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Facial paralysis (FP) is a loss of facial movement due to nerve damage. Most existing diagnosis systems of FP are subjective, e.g., the
House-Brackmann (HB) grading system, which highly depends on the skilled clinicians and lacks an automatic quantitative assessment.
In this paper, we propose an efficient yet objective facial paralysis assessment approach via automatic computational image analysis.
First, the facial blood flow of FP patients is measured by the technique of laser speckle contrast imaging to generate both RGB color
images and blood flow images. Second, with an improved segmentation approach, the patient’s face is divided into concerned regions to
extract facial blood flow distribution characteristics. Finally, three HB score classifiers are employed to quantify the severity of FP
patients. The proposed method has been validated on 80 FP patients, and quantitative results demonstrate that our method, achieving an
accuracy of 97.14%, outperforms the state-of-the-art systems. Experimental evaluations also show that the proposed approach could

yield objective and quantitative FP diagnosis results, which agree with those obtained by an experienced clinician.

1. Introduction

Facial paralysis (FP, also known as peripheral facial nerve
paralysis) occurs on one or both sides of the face when
cranial nerve number 7 is injured. Such an injured nerve,
being originally responsible for several functions in the face,
is not able to control muscles for normal facial motions
[1, 2]. Therefore, facial asymmetry would commonly appear
in FP patients that cause significant inconveniences to their
daily life (e.g., work and social communication). Timely and
effective treatment of FP can alleviate the facial disfigure-
ment, where an objective diagnosis of FP plays an important
role in the whole procedure of treatment.

1.1. Related Work

1.1.1. Subjective Assessment. House-Brackmann (HB) facial
nerve grading system [3] is a representative scaling method

for subjectively assessing FP. It has been adopted by the
American Academy of Otolaryngology-Head and Neck
Surgery since 1985. In recent years, more scaling methods
such as Hato [4], Sunnybrook [5], and FDI [6] have appeared
and been used in the clinic. These kinds of subjective as-
sessment systems are easy to use. However, they rely largely
on the clinician’s subjective observations from the patient’s
specific facial movements and grading tables. As a conse-
quence, this operation not only is a time-consuming and
labor-intensive procedure but also is an individual expertise
dependent.

1.1.2. Objective Assessment. Objective assessment of FP has
appeared recently. The first type of these assessment
methods is based on the electromyography signals, such as
electromyography (EMG) [7], surface electromyography
(sEMG) [8], and Electroneuronography (ENoG) [9], which
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can detect the state of the entire facial motor system and
determine the degree of facial nerve damage. EMG [7] needs
to puncture small needles into special facial muscles, and the
patient will be asked to exercise these muscles to record
nerve signals. Thus, EMG is invasive which leads to a
complicated operation. The improved sEMG [8] is more
convenient to operate by using patch electrodes. However, in
actual operations, the electrodes are hardly placed uni-
formly, and much additional interference would be intro-
duced. ENoG [9] could judge the degree of peripheral facial
nerve damage by applying electrical stimulation to the facial
nerve trunk from the stem pore and recording electro-
physiological parameters from the facial muscles of the distal
part.

Facial paralysis grading can benefit from the recent
development of computer vision. Wachtman et al. [10]
recorded facial motion tasks (brow raise, eye closure, and
smile) of patients by image tracking. He et al. [11] evaluated
197 cases of facial paralysis images using an automatic
evaluation system based on the local binary pattern related
to biomedical image recognition technology, with a classi-
fication accuracy of 94%. Guo et al. [12] collected the facial
expression images of patients with a known HB score. They
detected the face landmark points of the images and then
obtained structural features. A support vector machine
(SVM) classifier is generated using these structural features,
which can automatically assess the HB score of FP patients.
Recently, Guo et al. [13] utilized a deep convolutional neural
network for feature extraction and degree prediction in the
unilateral peripheral facial paralysis assessment.

