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Abstract 

Background:  Endometrial cancer (EC) is one kind of women cancers. Bioinformatic technology could screen out 
relative genes which made targeted therapy becoming conventionalized.

Methods:  GSE17025 were downloaded from GEO. The genomic data and clinical data were obtained from TCGA. R 
software and bioconductor packages were used to identify the DEGs. Clusterprofiler was used for functional analysis. 
STRING was used to assess PPI information and plug-in MCODE to screen hub modules in Cytoscape. The selected 
genes were coped with functional analysis. CMap could find EC-related drugs that might have potential effect. Univar-
iate and multivariate Cox proportional hazards regression analyses were performed to predict the risk of each patient. 
Kaplan–Meier curve analysis could compare the survival time. ROC curve analysis was performed to predict value of 
the genes. Mutation and survival analysis in TCGA database and UALCAN validation were completed. Immunohisto-
chemistry staining from Human Protein Atlas database. GSEA, ROC curve analysis, Oncomine and qRT-PCR were also 
performed.

Results:  Functional analysis showed that the upregulated DEGs were strikingly enriched in chemokine activity, and 
the down-regulated DEGs in glycosaminoglycan binding. PPI network suggested that NCAPG was the most relevant 
protein. CMap identified 10 small molecules as possible drugs to treat EC. Cox analysis showed that BCHE, MAL and 
ASPM were correlated with EC prognosis. TCGA dataset analysis showed significantly mutated BHCE positively related 
to EC prognosis. MAL and ASPM were further validated in UALCAN. All the results demonstrated that the two genes 
might promote EC progression. The profile of ASPM was confirmed by the results from immunohistochemistry. ROC 
curve demonstrated that the mRNA levels of two genes exhibited difference between normal and tumor tissues, 
indicating their diagnostic efficiency. qRT-PCR results supported the above results. Oncomine results showed that 
DNA copy number variation of MAL was significantly higher in different EC subtypes than in healthy tissues. GSEA 
suggested that the two genes played crucial roles in cell cycle.

Conclusion:  BCHE, MAL and ASPM are tumor-related genes and can be used as potential biomarkers in EC 
treatment.
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Background
Endometrial cancer (EC) is the fourth commonest malig-
nancy in females [1]. In 2015, the American Cancer Soci-
ety (ACS) predicted that the number of new EC cases 
was 54,870, and 10,170 of them died. This means that in 
the past 20 years, the mortality of EC has almost doubled. 
The average age of patients at diagnosis is 63. Among 
them, 90% are over 50  years old, and only about 20% 
can get diagnosed before menopause [2]. At present, no 
useful tool is available to screen EC, hence accurate and 
early diagnosis is critical for the treatment of EC patients 
[3–6]. The routine treatment options of EC include sur-
gery, radiotherapy and chemotherapy. Recent years have 
seen the emergence but not the wide use of EC-related 
targeted therapy [7]. In recent years, based on the rapid 
development of high-throughput sequencing technology 
and increasingly complete public databases, The Cancer 
Genome Atlas (TCGA) database and Gene Expression 
Omnibus (GEO) database has collected a large number 
of clinical, pathological, and biological data from patients 
with malignancies [8, 9]. Through comprehensive analy-
sis of data, we can more accurately predict the devel-
opment trend and dig deeper into the mechanism of 
tumors, providing a reliable research direction for treat-
ment programs [10, 11]. For example, Lin et  al. found 
that a network of RBM8A expression regulated hepato-
cellular carcinoma [12]. This research screened DEGs 
using GEO and TCGA data firstly, secondly constructed 
PPI and co-expression network. Based on cox prognosis 
analysis, TCGA data, website validation and qRT-PCR, 
we determined the hub gene and pathways which might 
be related to EC [13].

Materials and methods
Data collection and analysis
The raw data on GSE17025 and TCGA were integrated. 
We obtained gene expression profiles form GEO data-
base (http://www.ncbi.nlm.nih.gov/geo/). GSE17025 
dataset [14] covered 91 tumor and 12 normal tissue sam-
ples. Affymetrix Human Genome U133 Plus 2.0 Array 
[15] processed raw data. Robust multi-array average 
(RMA) approach was performed for background correc-
tion and normalization [16]. The original GEO data was 
then converted into expression measures using affy R 
package [17]. TCGA dataset (https​://cance​rgeno​me.nih.
gov/) was downloaded, covering 35 normal tissue sam-
ples and 552 tumor tissues. TCGA (https​://cance​rgeno​
me.nih.gov/) provided the clinical, genomic and mutation 
data of UCEC and Illumina Hi-Seq RNA-Seq platform 
provided these RNA sequencing data. These data were 
downloaded on Feb 01, 2018. The research design was 
illustrated with a flow chart (Fig. 1).

