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ABSTRACT In allosteric proteins, binding a ligand can affect function at a distant location, for example, by changing the bind-
ing affinity of a substrate at the active site. The induced fit and population shift models, which differ by the assumed number of
stable configurations, explain such cooperative binding from a thermodynamic viewpoint. Yet, understanding what mechanical
principles constrain these models remains a challenge. Here, we provide an empirical study on 34 proteins supporting the idea
that allosteric conformational change generally occurs along a soft elastic mode presenting extended regions of high shear. We
argue, based on a detailed analysis of how the energy profile along such a mode depends on binding, that in the induced fit
scenario, there is an optimal stiffness k�a � 1/N for cooperative binding, where N is the number of residues. We find that the pop-
ulation shift scenario is more robust to mutations affecting stiffness because binding becomes more and more cooperative with
stiffness up to the same characteristic value k�a , beyond which cooperativity saturates instead of decaying. We numerically
confirm these findings in a nonlinear mechanical model. Dynamical considerations suggest that a stiffness of order k�a is favor-
able in that scenario as well, supporting that for proper function, proteins must evolve a functional elastic mode that is softer as
their size increases. In consistency with this view, we find a fair anticorrelation between the stiffness of the allosteric response
and protein size in our data set.
SIGNIFICANCE Many proteins are allosteric: binding a ligand affects their activity at a distant site. Understanding the
principles allowing for such an action at a distance is both of fundamental and practical importance. From the
thermodynamic viewpoint, two models have been proposed, according to which binding creates a new stable configuration
or instead shifts the thermal equilibrium between existing states. We perform a mechanical analysis of these models and
show that they are not equally robust to mutations. We argue that in both cases, function can most properly occur along a
soft elastic mode, whose stiffness decreases rapidly with protein size. We show data on 34 proteins substantiating this
result, supporting a, to our knowledge, new principle for allosteric design.
INTRODUCTION

Many proteins are allosteric: binding a ligand at one or
several allosteric sites can regulate function at a distant
site, a long-range communication often accompanied by
large conformational changes (1,2). There is a considerable
interest in predicting the amino acids involved in this
communication, or ‘‘allosteric pathway,’’ from structure or
sequence data (3,4) because they can be used as targets
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for drug design (5). Yet, understanding the physical princi-
ples underlying such action at a distance in proteins remains
a challenge (6,7). From a thermodynamic standpoint, two
distinct views have been proposed. In the induced fit
scenario, exemplified by the Koshland-N�emethy-Filmer
model (8), the protein essentially lies in one single state.
The latter changes as binding occurs, leading to a conforma-
tional change. In an energy landscape picture such as that
of Fig. 1 B, it corresponds to a displacement of the energy
minimum upon binding. By contrast, in the population
shift model exemplified by the Monod-Wyman-Changeux
(MWC) model (9), two states are always present. Their rela-
tive stability can change sign upon binding, leading to an
average conformational change. Although each of these
models presumably applies to various proteins, they do
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FIGURE 1 (A) A protein with two binding sites can be unbound ‘‘00,’’

bound to a single ligand ‘‘01’’ (or ‘‘10’’), or doubly bound ‘‘11.’’ (B) The

induced fit scenario is shown. Elastic energy of the unbound state

E00(x)/ka (in black) rescaled for visibility by the soft mode stiffness ka,

singly bound state E01(x)/ka (in blue), and doubly bound state E11(x)/ka
(in red) as a function of the imposed motion x along its soft mode is shown.

E00, E10, and E11 correspond to the minima of the black, blue, and red

curves, respectively. In this sketch, we have assumed that for a motion

x0, the protein shape can accommodate perfectly both ligands without

deforming; thus, the three energy profiles are identical at that point. Three

cases are sketched, depending on the magnitude of the characteristic stiff-

ness of the mode ka. To see this figure in color, go online.
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not specify which designs allow for efficient action at a dis-
tance and how robust these designs are to mutations (10).