However, the accuracy of computer vision-based ob-
jective facial paralysis assessment is not good enough be-
cause the difference between images of facial paralysis
patients with different HB levels is too small to distinguish
[12]. A lot of studies have illustrated that, once certain
lesions occur in the human bodies, the tissue metabolism
and blood circulation on the lesion areas will change,
resulting in the fluctuations of local temperature on the
body surface and abnormal infrared heat radiation. Liu
et al. [14, 15] evaluated facial paralysis using an infrared
thermal image, which localizes facial features based on both
the specificity of facial temperature distribution and the
image edge detection technique and divides the image into
eight regions. Then, the features and asymmetry degree of
facial temperature distribution are extracted automatically,
and finally, the radial basis function neural network is
employed as the automatic classifier to assess the HB score
of FP patients. However, there are many factors that can
distort the infrared thermal image feature, e.g., fever and
some outside influence, which let the accuracy of the
method be reduced.

According to Cui et al. [16], the facial skin perfusion will
be affected after the onset of Bell’s palsy. A possible con-
nection between facial skin microcirculation and Bell’s palsy
may be the edema surrounding facial nerve, which is often
found in facial paralysis patients in decompression operation
and magnetic resonance imaging. The edema will result in
elevation of pressure and further damage. Since the direction
of facial nerve blood flow is primarily proximal to distal
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[17, 18], the facial skin microcirculation near the facial nerve
would also be affected.

Our proposed approach follows the similar hypothesis
proposed by Cui et al. [16] that the facial perfusion of Bell’s
palsy patients can reflect the stage of Bell’s palsy. Laser
speckle contrast imaging (LSCI) is applied in this study,
which is an effective real-time, full-area blood flow imaging
technique. It has attracted extensive attention in the fields of
biomedical imaging and clinical diagnosis. Dunn et al.
[19, 20] used LSCI to monitor the changes in cerebral blood
flow. Kashima and Hayashi [21] applied LSCI to observe the
effects of different tastes on facial blood flow. Tian et al. [22]
employed LSCI to compare the effects of the metal needle and
the laser needle on facial blood perfusion. Finsterer [23] uti-
lized LSCI to study the treatment effect of acupuncture on FP
patients from the blood flow of ocular skin. Cui et al. [16, 24]
observed that the blood perfusion of the affected facial side
of most FP patients was lower than the healthy side and was
positively related to the severity of facial paralysis.

In this paper, we propose an efficient yet objective facial
paralysis assessment approach via automatic computational
image analysis. After capturing both the blood flow and RGB
images of the patient’s faces by LSCI scanners, the patient’s
face is first divided into different regions to extract facial
blood flow distribution characteristics. Then, machine
learning-based HB score classifiers are trained using a large
number of data of facial blood flow distribution charac-
teristics. Finally, the HB score classifiers of K-nearest
Neighbor (K-NN), SVM, and Neural Network (NN) could
produce good prediction accuracy in our experiments.

1.2. Overview of the Proposed Approach. Our approach of
computational image analysis serves the HB grading system.
We can make such a subjective system be an automatic and
objective assessment tool for a more accurate FP diagnosis.
The HB grading system was first introduced by House and
Brackmann in 1985 [3] and then was commonly used in
clinical environments. Facial paralysis patients can be scored
from I to VI to describe the facial nerve function from
normal to no movement. As shown in Table 1, the larger the
score is, the more serious the damage of the facial nerve
tunction is. In our study, the HB score is also used for the
assessment of facial paralysis.

Our facial paralysis assessment approach is based on the
hypothesis that the stage of Bell’s palsy could be measured by
the facial skin perfusion. There are many causes of Bell’s
palsy, including virus HSV-1, ischemia of the facial nerve,
and some uncertain factors [2]. Besides, facial nerve swelling
is a presence in the reported decompression operations and
contrast-enhanced magnetic resonance imaging in Bell’s
palsy patients [23, 25]. The edema surrounding facial nerve
will result in elevation of pressure, ischemia of the facial
nerve, and further damage. Since the facial nerve blood flow
is primarily proximal to distal, the microcirculation of
distal tissue, such as skin, could be affected if the micro-
circulation of tissue near the facial nerve changes. According
to Cui et al. [16], although the reason why facial skin per-
tusion is affected by Bell’s palsy needs further investigation,
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TaBLE 1: The House-Brackmann (HB) grading system.