Access to DEGs
Package “limma” [18] screened out the DEGs between EC 
and normal uterus samples. The cut-off criteria was set as 
The adjusted p < 0.05 and |log2fold change (FC)| ≥ 2. For 
TCGA data, edgeR package was used for DEGs screening 
[19]. The cut-off criteria was set as FDR < 0.01 and |log-
2fold change (FC)| ≥ 2. Adjusted p-value and FDR were 
for ruling out false-positives. Online Wayne diagram 
was for identifying the DEGs simultaneously found in 
GSE17025 and TCGA. Heatmap was completed by “heat-
map” package in R 3.4.4 [20].

Fig. 1  Flow chart of study design

http://www.ncbi.nlm.nih.gov/geo/
https://cancergenome.nih.gov/
https://cancergenome.nih.gov/
https://cancergenome.nih.gov/
https://cancergenome.nih.gov/
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Functional enrichment analysis
DAVID database (https​://david​.ncifc​rf.gov/) is a founda-
tion for high-throughput gene functional analysis. The 
function and enriched pathways of the proteins encoded 
by the candidate genes were analyzed and these genes 
were annotated using DAVID database. GO annotations 
of the screened DEGs were performed using the DAVID 
online tool and clusterprofiler [21]. KEGG pathway 
analysis on DEGs was performed using clusterprofiler. 
p-value < 0.05 was set to be significant.

Construction and analysis of PPI network complex
STRING (The Retrieval of Interacting Genes Database)
(http://www.strin​g-db.org/) provided PPI (protein–protein 
interaction) information [22]. We used STRING database 
to explore the interactions between DEGs and visualize 
the results using Cytoscape software. Cytoscape MCODE 
plug-in provided access to select hub modules of PPI 
network [23]. The criteria default parameters as follows: 
k-core = 2, degree cut-off = 2, max. depth = 100 and node 
score cut-off = 0.2. For genes in the hub module, we use 
clusterprofiler again for functional enrichment analysis.

Identification of potential small molecules
The EC gene signature was queried in CMap. CMap is 
a computer simulation method for predicting potential 
drugs that may affect the biological state encoded in gene 
expression signatures [23]. The DEGs probesets were 
used to query the CMap database. Finally, the enrich-
ment score indicative of similarity was calculated, rang-
ing from − 1 to 1. A positive connectivity score indicated 
that a drug could induce the signatured biology in human 
cell lines. Conversely, a negative connectivity score indi-
cated that a drug could reverse the signatured biology 
in human cell lines, suggestive of its Possible treatment 
value. After rank ordering all instances, the connectivity 
scores were filtered by p-value. Tomograph of these rela-
tive molecular drugs was researched in Pubchem data-
base (https​://pubch​em.ncbi.nlm.nih.gov/).

Construction of a prognostic signature
Univariate Cox proportional hazards regression analyses 
could provide some Prognosis-related information. With 
the cutoff of p < 0.05, DEGs were seemed to be Progno-
sis-related. For the top 10 significant prognosis-related 
genes, construction of multivariate Cox proportional 
hazards regression model would be helpful. Cox pro-
portional hazards regression with a p < 0.05 was set for 
risk score of developing EC in each patient. According 
to the mean risk score, patients will be divided into low- 
and high-risk groups. Kaplan–Meier curve analysis will 
compare the survival of low-risk and high-risk groups. 
p < 0.05 was the significant cutoff. Receiver operating 

characteristic (ROC) curve analysis was also performed 
to estimate the five-year predictive value of the out-
comes. The area under the ROC curve was calculated as a 
predictive value shown as sensitive and specificity.

Validation of hub genes
R package was for mutation analysis based on the TCGA 
dataset. The real hub gene was finally validated in UAL-
CAN (http://ualca​n.path.uab.edu/analy​sis.html) [24]. 
Oncomine 4.5 database (http://www.oncom​ine.org) was 
utilized to compare differential expression of common 
cancer types and their normal adjacent tissues. The HPA 
(Human Protein Atlas) (http://www.prote​inatl​as.org/) 
was used to validate real hub gene [25]. ROC curve analy-
sis was performed in SPSS 23.0 to distinguish normal and 
cancer tissues.

