Set Enrichment Analysis (Subramanian
et al. 2005). We first sorted all genes based on their
expression fold changes between old and young sam-
ples, we then calculated for each drug signature (sepa-
rating up- and down-regulated genes as two signatures)
a normalized enrichment score (NES). A positive NES
indicates that a drug perturbation signature is enriched
for the top ranked genes which are up-regulated in old
samples, while a negative NES indicates an opposite
scenario. Similarly, we selected the top 50 records based
on NES as more than several hundred records received
significant adjusted p-values <0.05. Finally, we used
Fisher’s Exact Test to calculate the enrichment between
drug perturbation signatures with aging DEGs. To adjust
for the potential influence by the gene set size, we
calculated a permutation based Z-score to ensure that
drug signatures received significant p-values were not
due to size-bias, using a method developed by the
Enrichr (Chen et al. 2013). We considered all the top

significant outputs (FDR < 0.05 or the top 50, whichev-
er is less) by this method. We provide detailed results
from each method in the supplementary Table S12.
There are in total 232 unique hits by all the three
methods. To further narrow down the list, we considered
candidates that emerged in the top-ranked lists by at
least two methods.

From this analysis, 31 drugs were identified using
aging DEGs in the turquoiseold as a query input
(Table 2). Among these drugs, 19 of them have at
least some supportive evidence suggesting that the
compound can improve phenotypes related to me-
tabolism, diabetes, or lifespan (Table 2). These
drugs cover a range of distinct mechanisms, suggest-
ing the complexity of the aging process and its
interconnection with diseases. It is of note that sev-
eral type 2 diabetes drugs were identified in this list,
inc lud ing ros ig l i t azone , p iog l i tazone , and
troglitazone, which are all peroxisome proliferator-
activated receptors (PPARs) agonists. In addition to
these well-recognized compounds that have already
been used to treat type 2 diabetes, several lipids also
entered the list such as conjugated linoleic (CLA),
oleic acid, and stearic acid.

From the enrichment analysis using Fisher’s Exact
Test, isomers of CLA (Table S13), either cis-9, trans-11
CLA or trans-10, cis-12 CLA, or their mixture up-
regulated the expression of multiple genes that were
down-regulated in the old-age GTEx adipose tissues.
These genes encompass functions such as enzymes in
various metabolic pathways (PFKFB3, PGM1, GLUL,
MTHFD1, ACO1 and HADH), cofactor and metabolite
transporters (SLC19A3 and AQP7), redox homeostasis
(FAM213A and PRDX6), PPAR signaling pathway
genes (ADIPOQ), cell cycle regulation (CDKN2C),
and lipid metabolism (PLIN1 and HADH). The function
of these genes is generally consistent with the reported
favorable effects of CLA on cancer, atherosclerosis,
body weight and fat mass (Pariza 2004).

Another distinct hit is the liver X receptor (LXR)
agonist GW3965 (GSE41223) (Pettersson et al. 2013)
(Table S13). The canonical role of LXR is regulation of
reverse cholesterol transport and cholesterol efflux, but
its role also extends to the regulation of glucose and fatty
acid metabolism and a wide variety of endocrine pro-
cesses (Calkin and Tontonoz 2012). The targeted genes
that overlap with the aging DEGs are consistent with
their function in lipid synthesis (FASN and ACSL1),
glucose metabolism (PGD, PC and PGM1), as well as
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other metabolic pathways (CYB5A, HADH, ACO1,
AQP7 and SHMT1).