Score Description

[ Normal

I Slight dysfunction

111 Moderate dysfunction

v Moderate-to-severe dysfunction
\% Severe dysfunction

VI Total paralysis

and the phenomenon that facial skin perfusion changes after
the onset of Bell’s palsy was evidenced by their research.
They mainly recommend doing further research on finding
the connection between the facial skin perfusion changes
and Bell’s palsy for objective assessment of Bell’s palsy.

Our designed assessment system focuses on the patients
with unilateral Bell’s palsy in the acute stage [23]; more
specifically, the FP occurs within 7 days. In summary, the
overview of our method is presented in Figure 1. For au-
tomatic assessment of FP, measurement of patients’ facial
skin perfusion is firstly needed, for which the LSCI technique
is quite fit. Then, the facial skin perfusion is analyzed by an
improved facial blood image segmentation method. Since a
pair of pixel-to-pixel color image and blood flow image is
measured simultaneously by the LSCI device, it is much
easier to segment facial regions using the color image. 3D
face reconstruction from a single image is a fundamental
problem in computer vision and graphics, which can be
applied to segment the concerned face regions efficiently and
precisely. In this approach, the facial landmark points are
estimated first. Then, a reconstruction 3D face model can be
fitted using a 3D morphable face model and those facial
landmark points. Along with the reconstruction 3D face
model, a transformation matrix can be calculated, which
could map the vertex in the 3D model to the 2D pixel in the
color image. Because the vertex order in the 3D face model is
well known, some concerned facial regions are marked in
advance, and those regions can map to color image using the
transformation matrix.

Finally, the facial blood flow distribution characteristics
are obtained from the regional mean blood volume calcu-
lation operation. The HB score classifiers are trained for
assessment by using a large amount of facial blood flow
distribution characteristic data. Three well-known classifiers,
namely, K-NN, SVM, and NN, are employed for assessment.

2. Methods

2.1. Facial Blood Flow Measured by LSCI. In this study, the
LSCI technology is used to measure facial skin microcircu-
lation perfusion distribution of Bell’s palsy patients. LSCI
technology, which is harmless to participants, is a noninvasive
optical-based measuring technique for microcirculation
perfusion. The tissue being studied is illuminated by a near
symmetrical laser beam, and the light scattered by the par-
ticles in the illuminated tissue forms an interference image
and is captured by the camera [19]. These particles fluctuate as
the blood flows, and when captured by the camera, they
integrate into a dynamic speckle image of blood flow. Higher

blood flow causes more particle motion during the camera’s
integration time, leading to more blurred interference images.
By measuring the degree of blurring of the interference image,
LSCI can generate a real-time full-field perfusion distribution
image. A blood flow image is commonly rendered using
window width and window level treatment algorithm. A
sample of the LSCI image in our method is shown in Figure 2.

2.2. Facial Blood Image Segmentation. We design a facial
blood image segmentation method, as the preprocessing
section of the HB score classifier, to automatically segment
the facial blood flow image to obtain blood flow information.
The LSCI device outputs the blood flow image and color
image simultaneously, and the two images can be matched
pixel-by-pixel. In the facial blood image segmentation
method, we reconstruct a 3D face model using the facial
color image and the Surrey face model [26] with a 3D
morphable face model reconstruction algorithm. Then, facial
blood flow distribution characteristics are obtained by cal-
culating the average blood flow volume of concerned facial
regions.