Preparation for human EC samples
The study was approved by the Institutional Review Board 
of Nanjing Medical University. The tissue was removed 
from the EC patient showing informed consent and 

Fig. 2  Wayne diagram for comprehensive analysis of GSE17025 
and TCGA. a Comprehensive analysis of the up-regulated genes in 
GSE17025 and TCGA, 84 up-regulated hub DEGs. b Comprehensive 
analysis of the down-regulated genes in GSE17025 and TCGA, 70 
down-regulated hub DEGs

https://david.ncifcrf.gov/
http://www.string-db.org/
https://pubchem.ncbi.nlm.nih.gov/
http://ualcan.path.uab.edu/analysis.html
http://www.oncomine.org
http://www.proteinatlas.org/
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immediately stored in an environment of − 80 °C until use. 
From June 2018 to January 2019, 16 EC tissue samples and 
16 normal uterus tissue samples were made in the Depart-
ment of Gynecology and Obstetrics, the First Affiliated 
Hospital of Nanjing Medical University including.

Quantitative real‑time RT‑PCR (qRT‑PCR) analysis
Total RNA was extracted by TRIzol reagent (Invitrogen); 
RNA 6000 Nano kit and Agilent Bioanalyzer 2100 were 
used to assess the integrity of the isolated RNA through 

OD260/280 and OD260/230 ratios, PrimeScript® RT 
reagent kit was used to react RNA and synthesize single-
stranded complementary DNA from RNA according to 
the manufacturer’s instructions. SYBR® Premix Ex Taq™ 
Kit (TaKaRa DRR041) was utilized to perform real-time 
quantification. The cycle threshold (Ct) of each gene was 
recorded. The relative expression of MAL was calcu-
lated as follow: 2−ΔΔCt (ΔCt = Cttarget gene − Ctinternal 
control). Forward Primer of MAL was “CGC​TGC​CCT​
CTT​TTA​CCT​CA”. Reverse Primer of MAL was “GAA​

Fig. 3  Functional enrichment analysis on the DEGs. a GO analysis on the up-regulated DEGs. b GO analysis of the down-regulated DEGs. c KEGG 
analysis on the down-regulated DEGs. d KEGG analysis on the down-regulated DEGs
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GCC​GTC​TTG​CAT​CGT​GAT”. GAPDH was used as an 
endogenous control. Forward primer of GAPDH was 
“AGA​AGG​CTG​GGG​CTC​ATT​TG”. Reverse primer of 
GAPDH was “AGG​GGC​CAT​CCA​CAG​TCT​TC”. Quanti-
tative real-time RT-PCR was performed according to the 
manufacturer’s protocols.

Gene set enrichment analysis (GSEA)
According to the expression level of hub genes, EC 
samples from TCGA were divided into 2 different 
groups. In order to dig out the relative functions, GSEA 
(http://softw​are.broad​insti​tute.org/gsea/index​.jsp) was 
used to define the biological processes enriched in the 
gene rank derived from DEGs between the two groups 
[26]. Terms with FDR < 0.05 and enriched in all real hub 
genes were identified.

Statistical analysis
Two-tailed Student’s t-test was for calculating the dif-
ference between subgroups. All analyses were repeated 
three times. The represented data comes from three 
separate experiments. Statistical analysis was com-
pleted by SPSS 23.0 and R software 3.4.4. p < 0.05 was 
considered statistically significant.

Results
Identification of DEGs and the enriched processes
We identified the DEGs in GSE17025 using “limma” 
with adj. p < 0.05 and |log2fold change (FC)| ≥ 2. The 
top 200 genes in GSE17025 were displayed in the 
heatmap (Additional file  1: Figure S1). We identi-
fied the DEGs in TCGA using the edegr package with 
FDR < 0.01 and |log2fold change (FC)| ≥ 2. All the genes 
in TCGA were displayed in the heatmap (Additional 
file  2: Figure S2). In GSE17025, we screened out 248 
DEGs, including 101 up-regulated and 147 down-regu-
lated. All of them were found in EC samples (Additional 
file 3: Figure S3). In TCGA, we screened out 2614 DEGs 
from EC samples, which contained 1644 up-regulated 
and 970 down-regulated. (Additional file 4: Figure S4).