As another example, episesamin, formed during the
refining process of non-roasted sesame seed oil, is a
geometrical isomer of sesamin. Sesamin is one of the
most abundant lignans (polyphenols) in sesame seed
(Kushiro et al. 2002). Both episesamin and sesamin
are found to increase the mitochondrial and peroxi-
somal palmitoyl-CoA oxidation rates and lower the
activity and gene expression of hepatic lipogenic en-
zymes to one-half in rat (Kushiro et al. 2002). Treating
3 T3-L1 preadipocytes with episesamin decreased
hormone-induced 3 T3-L1 differentiation as shown
by reduced accumulation of intracellular lipid droplets
and diminished protein expression of GLUT-4.
Episesamin also showed anti-inflammatory activity
by counteracting the lipopolysaccharide- and tumor
necrosis factorα-induced secretion of interleukin 6 by
3 T3-L1 preadipocytes, suggesting it could be used as
a novel potential complementary treatment for obesity
(Freise et al. 2013).

To ensure that the drug list output from ANDRU is
not random, we estimated how many drug hits we
would expect if random aging signatures were provided
as input to ANDRU. Specifically, we reshuffled 18,604
protein-coding genes 100 times to generate 100 random-
ized gene lists, and selected 21 genes from the top and
76 genes from the bottom of each list to form a random
aging signature. We then used these random aging sig-
natures as input to ANDRU. From the 100 permutation
tests, we only observed 1 or 2 unique drug hits in 4 runs,
and no hits in all other runs. Therefore, the p value of
obtaining 31 unique drug hits by ANDRU from the real
aging signature was very significant (p < 0.01). We
listed the drugs identified from the 100 random aging
signatures in Table S14. In the list, eribulin and pacli-
taxel also appeared in our result based on adipose
turquoiseold aging signature (Table 2). Except for estra-
diol, we could not find evidence supporting their func-
tion in improving lifespan or metabolic traits.

Comparison of “anti-aging” drug discovery using aging
network vs. all age-related DEGs

The general approach of CMap analysis is to use all the
DEGs for a disease without considering the underlying
network structures. To make a comparison between a
general approach with ANDRU, which prioritizes query
genes based on the network structures, we compared theT
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results based on query using all the 265 DEGs (Supple-
ment Table S9). Unexpectedly, only 19 drug signatures
were found based on the same criterion despite that the
input query had a greater number of genes. For these 19
drugs, 11 of them have evidence supporting they may
cause improvement in phenotypes related to metabo-
lism, diabetes and lifespan. For the 31 drugs identified
using DEGs in turquoiseold, 15 of them were not iden-
tified by query using all the DEGs. While using all
DEGs, only 2 of the drugs were not found by query
using DEGs in turquoiseold, suggesting that DEGs in
turquoiseold, although representing fewer genes, are
more sensitive in identifying relevant drug perturbation
signatures based on our ranking method.

For drugs that were only identified from the
turquoiseold module, several of them have evidence to
support their protective function in adipose tissue. For
example, absortic acid (Vitamin C) was found by que-
rying DEGs in the turquoiseold module but not by using
all DEGs. It has been reported that vitamin C can reduce
blood glucose and improve glycosylated hemoglobin in
type 2 diabetes based on a blinded clinical study
(Dakhale et al. 2011).

The prioritized drugs show tissue specificity when
ANDRU is applied to another tissue

It is known that aging and ARDs show tissue specificity
(Glass et al. 2013; Yang et al. 2015). To evaluate if
prioritization of drugs would depend on tissue types,
we applied ANDRU to a second tissue type, namely, the
artery aorta. The results are summarized in Dataset 2.
There were 34 young-age samples (with mean age and
standard deviation of 27 ± 4.5) and 33 old-age samples
(with mean age and standard deviation of 67 ± 1.1) used
by ANDRU. At FDR of 0.05, 459 up-regulated and 325
down-regulated differential protein-coding genes were
identified by comparing the young- vs. old-age samples.
These DEGs are significantly enriched for glycoprotein
and several other categories. The top drug perturbations
that reverse the aging DEGs were N-methyl-D-aspartate
(NMDA) antagonists. The NMDA receptor has been
well-studied for its association with brain aging
(Magnusson et al. 2010; Foster et al. 2017). Next to
the NMDA antagonists, curcumin was ranked at 4,5,6,8,
and 10 in the list. Curcumin is a chemical produced
naturally by some plants like ginger root. Curcumin
and its metabolite, tetrahydrocurcumin (THC), has been
experimentally validated to increase lifespans of