Surrey face model is a 3D morphable face model [26],
which consists of a principal component analysis (PCA)
model of the face shape and color information and allows to
reconstruct a 3D face model from a single 2D image. The
PCA model M = (v,0,V) consists of the components
v € RN, where N is the number of model vertices, a set of
principal components V = [v),v,,...,v, ;] € R®N*(-1
and the standard deviations o € R""!. When given a prin-
cipal coefficient « € R™ and M <n -1, a new face model can
be created by resolving S = v + wa a;0;V;.

The first step of facial blood image segmentation is face
landmark fitting. The main task of this step is to obtain the
2D coordinates of the face landmarks from the input color
image. Set the input color image as I, and the output 2D
points as p; € R% i=0,1,...,67, and an ensemble of re-
gression trees are used [27] to regress the location of facial
landmarks from the color image I_,,-

The second step is camera estimation using the set of 2D
face landmark coordinates p; € R?, i=0,1,...,67, as
shown in Figure 3 and their known correspondences in the
Surrey face model to estimate the position of the camera
model. An affine camera model’s matrix can be estimated
using the gold standard algorithm [28]. The 2D face land-
mark points p; and the corresponding 3D model points are,
respectively, represented in homogeneous coordinates
x; € R? and X; € R*. With the gold standard algorithm, the
estimated camera matrix C € R¥* is available.

The third step is 3D model fitting using the estimated
camera matrix C and Surrey face model’s PCA shape model.
We modify the PCA shape model’s coefficients to fit the 3D
model with the 2D face landmarks, resorting to the shape-to-
landmark fitting technique [29]. When the following cost
function (1) reaches the minimum, the coefficients & € RM
are achieved:

E

N )
Z(ymZD,l xl) +”a§“’ (1)

2
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F1GURE 1: The proposed framework of the automatic facial paralysis assessment system based on quantitative computational image analysis.

(a)

F1GUre 2: (a) Color image. (b) Color blood flow image. (c) Gray blood flow image.

where N is the number of face landmarks, in our case
N =68, x; are 2D face landmarks in homogeneous coor-
dinates, y,,,p; are the projections of the corresponding 3D
model points using the estimated camera matrix C, and o3,
is an optional variance for the 2D face landmark points. We
set the index of the corresponding 3D model points as h, and
YmaD,i = C- (Vh(x + vh)homogeneous coordinate? where
V = [Vij» Vaps - - - > V1) Therefore, the estimated PCA co-
efficients & can be obtained by solving a linear system of
equations, which can generate the final face model by
S=v+ Y a0,

The fourth step is the regional segmentation. For each
vertex v; in face model S, the corresponding 2D point p in

the input image I, is p = C - v. Because the facial blood
image is matched with color image pixel-to-pixel, p is also
the correct point in blood flow image I};,.,4. The recon-
structed 3D face model is shown in Figure 4. Since the vertex
order of the PCA model is already known, we premark
some regions of interest on the 3D face model. These pre-
marked regions include eye circumference, eyebrow, cheek,
nose wing, mouth upper, mouth below, and mouth corner.
The premarked regions are illustrated in Table 2 and
Figure 5. The facial blood flow distribution characteristics
are achieved by calculating each region’s average blood
flow volume from the regions matched in blood flow image

Liigod-
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FiGURE 3: (a) 68 face landmarks. (b) Face landmarks in red color.
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FIGURE 4: 3D face model (a) with color texture, (b) with facial blood texture, and (c) with premarked regions.

TaBLE 2: Description of the premarked regions.