In several proteins—see below for a systematic study—it
has been observed that the allosteric response induced by
binding occurs predominantly along one or few vibrational
modes (11–15). This result supports that in at least some
proteins, elasticity—possibly nonlinear—is an appropriate
language to describe allostery (in contrast to intrinsically
disordered proteins that may be considered more as liquids
than solids, for which the analysis proposed here would
not hold). Very recently, there has been a considerable effort
to use in silico evolution (16,17) to study how linear elastic
materials can evolve to accomplish an allosteric task
(18–26). In general, binding a ligand locally distorts the pro-
tein, which is modeled by imposing local displacements at
some site, generating an extended elastic response that in
turn determines fitness (chosen specifically to accomplish
a given task). These models fall into the induced fit scenario
because in the framework of linear elasticity, there is always
a single minimum of energy. A particularly key allosteric
function within proteins is the amount of cooperative bind-
ing, defined as the change of binding energy of a substrate at
the active site caused by binding a ligand at the allosteric
site. Materials optimized to display such a cooperativity
over long distances develop a single extended ‘‘mecha-
nism’’—a soft elastic mode like the motion of closing scis-
sors—connecting the two binding sites (21). It is found that
the stiffness ka (i.e., the curvature of the energy) of this mode
cannot be too large nor too small for cooperativity to occur
and that optimal design corresponds to k�a � 1/N, where N is
the number of particles in the system. If proteins are nearly
optimal, mutations stiffening that mode should thus
diminish cooperativity. Yet, these predictions are restricted
to strictly linear elasticity, an approximation that presum-
ably does not hold in the regime in which most proteins
operate—certainly not in the population shift scenario.

In this work, we show that the population shift and the
induced fit models are very different from a mechanical
perspective. In the former case as well, function can be
achieved by developing a mechanism or soft elastic mode,
but cooperativity, instead of steadily decreasing, saturates
to a constant value once the mode stiffness passes some
characteristic value, whose scaling with N is k�a � 1/N. We
confirm this prediction in a nonlinear elastic model of allo-
stery. This result implies that cooperativity is more robust
toward mutations increasing stiffness in the population shift
scenario. Yet, displaying a stiffness much larger than k�a
implies a very long transition time between the two states
and is presumably prohibited, suggesting the hypothesis
that allosteric proteins function with modes presenting a
stiffness near the characteristic value k�a in both cases. We
test this proposition systematically using x-ray crystallo-
graphic data of 34 allosteric proteins. We first confirm that
one or a few vibrational modes contribute to the allosteric
response and introduce a, to our knowledge, new observable
establishing that this response presents unusually extended
regions of large shear, as found previously for three proteins
(27). Next, we confirm that the characteristic mode stiffness
tends to decrease with the propagation length, as we expect
from the predicted scaling of k�a . Finally, we suggest system-
atic mutational studies to further test how mechanics con-
strains allostery.
METHODS

Allosteric response

We identify a set of 34 allosteric proteins in the Protein Data Bank for

which both the active (ligand bound at the allosteric site) and inactive

(no ligand bound at the allosteric site) crystalline x-ray structures are avail-

able. Their Protein Data Bank identifiers are taken from (27,28) and re-

ported in Supporting Materials and Methods. The set is diverse in

functionality and includes enzymes (13), G-proteins (10), kinases (3),

response regulators (3), DNA-binding proteins (4), and the human serum

albumin, among which 12 protein complexes are present. We can thus es-

timate the allosteric response jdRai as the displacement field between the

inactive and active structures (after having aligned them via the software

Pymol 2.1.1 (29)). Here, we focus on the motion of the N amino acids,

located by the position of their a-carbon. As an illustration, the allosteric

response of a given protein (the elongation factor Tu) is shown in black

arrows in Fig. 5 A. From the allosteric response jdRai, one can readily es-

timate 1) the magnitude of the displacement jjdRajj2; 2) the fraction of the
Biophysical Journal 117, 1954–1962, November 19, 2019 1955
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protein involved in the response. For any displacement field, this fraction is

usually estimated via the participation ratio (30),

P ¼ kdRa k 2

N
PN

i¼ 1kdRaðiÞ k 4
; (1)

3) A measure of how much relative displacement takes place around atom i.