nematode roundworm, fruit fly, and mouse (Shen et al.
2013). It is also known that curcumin has anti-oxidative,
anti-lipofusinogenesic, and anti-aging effects in the
brain (Bala et al. 2006) and might be effective in treating
diseases caused by low grade inflammation including
cancer and Alzheimer’s disease (Sikora et al. 2010).
From network analysis, curcumin was also ranked at
the top for aging DEGs in the yellow subnetwork (919
protein coding genes enriched for Zinc finger regions
and DNA binding) in old artery aorta tissue (Dataset 2).
It is of note that the prioritized drugs are different for the
two tissue types we evaluated, implying the underlying
aging-related changes and how they interconnect with
diseases are tissue specific.

Comparison of “anti-aging” drug discovery using CMap
database

While we independently developed this work, Donertas
et al. published a closely related study (Donertas et al.
2018). They derived a common aging signature across
GTEx brain samples and queried it upon the CMap to
infer drugs that may modulate the brain aging signature.
Among all the 24 drugs they identified, 7 were known
pro-longevity drugs. Donertas et al.’s work suggests that
CMap can be valuable resource to work with GTEx-
derived aging signatures. To compare this with our work
(Donertas et al. 2018), we derived a list of 409 down-
regulated and 277 up-regulated age-associated genes
common across 13 GTEx brain tissues and queried the
CMap (Yang et al. 2015). We were able to identify 8
drugs from CMap whose perturbation signatures signif-
icantly correlated with our brain aging signature (FDR
<0.05). Among these 8 drugs, 6 of them were consistent
with the 18 drugs reported by Donertas et al. by using
GTEx data alone (Donertas et al. 2018). The 8 signifi-
cant drugs are sirolimus, resveratrol, irinotecan, dauno-
rubicin, wortmannin, LY-294002, phenoxybenzamine
and chenodeoxycholic acid. The difference between
our and Donertas et al.’s results is likely caused by
how the aging signatures were generated in the brain
tissues. Given the results were largely reproducible, we
decided to use CMap to screen the aging signatures
derived in adipose tissue and compare with results ob-
tained from CREEDS. Based on querying CMap, rather
few hits were returned. Using all aging DEGs, only three
drugs were found to be significant (FDR <0.05)
(Table S15). Among these, the top one candidate drug
was “apigenin” (FDR = 0.017). Apigenin is a natural
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product belonging to the flavone class. Flavonoid
Apigenin (4′,5,7-trihydroxyflavone) has been reported
to slow aging by competitive inhibition of NADase
activity (Escande et al. 2013) and by inhibition of
DNMT activity through reactivation of methylation-
silenced genes such as p16INK4A (Fang et al. 2007). It
has also been reported that apigenin has properties such
as inducing autophagy, anti-inflammatory, antioxidant,
anti-carcinogenic and preventing aging signs of skin
(Choi et al. 2016). Using DEGs in the turquoiseold, 6
drugs were returned as significant hits (Table S15). The
very top compound was pyrvinium, a pinworm anthel-
mintic drug. It has been found that pyrvinium is a potent
Wnt pathway inhibitor that can promote wound repair
and post-myocardial infarction cardiac remodeling
(Saraswati et al. 2010). GenomeWide Association Stud-
ies (GWASs) have suggested a link between Wnt/β-
catenin signaling pathway and type 2 diabetes. Wnt/β-
catenin signaling pathway is also known to be involved
in adipogenesis (Ross et al. 2000), and it is hypothesized
that Wnt/β-catenin signaling is crucial for obesity de-
velopment, and has the potential to be therapeutic target
for treatment for obesity (Chen and Wang 2018).