Index Region Abbreviation Scope

1 Eyebrow B The small region above the eyebrow
2 Eye circumference E The area within the eye socket

3 Nose wing N Area on both sides of the nose

4 Cheek C Part of the cheek

5 Mouth upper MU The small region above the mouth

6 Mouth corner MC The small region near the mouth corner
7 Mouth below MB The small region below the mouth

2.3. HB Score Classifier. Through the facial blood image
segmentation method, we get the facial blood flow distri-
bution characteristics. The facial blood flow distribution
characteristics are, respectively, fed into three commonly
used classifiers K-NN, SVM, and NN to provide a quanti-
tative evaluation of facial paralysis. The patients are divided
into two groups: left side facial paralysis patients and right
side facial paralysis patients. We call the average blood

volume of regions in the affected side of the face as A g0,
and in healthy side as H,g,,. As a consequence, the input
vector of the HB score classifier is [Ag, A, Ay, Ac, Ay
Anic> Avs> Hps - - > Hygl, and the output result is a six-
column vector in which each value means the likelihood of
a corresponding HB score. Therefore, the HB score of the
facial paralysis patient is estimated using our HB score
classifier.



C-L
MU-L
MC-L

MB-L

FiGure 5: The premarked regions used in the quantitative as-
sessment. L means left side, R means right side, and other ab-
breviations are listed in Table 2.

3. Experiments

3.1. Data Collection. The LSCI device used in our study is
developed by Wuhan SIM Opto-Technology Co., Ltd., which
can monitor a large area of tissue perfusion by real-time
dynamic imaging. The device can collect facial blood flow
images and color images of participants simultaneously up
to 60 fps with the resolution of 512 x 512. Each pixel in the
output facial blood flow image is a positive real number
which means the blood flow volume of that pixel.

This study was approved by the Research Ethics Com-
mittee for Shenzhen Traditional Chinese Medicine Hospital.
All participants were clearly aware of the experimental
purposes and procedures. A large amount of LSCI data have
been collected from real Bell’s palsy patients and some
healthy volunteers. Screened by professional clinicians, the
selected patients met the diagnostic criteria of Bell’s facial
paralysis and then were scored by the HB grading system.
The valid data used in this paper is a total of 80 people,
including 8 healthy people, 17 with score II, 16 with score III,
13 with score IV, 16 with score V, and 10 with score VI. All
valid LSCI data were within the acute phase of facial pa-
ralysis, which occurs within 7 days.

When collecting the LSCI data, the participants were
required to lie on the bed in a calm state, with eyes closed,
and facial expressions relaxed naturally. The collecting room
was illuminated with natural light and fluorescent lights
without direct sunlight. A soft pillow was placed under the
participants’ head and neck to prevent the participants’ head
moving. The LSCI device was fixed about 20 cm above the
participants’ faces to continuously measure facial blood flow
images. If the participant’s head moved during scanning, the
blood flow of the entire face in the blood flow image would
increase, resulting in a large data error. The normal LSCI
blood flow image and the LSCI image at the time of head
shaking are illustrated in Figure 6. All wrong images were
deleted in this experiment. Finally, a total of 100 LSCI blood
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flow images of each participant were collected, resulting in a
total of 8,000 LSCI images.

The collected LSCI data of the facial paralysis patients
proved the asymmetry of facial blood flow distribution, and
the stage of asymmetry was positively related to the grade of
facial paralysis. The blood flow value of the healthy side of
the ocular skin is marked as P;, and P, means the blood flow
value on the affected side. Let P, = P,,/P,; the closer the P, is
to 1, the more symmetric the blood flow perfusion on both
sides of the face is. It can be seen from Figure 7 that the
degree of difference in P, of the patient’s ocular skin in-
creases with the HB score. There are similar differences in
patients’ other face regions with the changes in the HB score.
Therefore, the degree of facial paralysis of patients can be
evaluated by automatically analyzing the blood flow dis-
tribution in different regions of the face.

3.2. Segmentation Performance Evaluation. In facial blood
image segmentation, some concerned regions are extracted,
including eyebrow, eye circumference, cheek, nose wing,
mouth upper, mouth below, and mouth corner. In order to
evaluate the segmentation performance with respect to the
accuracy, the Dice’s coefficient (DSC) is employed, which is
a statistic used to gauge the similarity of two samples and is a
commonly used metric in image segmentation. The DSC is
defined as follows:

2| XNY|

DSC = ———, (2)

X +1Y]
where X means the estimated region, while Y represents the
true answer labeled manually. DSC is the accuracy of the
estimated region; the higher it is, the better the segmentation
is; DSC = 23" (|1X, nY,[)/2 ™ (I1X,] + 1Y) is used to
describe the accuracy of multiple face regions.