Following (27), we consider the shear pseudoenergy Esh(i) quantifying the

amount of strain—essentially a measure of the relative displacement be-

tween adjacent atoms—at residue i, whose precise definition is given in

the Supporting Materials and Methods. Esh(i) ¼ 0 indicates that the protein

moves as a rigid body near atom i and, by contrast, is largewhen atoms slide

rapidly past each other. Esh(i) is shown in color in Fig. 5 A for the protein

Tu, illustrating that two parts of the protein are rigidly moving (and counter-

rotate), whereas the central region displays significant pseudoenergy Esh(i),

which is reminiscent of a hinge design.
Elastic networks analysis

To estimate protein elasticity, we use the elastic network model (ENM)

(31), in which harmonic springs of identical stiffness are placed between

all N a-carbons laying below a chosen cutoff radius Rc ˛ [8–12] Å. The

ENM is obviously a crude approximation of real atomic interactions. Yet,

its simplicity allows for the systematic study of various proteins, and it

has been successful in capturing normal modes relevant for the function

of some proteins. The dependence of the results on the value of Rc are indi-

cated by error bars in Fig. 5 B and discussed in Supporting Materials and

Methods for Fig. 6 B. This procedure defines an elastic energy from which

the matrix of the second derivatives, i.e., the Hessian matrix H, can be

computed. From H, one can readily estimate the stiffness ka of the allosteric

response as the curvature of the elastic energy in that direction:

ka ¼ hdRajH j dRai
kdRa k 2

: (2)

Finally, the eigenvectors of H define the 3N vibrational modes of the pro-

tein fjviigi¼1.3N. Following (11–15), the overlap qi between the allosteric

response and mode i characterizes their similarity (qi ¼ 1 implies that they

are identical):

qi ¼ jhdRa j vii jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihdRa j dRaihvi j vii
p : (3)

RESULTS AND DISCUSSION

Geometrical interpretation of mechanical
constraints in induced fit allostery

As sketched in Fig. 1 A, a protein with two binding sites can
be unbound (labeled ‘‘00’’), bound to a single ligand
(labeled ‘‘01’’ or ‘‘10’’), or doubly bound (labeled ‘‘11’’).
We define by E00, E10, E01, E11 the energy of the protein
in these four situations (corresponding to the minimal en-
ergy of their energy landscape) and choose E00 ¼ 0 as the
reference energy. Cooperativity is then defined as

DDE ¼ E10 þ E01 � E11: (4)

To simplify notation below, we assume a symmetry be-
tween the states 01 and 10, in particular E10¼ E01. Our qual-
1956 Biophysical Journal 117, 1954–1962, November 19, 2019
itative conclusions below, however, remain valid even if this
symmetry does not hold.

Consider a protein displaying cooperativity thanks to the
presence of a soft elastic mode. Let us denote by x a variable
indicating the motion along that mode (see our numerical
model below for a concrete example in the context of a shear
design), which varies from zero to unity as the protein un-
dergoes its allosteric response. The energy profile E00(x)
of the unbound state follows

E00 xð Þ ¼ kakdRak2f xð Þ; (5)
a
i¼1:::N

i�

where kdR k2 ¼ P kd~R k2 is the norm of the allosteric

response jdRaDh d~Ra ið Þg and d~Ra ið Þ is the vector displace-
ment of the amino acid i. We expect that if the protein has N
residues, jjdRajj2 is on the order of Na2, where a is the
interatomic distance. We will confirm empirically the
dependence of jjdRajj2 with N below. ka is the mode stiffness
and f(x) some function of order unity such that f00(x¼ 0)¼ 1.
For a purely linear elastic material, f(x) ¼ x2/2. More gener-
ally, for the induced fit scenario, f(x) presents a single min-
imum, as illustrated in Fig. 1 B. In (21), it was argued that if
linear elasticity applies, then there is an optimal stiffness k�a
for cooperativity. We present a geometrical interpretation of
this result that extends it to the induced fit scenario in gen-
eral and will be useful to explain why the population shift
scenario behaves differently. Local chemical interactions
that lead to identical binding energies for the inactive and
active states do not affect cooperativity and thus need not
be considered here. For concreteness, we assume that after
some motion x0 ¼ 1 along that mode, the protein shape
can accommodate perfectly both ligands without deforming.
It implies that the energy profiles of the bound states E10(x)
and E11(x) satisfy E10(x0) ¼ E11(x0) ¼ E00(x0), as pictured
in Fig. 1 B. However as x departs from x0, the protein shape
does not match the ligands, imposing an elastic strain at
the binding sites and leading to an increase of elastic
energy in the protein that will trigger motion along
other elastic modes. Assuming that the ligands are rigid
and that each binding site involves on the order of n0 atoms
that move by a distance a as the protein undergoes its allo-
steric response, we have E01(x) � E00(x) ¼ n0ka