Of the DEGs in GSE17025 and TCGA, we screened 
out 84 up-regulated hub genes (Fig.  2a) and 70 down-
regulated hub genes (Fig.  2b). Clusterprofiler was for 
evaluating the enrichment of gene clusters in biological 
terms with a cutoff of p < 0.05. GO analysis demonstrated 
that the up-regulated hub genes were mostly enriched 
in chemokine activity, microtubule binding, chemokine 
receptor binding, RAGE receptor binding, microtubule 
motor activity, CXCR chemokine receptor binding and 

Fig. 4  Real hub DEGs associated biological processes and KEGG pathways. a–c GO PLOT of the real hub DEGs revealed terms pertaining to cancer 
and cellular functions. d KEGG analysis on the real hub DEGs

http://software.broadinstitute.org/gsea/index.jsp
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tubulin binding (Fig. 3a); the down-regulated hub genes 
were highly enriched in glycosaminoglycan binding and 
collagen binding (Fig. 3b). In KEGG analysis, the up-reg-
ulated hub genes were mostly enriched in IL-17 signaling 
pathway (Fig.  3c); the down-regulated hub genes were 
highly enriched in Amphetamine addiction (Fig. 3d). We 
further analyzed these DEGs with adjusted p < 0.05 and 
|logFC| ≥ 2, finding out 154 real DEGs. 

Identification of hub DEGs in EC and functional analysis
To clarify the functions of these DEGs, we first 
explored the associated biological processes and 

KEGG pathways in TCGA and GEO datasets. The most 
enriched GO terms pertaining to biological process 
(BP), cellular, component (CC) and molecular function 
(MF) are shown in Fig. 4a. The most enriched GO term 
in BP was “mitotic nuclear division” (p < 0.05), that in 
CC was “extracellular space” (p < 0.05), and that in MF 
was “microtubule binding” (p < 0.05) (Fig. 4b). We fur-
ther obtained 10 significantly enriched GO terms with 
a p-value < 0.05 (Fig. 4c).

KEGG analysis showed that the DEGs were strikingly 
enriched in IL-17 signaling pathway, Chemokine signal-
ing pathway and TNF signaling pathway (Fig. 4d).

Fig. 5  Cluster analysis of the PPI network. a 154 DEGs were filtered into the DEGs PPI network complex that contained 154 nodes and 382 edges. b 
Histogram of key proteins. The y-axis represents the name of genes, the x-axis represent the number of adjacent genes, and height is the number of 
gene connections
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PPI network and analysis on clusters
STRING mapped 154 DEGs into PPI network con-
taining 154 nodes and 382 edges (Fig.  5a). A total of 
30 prominent proteins were identified, with estrogen 
NCAPG being the most important protein contacting 
29 nodes (Fig. 5b).

Then MCODE was used to find clusters in the net-
work. Four clusters were calculated according to 
k-core = 2. Among them, cluster 1 contained 25 nodes 
and 284 edges, with the highest score (Fig.  6a), clus-
ter 2 contained 7 nodes and 21 edges (Fig. 6b), cluster 
3 contained 8 nodes and 11 edges (Fig.  6c), cluster 4 
contained 3 nodes and 3 edges. These results suggested 
that the 154 DEGs had effects on EC.

We performed the functional analysis for the top 3 
clusters. In GO analysis, the DEGs of cluster 1 were 
mostly enriched in microtubule motor activity, motor 
activity and microtubule binding (Fig.  7a); the DEGs 
of cluster 2 in chemokine activity, chemokine receptor 
binding, CXCR chemokine receptor binding, cytokine 
activity, G-protein coupled receptor binding, cytokine 
receptor binding and receptor ligand activity (Fig. 7b); 
the DEGs of cluster 3 in endopeptidase inhibitor 
activity, endopeptidase regulator activity, peptidase 
inhibitor activity, peptidase regulator activity and tran-
scriptional activator activity, RNA polymerase II core 
promoter proximal region sequence-specific binding 
(Fig. 7c). KEGG analysis showed that the DEGs of clus-
ter 1 were mostly enriched in cell cycle (Fig.  7d); the 
DEGs of cluster 2 in chemokine signaling pathway and 
cytokine–cytokine receptor interaction (Fig.  7e); the 
DEGs of cluster 3 in IL-17 signaling pathway (Fig. 7f ).