Discussions

In this work, we demonstrated a novel informatics pipe-
line − ANDRU to construct human aging network and
identify interventions that can be geroprotective. We
applied ANDRU to GTEx adipose and artery tissues.
With aging, adipose tissue undergoes significant chang-
es and contributes to the development of insulin resis-
tance, metabolic dysfunction, inflammation, and im-
paired regenerative capacity (Palmer and Kirkland
2016). From more than eighty adipose subnetworks,
we prioritized and highlighted the turquoiseold for its
putative role as the interface between aging and several
ARDs. We then queried CREEDs and CMap databases
with the aging DEGs within the turquoiseold. Among the
top-hits, a large proportion of them received evidence
supporting their protective roles in improving metabolic
traits and lifespan. As we restricted query genes to the
turquoiseold module, which were enriched for genes
related to both aging and diseases, we were able to
obtain more hits and some of these hits showed clear
supportive evidence for their protective functions. Since
different subnetworks often have distinct functions and
show differential connections to various diseases, it may

provide options to select desirable subnetworks to ad-
dress distinct types of diseases (e.g., the inflammation
related diseases vs. metabolic related diseases). Since
the diseases of concern can vary among individuals,
considering individual’s genetic and genomic profiles
to prioritize optimal aging subnetworks could facilitate
more personalized geroprotection in future.

The importance and feasibility of performing in silico
drug screening for geroprotection has been first demon-
strated by Zhavoronkov et al. (Aliper et al. 2016). Our
method is conceptual similarity to their method but has a
different implementation. For example, we relied on a
de novo network construction approach to build aging
networks while GeroScope used by Zhavoronkov et al.
considered prior knowledge of known aging pathways.
While both approaches considered age-related transcrip-
tional changes, the input dataset and methods used to
incorporate such information were different. Therefore,
our approach represents a significant alternative option
for performing in silico geroprotector discovery.

The current implementation of ANDRU and in gen-
eral the approach based on CMap concept has its limi-
tations and will require future improvement. First, as we
relied on existing gene expression signature databases,
we are limited to the perturbations collected by these
databases and important drugs could be missed if the
data was not generated or not included into the database.
This is clearly demonstrated that when we used the same
aging signature from adipose tissue to query CREEDS
and CMap databases, the returned top hits were quite
different and CMap only returned a very limited number
of significant compounds for the tissue we studied.
Although the “incompleteness” of perturbation signa-
tures will likely persist in the near future, perturbation
datasets are continuing to grow. For example, the NIH
LINCS project is generating high throughput perturba-
tion expression signature data at very large scale (Duan
et al. 2016), making it another useful resource for the
network pharmacogenomics development. Jointly con-
sidering multiple such perturbation pharmacogenomic
databases will help to provide more comprehensive
coverage. Second, CREEDS contains data collected
from multiple species, and the non-human data or data
obtained from different tissue types could cause either
false positive or false negative hits. This would require
additional conformational experiments to ensure pertur-
bation signatures are reproducible in the desirable tissue
types. Third, in this pilot work, we considered only a
limited number of tissue types to illustrate the pipeline.
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The top ranked drug candidates were different in each
tissue. This suggests that to achieve optimized systemic
geroprotection, we may need rely on combining drugs.
As GTEx profiles more than 40 tissue types, it is a
substantial future work to investigate aging networks
and search for geroprotectors at a “whole-body” scale.
Fourth, our method contains multiple steps and criteria
for which the parameters were empirically determined
and therefore arbitrary. In future development, we will
explore ways to reduce the complexity of the ANDRU
to minimize the number of parameters without sacrific-
ing the overall performance.

In summary, with the accumulation of an unprece-
dented amount of human omics data, we believe that
integrating them to refine the aging networks, and
leveraging them to search for the most effective human
geroprotectors represents a promising strategy to speed-
up the geroscience research.
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