2g(x � x0),
where k characterizes the stiffness of interatomic interac-
tions and is large in comparison with the one of soft modes,
i.e., k[ ka. Here, g is some dimensionless function vanish-
ing quadratically in zero but possibly nonlinear at large
arguments.

E11, E01 can be computed as the minimum of the curves
E11(x) and E01(x), respectively, from which the cooperativ-
ity DDE is readily computed. Two extreme cases occur,
illustrated in Fig. 1 B:

1) If kaN � nok (Fig. 1 B.I), as x moves away from x0,
the elastic energy induced by binding n0ka

2g(x � x0)
is very significant in comparison to the mode energy



FIGURE 2 Cooperative energy DDE as function of the energy cost of

binding a ligand E0 is sketched for the MWC model. The maximal cooper-

ative energy that the system can reach is DDE*. To see this figure in color,

go online.
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E00(x) � kaNa
2f(x). Thus, both E10(x) and E11(x) have

a sharp minimum near x0, with E11 z E10 z
kajjdRajj2f(1). Thus, DDE ¼ E10 þ E01 � E11 z E10

z kajjdRajj2f(1), which vanishes as ka / 0.
2) If kaN [ n0k is very large (Fig. 1 B.III), noka

2g(x � x0)
is small in comparison to E00(x): E00(x), E11(x), and
E01(x) are very close to each other and must thus all pre-
sent a minimum near x ¼ 0. Thus, binding does not
trigger motion along the soft mode, whose presence is
useless. No extended modes couples the two binding
sites, and E11 z E01 þ E10, leading to DDE / 0 as
ka / N.

3) Optimal cooperativity is thus found at some intermediary
k�a � nok/N, corresponding to Fig. 1 B.II. Note that this
argument for an optimal k�a does not require the energy
profile f(x) to be an exact parabola as long as it is
monotonically growing in both directions around its
minimum.
Mechanical aspects of the population shift model

MWC model

We recall some aspects of the MWC model. To simplify no-
tation, we consider that the protein displays two symmetric
binding sites as illustrated in Fig. 1 A. The protein is
assumed to lie in two possible distinct configurations, ‘‘inac-
tive’’ (In) and ‘‘active’’ (Ac). In the absence of binding, we
take the energy of the inactive state as our reference (i.e.,
EIn
00 ¼ 0) and denote the energy of the active state

EAc
00 ¼ E0. We assume that the active configuration has a

well-suited geometry to bind each ligand; thus, no elastic
energy is spent for binding, and EAc

10 ¼ EAc
01 ¼ EAc

11 ¼ E0.
By contrast, we assume that in the inactive state, binding
costs some energy DE, leading to EIn

10 ¼ EIn
01 ¼ DE and

EIn
11¼ 2DE. The last assumption of additivity of binding en-

ergies within a given configuration, i.e., for a frozen mode
amplitude, is expected to be accurate if the two binding sites
are distant enough because no elastic coupling between
them is expected in that case.

For each binding situation, the configuration (inactive or
active) chosen is the one with the smallest energy, e.g.,
E01 ¼minðEIn

01;E
Ac
01Þ. Computing the cooperativity, one finds

three different cases:

1) if E0 < DE, then the binding of one ligand is sufficient to
drive the system in the active state, implying E10¼ E11¼
E0 and DDE ¼ E0;

2) if DE < E0 < 2DE, then the binding of one ligand is not
sufficient, and two ligands have to bind to drive the sys-
tem in the active state. Consequently, DDE¼ 2DE� E0;

3) if E0 > 2DE, then DDE ¼ 0 because the system stays in
the inactive state even if two ligands are bound. The
sketch of this behavior is shown in Fig. 2, illustrating
that the maximal cooperativity is found for E0 ¼ DE.
Mechanical consideration in the MWC model