In our study, a skilled clinician had manually labeled 100
facial blood flow images with correct facial segmentation as
the ground truth. Comparing the estimated result with the
ground truth, the accuracy of our facial blood flow image
segmentation method is shown in Table 3.

3.3. Automatic HB Score Classifier. After facial blood image
segmentation, the average blood flow volume of regions is
sorted as [Ap, Ap, Ax> Acs Ay Avics Avss Hps - - > Hygl-
The average blood volume of regions in the affected side of
the face is A,gion> and in the healthy side is H, 4, However,
since the uncertainties are caused by the complexities of the
LSCI device, it can only give microcirculation blood per-
fusion values in relative units [30]. Therefore, in the actual
experiment, the blood flow value difference of different
patients is neglected, and the patient’s facial blood flow is
scaled to obtain a relative value. Find the smallest blood flow
value face region’s blood flow volume Volume,;, =
Min (Ag, Ag, Ax» Acs Apus Anicr Ayis Hpo - - Hyy)» and di-
vide the blood flow value of all regions by Volume,;,.Then,
get the relative blood flow value [Ag, Ap, Ax,Ac Ayys
Apic> Ay Hps - . Hygl/Volume; as the actual input
vector of our HB score classifier. The corresponding HB
scores of patients are gold standards of our LSCI dataset.
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(b)

FIGURE 6: (a) The normal color facial blood flow image. (b) The wrong color blood flow image. The two images were saved during one
continuous scanning, but image (b) is slightly blurred due to the movement of the participant’s head, and the facial blood flow data are

abnormally high.

1.5
1.4

1.3
1.2
1.1
0.9 j
0.8
I 1I 11T v \Y% VI

F1GURE 7: The ratio of the affected side to the healthy side of orbital
blood flow in patients with different HB scores. From left to right,
the HB score is from I to VI. For the healthy samples with HB score
(I), we use the right side as the affected side.

—

TaBLE 3: The accuracy performance of our segmentation method
measured by DSC.

Region Accuracy Accuracy Accuracy
(left) (%) (right) (%) (both) (%)
Eyebrow 91.47 91.42 91.43
Eye 95.87 95.52 95.69
circumference
Nose wing 87.85 87.44 87.63
Cheek 97.63 97.03 97.34
Mouth upper 87.53 87.18 87.22
Mouth corner 88.21 87.98 88.15
Mouth below 87.43 87.97 87.75
Total 93.06 94.46 93.98

In the implementation, the NN model consists of an
input layer, two hidden layers, and one output layer. The
kernel function of the SVM model is a polynomial function
with a degree of two. Euclidean distance is the criterion for
evaluating the distance between data in the K-NN model,
and the value of k is 11. K-fold cross-validation method is
applied to evaluate the correctness of the three HB score

classifiers NN, SVM, and K-NN. The k-fold cross-validation
method divides the dataset into k subsamples, and a single
subsample is retained as the data of the verification model,
and the other k—1 samples are used for training. Cross-
validation is repeated by k times, each subsample is verified
once, and the average k-time results are used to finally obtain
a single estimate. The experimental dataset is disordered in
units of patients; experimental results of k = 5, 10 are listed
in Table 4.

In the experiment, we found that the NN model achieved
an optimal HB classification accuracy of 97.14%, the accu-
racy of the SVM classifier was acceptable, and the results by
the K-NN model were the worst among the three classifiers.
In the literature [15], the accuracy of the infrared image
analysis method using the radial basis function neural
network (RBFNN) classifier is 94.10%. In contrast, our NN
model achieves an accuracy of 97.14%, with 3.04% higher
than that of the RBFNN classifier.