Potential small molecule drugs
CMap compared EC samples with healthy controls to 
screen out small molecule drugs. Strong negative cor-
relation was found between EC and thioguanosine, res-
veratrol, trichostatin A, 0175029-0000, trifluoperazine 
and LY-294002; strong positive correlation was found 
between EC and viomycin, adiphenine, clorsulon and 
heptaminol (Additional file  5: Figure S5). These drugs 
might have therapeutic effects on EC. The tomographes 
of the top 3 associated molecule drugs were investigated 
in Pubchem database (Fig. 8a–c).

Identification of prognostic signature
Of the 154 DEGs, the univariate Cox proportional haz-
ards regression analysis screened out the top 10 EC-
relative genes, including MAL, BCHE, P2RY14, ASPM, 
CA3, FAM13C, FAM83D, CXorf57, SFN and CPED1 
(Additional file  6: Figure S6); multivariate Cox propor-
tional hazards regression analysis was further performed 

Fig. 6  Module analysis of PPI network. The red node represents the 
up-regulated gene and the blue node represents the down-regulated 
gene. a Module rank 1. This cluster consists of 25 nodes and 284 
edges and has the highest score. b Module rank 2. This cluster 
consists of 7 nodes and 21 edges and has the second highest score. c 
Module rank 3. This cluster consists of 8 nodes and 11 edges and has 
the third highest score
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on the 10 genes, which screened BCHE, FAM13C, CA3, 
P2RY14, ASPM and MAL (Additional file  7: Figure S7). 
The risk score for predicting overall survival was calcu-
lated as follows: Risk score = 0.126 * BCHE − 0.121 * FA
M13C + 0.136 * CA3 − 0.139 * P2RY14 + 0.231 * ASPM + 
0.0892 * MAL. According to the risk score, patients were 
divided into low- and high-risk groups. Survival analysis 

showed that low-risk patients had longer overall survival 
than high-risk patients in TCGA cohort (Fig.  9a). The 
AUC of five-year survival ROC curve analysis was 0.751 
(Fig.  9b). The distribution of risk score, survival status, 
and the expression of six genes of each patient were also 
analyzed (Fig. 9c–e). The expression level of the six genes 
in low- and high-risk groups was shown in Additional 

Fig. 7  GO and KEGG analyses on the hub modules. a GO analysis on module 1. b GO analysis on module 2. c GO analysis of module 3. d KEGG 
analysis on module 1. e KEGG analysis on module 2. f KEGG analysis on module 3

Fig. 8  Top 3 molecule drugs. a thioguanosine, b resveratrol, c trichostatin A
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file  8: Figure S8. Meanwhile, we analyzed the relation-
ship between the different clinical parameters and the 
risk score based on six genes. The univariate and multi-
variate Cox proportional hazards regression showed that 
only tumor status together with the risk score based on 
six genes was independent prognostic indictor of EC 
(Table  1). The heatmap showed the expression levels of 
the six genes in high- and low-risk groups based on the 

TCGA dataset. We observed significant between-group 
differences in tumor status, grade, histological type, age 
and stage (p < 0.001) (Additional file 9: Figure S9). 

Hub gene validation
Based on TCGA dataset and using R language, we per-
formed mutation analysis on BCHE, ASPM and MAL 
which exhibited significant prognostic value (p < 0.05). We 

Fig. 9  Survival prognosis model on the 6 hub genes. a Survival analysis showed that the patients in the high risk group had worse overall survival 
than those in low risk group in TCGA cohort. b ROC analysis was performed to calculate the most optimal cutoff value to divide the EC patients into 
high risk and low risk group. c, d The risk scores for all patients in TCGA cohort are plotted in ascending order and marked as low risk (blue) or high 
risk (red), as divided by the threshold (vertical black line). e Six expression and risk score distribution in TCGA cohort by z-score, with red indicating 
higher expression and light blue indicating lower expression
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found that BCHE showed significant mutation (Fig. 10a). 
We further found that patients with BCHE mutation had 
a better prognosis (Fig. 10b), suggesting that BCHE muta-
tion may be a protective factor for EC patients.