Our observations (see the empirical section below) indicate
that a significant fraction of allosteric proteins operate
mainly along one normal mode of the elastic energy, sup-
porting the idea that in these cases, a favored path connects
the inactive and active configurations. We expand the energy
(in the absence of ligand) in terms of the motion x along that
path (in this two-states case, it is more convenient to choose a
coordinate x varying between �1 and þ1 as the protein un-
dergoes its allosteric response). Note that if nonlinearities are
present, this path is not along a single linear mode but bends
in phase space. Our analysis below holds independently of
such bending. We keep the minimal number of nonlinear
terms that allow displaying two states (a polynomial of
four degrees has five parameters; three of them can be fixed
by redefining the reference energy and changing the defini-
tion of x by both a multiplicative and additive constants):

E00 xð Þ ¼ kakdRak2 1

8
x4 � 1

4
x2 þ xb

� �
; (6)

where b is a parameter reflecting how the energy profile is
tilted toward the inactive state, ka characterizes the stiffness
of the mode, and jjdRajj2 is the square norm of the allosteric
response.

A typical profile following Eq. 6 is shown in Fig. 3 A. We
denote by inactive the lowest of the two minima and the
other one by active. Note that 1) in the case b ¼ 0, Eq. 6 de-
scribes two identical minima at x¼51 of stiffness ka, sepa-
rated by an energy barrier Eb ¼ ka jjdRajj2/8. 2) When the
parameter b is positive, we have EAc > EIn up to b ¼ bc ¼
1/ð3 ffiffiffi

3
p Þ where the active state becomes unstable and only

a single stable state is left. 3) At fixed ka, the energy differ-
ence between the two states E0 is maximal at b ¼ bc, where
one finds E0 ¼ 3

8
ka jjdRajj2. 4) For small b, E0 x2ka

jjdRajj2b. In what follows, we focus on the case b < bc,
where the population shift model lies.

Next, we assume that the active configuration matches the
shape of both ligands so that binding events in that state cost
Biophysical Journal 117, 1954–1962, November 19, 2019 1957



A B FIGURE 3 (A) Sketch of the energy profiles

E00(x) (black), E10(x) (blue), and E11(x) (red)

between two states, active (Ac) and inactive

(In), as a function of the motion x along the

path connecting them. The energy difference

E0 between the inactive and active unbound

state, the energy cost of binding one ligand

DE, and the height of the energy barrier Eb

are highlighted. (B) Maximal cooperative

energy DDE* as function of the stiffness of

the allosteric response ka is given, showing (I) linear growth and (II) a plateau. Energy profiles for ka � k�a , ka � k�a , and ka [k�a are shown in

inset. There are obtained from the nonlinear elastic model of allostery described below. To see this figure in color, go online.
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no energy. However, by moving away from the configura-
tion, the shapes of the protein and ligands do not match
anymore, and the protein needs to deform elastically
near the binding site. Again, assuming that each binding
site involves on the order of n0 atoms, which move by a dis-
tance of order a from the active to the inactive state, we have
a binding energy E10(x) � E00(x) ¼ n0ka

2g(x � xAc), where
xAc z 1 is the location of the active state along the path.
This energy is exemplified by the difference between the
blue and black curves in Fig. 3 A. Thus, the binding energy
in the inactive state follows DE ¼ n0ka

2g(xIn � xAc) z
4n0ka

2, which is independent of the protein size and mode
stiffness ka. As explained before, if the two binding sites
are distant enough, for a given mode amplitude, the elastic
costs of binding will simply add up: E11(x) � E00(x) ¼
2n0ka

2g(x � xAc), as shown in red in Fig. 3 A.

How the mode stiffness constrains cooperativity

To quantify this constraint we define the maximal coopera-
tivity over all possible tilts b given ka: DDE* h maxb{D
DE(ka, b)}. We find two regimes:

1) If Nka � n0k, then the elastic costs associated with bind-
ing are very large compared to E0. Both E10(x) and E11(x)
are peaked close to xAc, as illustrated in Fig. 3 B.a. Thus,
E0<DE, implying DDE¼ E0 according to Fig. 2, which
is maximized at b ¼ bc leading to DDE ¼ ð3 =8Þ
kajjdRajj2 � kaNa

2. Thus, DDE vanishes linearly at small
ka, as illustrated in Fig. 3 B. This result is qualitatively
similar to the induced fit case, for which DDE also van-
ishes linearly as shown in Fig. 1 B.