Finally, the performance of our automatic assessment
system is illustrated in Table 5. The color images and blood
flow images collected by LSCI and the intermediate results
(face reconstruction) in facial blood image segmentation are
presented. At the same time, the HB results achieved au-
tomatically by the proposed assessment system, and the HB
results judged by the experienced clinician are also given,
respectively. It can be seen that the automatic assessments
highly align with the clinician assessments.

4, Discussion

There are many speculations about the cause of facial pa-
ralysis. Modern medicine believes that viral infection, is-
chemia of the facial nerve, and other uncertain factors can
lead to FP [1, 2]. As stated in [16], the facial skin perfusion
will change after the onset of Bell’s palsy. The probable
reason is the facial nerve edema, which is often found in FP
patients and can result in elevation of pressure, ischemia,
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TaBLE 4: The accuracy of three classifiers in terms of cross-validation.

Cross-validation Neural network (%) SVM (%) K-NN (%)
5 96.77 86.77 67.74
10 97.51 87.34 71.35
Mean value 97.14 87.06 69.55

TaBLE 5: Performance of our automatic assessment system.

Estimated HB

Color image Facial blood image 11 side Color model Blood model
score/real HB score
Left . /1T
Left . VI/VI
Right . VIV
Left . TI/IIT

and further damage. Since the facial nerve blood flow di-
rection is from the proximal end to the distal end [18], the
facial nerve ischemia is reflected in the blood flow micro-
circulation on the surface of the facial skin [17].

Our novel proposed method is both accurate and effi-
cient because our method directly assesses the FP stage by
automatically analyzing the facial skin perfusion from the
biomedical facial blood flow image produced by the LSCI
device. LSCI technology provides a new blood flow imaging
method for clinical diagnosis and basic research of life

sciences with its advantages of the large detection area,
noncontact type, mark-free, high resolution, and rapid
imaging [19, 20]. In our proposed system, the LSCI scanner
can measure the blood flow images of the entire facial area of
the patient. The patient does not need to be needled like the
EMG method, and the monitored blood flow images can be
generated real-time. It is, therefore, a convenient tool for
both patients and clinicians.

To the best of our knowledge, this is the first study to
apply the LSCI images to develop an automated facial
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paralysis assessment system. In the automated assessment
process, LSCI images are used to measure facial microcir-
culation blood flow of patients with facial paralysis. Since the
amount of collected LSCI data in this experiment is relatively
small, it is not enough to train a large deep learning network
like a deep residual learning network [31]. As a consequence,
a facial blood image segmentation method is proposed to be
used as a preprocessing step for the HB score classifier. 3D
face reconstruction from a single-image method is applied to
segment the concerned face regions efficiently and precisely.
As shown in Table 3, the segmentation accuracy is excellent,
especially the main concerned facial regions, such as eye-
brow, eye circumference, and cheek, with accuracy higher
than 90%. After this preprocessing step, the input data of the
classifier are far simplified. Three HB score classifiers NN,
SVM, and K-NN verify the classification performance of the
automated evaluation method and achieve excellent classi-
fication accuracy up to 97.14%.

5. Conclusion

In this paper, we have proposed a novel computational
image analysis approach to automatically and quantitatively
assess the facial paralysis. First, the facial blood flow of
patients with facial paralysis is measured by an LSCI device
for generating RGB color images and blood flow images.
Second, a facial blood image segmentation method is used as
the preprocessing section of the HB classifier. Finally, three
machine learning methods including NN, SVM, and K-NN
are employed to classify the quantitative degrees of the
patient. A large dataset of 8,000 captured images from 80
volunteers is collected, confirming that our novel approach
is highly accurate and robust with accuracy up to 97.14%.
Therefore, the novel computational image analysis approach
can be used as an effective tool for the automatic assessment
of facial paralysis.
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