2) If Nka [ n0k, then the elastic cost is very small in com-
parison to E0: E00(x), E10(x), and E11(x) are almost iden-
tical as illustrated in Fig. 3 B.c. In that regime,
cooperativity is optimized by choosing a small tilt fixing
E0 to DE according to Fig. 2, implying DDE ¼ DE �
n0ka

2, which is independent of ka. This plateau behavior
is represented in Fig. 3 B and appears at k�a � n0k/N.

This result represents a fundamental difference with the
induced fit case, for which a large stiffness destroys
cooperativity. Indeed, in the induced fit scenario, a large
stiffness implies that the minimal energy is always found
for xz 0 as illustrated in Fig. 1 B.III, implying that binding
1958 Biophysical Journal 117, 1954–1962, November 19, 2019
does not move the protein along that mode, which is thus
useless. This state of affairs is ultimately a geometric neces-
sity stemming from the fact that the three curves E00(x),
E10(x), and E11(x) must be very close to each other in that
regime, and each must present a single minimum. Conse-
quently, the positions of these minima must be very similar
in the three cases, leading to xz 0 independently of binding
ligands or not. This geometric necessity vanishes as soon as
two minima are present.

Note that although DDE asymptotes to a constant for
ka [k�a , the barrier Eb between the inactive and active
states grows linearly with ka in that limit. Large barriers
would lead to undesirably slow transition rate between
states; thus, we expect that in practice, ka lies reasonably
close to k�a .
A mechanical model for population shift allostery

We seek to model that 1) the allosteric response often takes
place mainly along a single vibrational mode. 2) Various ar-
chitectures can lead to allostery, including the well-known
shear (27,32) or hinge (13) designs and others not falling
in these categories (33,34). Such a diversity is also found
in in silico evolution schemes (21). Yet, such synthetic ar-
chitectures always present soft extended regions in which
most of the strain (i.e., relative motion) is located. Such
an observation was made in a few proteins (27) and will
be generalized below. For proteins presenting two stable
configurations, we expect these regions to present two
possible ways of locally stacking amino acids well.

As an illustration, we consider the shear design in which
the protein presents two three-dimensional rigid regions con-
nected by a soft planar layer that can easily deform. The rigid
regions consist of harmonic springs of stiffness k, shown in
blue in Fig. 4 A. The soft layer consists of anharmonic
springs (shown in red in Fig. 4 A), whose energy versus
extension curve is nonlinear, chosen to have the same
form as Eq. 6. These nonlinear springs have a characteristic
stiffness kw and present two stable extensions at which
they exert no force, whose relative energy is controlled by
some bias bw. These stable extensions are chosen such
that two states of the protein as a whole, the inactive and
active states shown in Fig. 4 A, present no contact forces
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FIGURE 4 (A) Sliced view of our three-dimen-

sional mechanical model for population shift

allostery. In blue: rigid elastic regions made of har-

monic springs of stiffness k, separated by a weak

nonlinear region made of nonlinear springs (in

red) of stiffness kw with kw � k. The inactive state

(In) favors short springs, whereas the active state

(Ac) favors long springs, as exemplified by a solid

orange spring in the weak band. The location of the

binding sites are represented by a solid black

spring. (B) DDE as function of E0 for different

values of ka for a linear length L ¼ 20 is shown,

where L3 ¼ N. (C) Maximal cooperative energy

DDE* as function of ka for L ¼ 6, 10, 20, and 30

is shown. The kink in these curves define the cross-

over stiffness k�a . (D) k
�
a versus number of nodes in

the model N, supporting k�a � N�1. To see this

figure in color, go online.
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by construction and are thus local minima of the energy.
Finally, the protein presents two binding sites at its top and
bottom. At each site, binding imposes that the distance be-
tween two nodes (indicated by black lines in Fig. 4 A) equals
the distance it naturally presents in the active state, thus fa-
voring it. The details about the construction of the micro-
scopic model are discussed in Supporting Materials and
Methods.

We can now numerically compute the energy profiles
E00(x), E01(x), and E11(x) as a function of the motion along
the shear mode x by imposing a shear displacement (i.e., a
value of x) and letting the entire elastic energy of the mate-
rial relax except for that mode. The insets of Fig. 4 show our
results. The value of the mode stiffness ka can be extracted
from fitting Eq. 6 to E00(x) and measuring the displacement
norm jjdRajj and can be increased by increasing kw. From
E00(x), one readily computes the energy difference E0 be-
tween the inactive and active states, which can be increased
by monitoring the microscopic bias bw. From the minima of
E00(x), E01(x), and E11(x), one immediately extracts the
binding costs DE and DDE.

Fig. 4 B showsDDE for two values of ka as the energy dif-
ference E0 is increased. For large ka, DDE passes through a
maximalDDE*¼DE, whereas for small ka,DDE is smaller,
and its maximum is fixed by the maximal achievable energy
difference E0. DDE* as a function of ka is shown for
different system sizes N in Fig. 4 C, confirming the presence
of two regimes with a crossover at some k�a � 1/N as shown
in Fig. 4 D. Overall, these observations validate our theoret-
ical predictions on the dependence of k�a with the number of
residues and on how the stiffness ka qualitatively affects
cooperativity.
Empirical study of 34 allosteric proteins

Geometry of the allosteric response

Fig. 5 B reports the maximal overlap q*hmaxiqi as a func-
tion of the participation ratio P. Our observation indicate
that q* is in general large (in half of the cases, larger than
0.45), supporting further that allostery indeed occurs mainly
along one mode (11–15). Interestingly, this effect is stronger
when most sites of the protein are involved in the allosteric
response (P large). Interestingly, some protein complexes
(for example, ATCase; see the values of q* in Table S1)
also display a large projection of their allosteric response
on a single mode, supporting that mechanical considerations
can be valuable in such cases as well.

We now provide systematic data supporting that the allo-
steric response presents extended regions of large shear en-
ergy (27). More specifically, we argue that while some
vibrational modes can present significant shear (e.g., local-
ized modes capturing the motion of dandling loops) and
other can be extended (such as plane-wave-like modes),
the allosteric response is unique in presenting both aspects,
thus revealing a specific design principle. To quantify this
effect, we introduce the quantity, which can be defined on
any displacement field:

logGh½g log10ðPÞþ log10ðkEsh k Þ�; (7)
where jjEshjj is the total magnitude of the shear energy, i.e.,

jjEshjj ¼
�P

i

EshðiÞ2
�1=2

. LogG is large if the displacement

is extended and if the shear energy is large. The factor
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FIGURE 5 (A) Allosteric response (black arrows) of elongation factor Tu corresponding to the displacement between the inactive state (where GDP is

bound at the allosteric site) and active state (where GTP is bound at the allosteric site and the aminoacyl-tRNA can bind at the active site). The phosphate

binding loop (allosteric site) is highlighted in green, while the active site is at the interface between the GDP binding domain and the two other domains, one

residue of which is highlighted in blue (35). The shear is encoded in both the color and the thickness of the structure in a logarithmic scale, red corresponds to

large shear. The allosteric response is similar to that of a hinge. (B) Maximal overlap q* as function of the participation ratio P is shown. (C) The observable

logG is shown, quantifying howmodes are both extended and present large shear energy (see main text for definition), averaged over the proteins with overlap

larger than 45%, as function of the mode rank for 1) the allosteric response, 2) the modes with largest overlap, and 3) the first 75 modes (having subtracted

the one with largest overlap) as indicated in legend. The green circles correspond to the rank of the mode with largest overlap. The shaded region highlights

the range where these modes fall. The error bars represent the standard deviation associated to the distribution of q�resulted from the different values of

Rc˛½8 � 12�Å considered for each protein. To see this figure in color, go online.
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g characterizes the trade-off between these two features.
Here, we choose g ¼ 3.5, reflecting the fact that for vibra-
tional modes, we find that P varies �3.5 times less in rela-
tive terms than jjEshjj, as shown in the Supporting Materials
and Methods. Thus, for g ¼ 3.5, the spatial extension and
the amount of shear equally affect logG. Fig. 5 C shows
logG averaged over the 17 proteins with q* > 45% for the
allosteric response (yellow line), the mode with maximal
overlap (blue line), and the first 75 vibrational modes (hav-
ing subtracted the one with largest overlap) as function of
the mode rank. We find that G is typically 160 times larger
for the allosteric response than for vibrational modes, a very
significant difference underlying the specific geometry of
the allosteric response.

Scaling of response stiffness ka with protein size

We can now test our conjecture that the allosteric stiffness ka
is close to k�a � 1/Nwhere cooperativity saturates, which im-
plies in particular an anticorrelation between ka and protein
size. In our theoretical estimate of k�a , we have assumed that
the allosteric response magnitude is linear in the protein
A B
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size, i.e., jjdRajj2 � N. It is a natural assumption because
the larger the protein, the more likely its response involves
many residues. The relationship between these two
quantities is tested in 34 proteins in Fig. 6 A. We indeed
find a strong correlation between the logarithms of jjdRajj
and N (Pearson coefficient r ¼ 0.76 with p-value p ¼
1.64 � 10�7. Pearson coefficients are computed on the log-
arithmic values via the MATLAB R2017b (The MathWorks,
Natick, MA) function corr). Overall, data are consistent
with our assumption of proportionality.

Finally, we plot the allosteric response stiffness ka
measured according to Eq. 2 in terms of N for all proteins
in Fig. 6 B. A key finding is the fair anticorrelation between
the logarithms of these two quantities (Pearson coefficient
r ¼ �0.64 with p-value p ¼ 4.00 � 10�5), supporting the
idea that larger allosteric proteins need to evolve a softer
elastic mode to accomplish function, as expected from our
analysis. The signal that we observe is encouraging, espe-
cially given the possible sources of noise in the analysis,
among which, in particular, is the use of the ENM to build
the Hessian matrix.
FIGURE 6 (A) Logarithm of the square of the

norm of the allosteric response, jjdRajj2, is shown
as function of the logarithm of the number of res-

idues,N. The solid line corresponds to kdR2
a k �N.

(B) The logarithm of the stiffness ka as a function

of the logarithm of the number of residues N is

given. The solid line represents the theoretical

prediction k�a � 1/N. In both plots, r indicates the

Pearson coefficient. To see this figure in color, go

online.
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CONCLUSIONS

We have provided systematic evidence that the allosteric
response occurs along one soft elastic mode, and we have
introduced a, to our knowledge, novel observable G to
establish that this response generally displays unusually
extended regions of high shear strain. These observations
support that for many proteins, elasticity is a useful starting
point to describe allostery. We have revisited the two clas-
sical thermodynamic models of allostery from this perspec-
tive and provided a detailed study of how the energy profile
along the soft mode evolves with binding. We find that
induced fit and population shift models qualitatively differ.
In the induced fit model, there is an optimal stiffness k�a �
1/N associated to that mode beyond which the cooperative
binding energy eventually decreases to zero. The popula-
tion shift model is more robust to mutations affecting stiff-
ness, and k�a � 1/N simply marks a crossover beyond which
cooperativity saturates and the transition time between
configurations rapidly explodes. We introduced a, to our
knowledge, novel nonlinear elastic model for allostery
supporting these views. Our key result is that proper func-
tion is achieved if proteins evolve an elastic mode whose
softness must rapidly decrease with size, a prediction
supported by the anticorrelation observed between these
quantities.

Systematic mutation scan on one single protein, in
which binding assays to measure cooperativity are com-
bined with single molecule experiments or ultrafast laser
pulses to estimate the stiffness of the allosteric response,
would be extremely useful to test the predicted relation-
ship between these quantities. Molecular dynamics exper-
iments could further test how the energy profile along the
soft elastic mode evolves with binding. Elucidating such
an interplay between thermodynamics and mechanics in
proteins would be valuable in a variety of tasks, including
de novo protein design and the discovery of novel allo-
steric pathways.
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