Using UALCAN, we found that MAL and ASPM 
expressed higher in tumor than in normal tissues 
(Fig.  11a, b), both negatively related to the overall sur-
vival of the EC patients (Fig.  11c, d). In addition, both 
had higher expression levels in EC tissues of different 
subtypes, such as serous carcinoma, endometrioid ade-
nocarcinoma and mixed serous and endometrioid ade-
nocarcinoma (Fig.  12a, b). Their expression levels also 
increased at different stages of EC (Fig.  12c, d). Finally, 
ROC curve analysis was for evaluating the capacity of 

MAL and ASPM, so as to distinguish EC from normal 
tissues (Fig.  13). MAL was missing in the immunohis-
tochemistry database. Immunohistochemistry staining 
showed the higher expression of ASPM in the tumor 
sample compared with the normal sample (Fig. 14). Data 
in the Oncomine 4.5 database revealed that DNA copy 
number variation (CNV) of MAL was significantly higher 
in different subtypes of EC tissues than in normal tissues 
(p ˂  0.01). Although the fold change of DNA CNV was 
within 2, MAL ranked within the top 5% (Fig. 15a–c). We 
further validate the expression of MAL in clinical tissues 
using qRT-PCR. Interestingly, the relative expression 
level of MAL was significantly elevated in tumor tissue 
than in normal tissue (Fig. 15d).

Table 1  Univariate analysis and  multivariate analysis of  the  correlation of  six-gene expression with  OS 
among endometrial cancer patients

Italic values indicate p < 0.05

HR hazard ratio, CI confidence interval

Parameter Univariate analysis Multivariate analysis

HR 95% CI p value HR 95% CI p value

Age (≤ 60 vs > 60) 1.788 1.118–2.859 0.015 1.566 0.956–2.566 0.075

Stage (stage I & stage II vs stage III & stage IV) 4.070 2.70–6.205 0.000 1.604 0.993–2.591 0.053

Histological_type (endometrioid vs mix & serous) 2.997 1.972–4.553 0.000 0.840 0.489–1.442 0.527

Grade (G1 & G2 vs G3 & G4) 3.395 1.975–5.835 0.000 1.544 0.834–2.857 0.167

Tumor_status (with tumor vs tumor free) 11.042 7.05–17.300 0.000 7.795 4.682–12.978 0.000

RiskScore 1.543 1.369–1.739 0.000 1.195 1.022–1.398 0.026

Fig. 10  Validation of BCHE. a Mutation analysis of BCHE. b Mutation of BCHE was positively related to EC overall survival
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Gene set enrichment analysis (GSEA)
To identify the potential function of MAL and ASPM 
in EC, GSEA was conducted to search the enriched 
KEGG pathways. For ASPM, “cell cycle”, “DNA replica-
tion”, “oocyte meiosis”, “p53 signaling pathway”, “pancre-
atic cancer”, “progesterone mediated oocyte maturation”, 
“small cell lung cancer”, “ubiquitin mediated proteoly-
sis” were enriched in eight gene sets (n = 552) (Fig.  16). 
For MAL, “B cell receptor signaling pathway”, “bladder 
cancer”, “cell cycle”, “chronic myeloid leukemia”, “glycine 
serine and threonine metabolism”, “leukocyte transen-
dothelial migration”, “pancreatic cancer”, “small cell 
lung cancer” were enriched in eight gene sets (n = 552) 
(Fig. 17) (FDR < 0.05).

Discussion
In this study, we screened out EC-related DEGs based on 
GSE17025 and TCGA datasets. The up-regulated DEGs 
were strikingly enriched in chemokine activity and IL-17 
signaling pathway, and the down-regulated DEGs in 

glycosaminoglycan binding and Amphetamine addiction. 
We further screened out 154 hub DEGs, most of which 
were enriched in mitotic nuclear division, extracellular 
space, microtubule binding and IL-17 signaling pathway.

Liu et  al. have found the chemokine activity in hepa-
tocellular carcinoma metastasis [27]. IL-17 signaling 
pathway acts in the progression of lung cancer and liver 
cancer [28, 29]. Microtubule binding is involved in the 
development of colorectal cancer [30]. All these findings 
point out the possible correlation between some DEGs 
and EC development, which may provide a new direction 
for EC research.

We also found NCAPG was a functional protein in EC. 
NCAPG has shown its regulatory property in digestive 
tract tumors [31–33]. Some small EC-countering mol-
ecules have been identified. Among them, thioguanosine, 
resveratrol and trichostatin A have shown tight associa-
tion with EC development. Thioguanosine can regulate 
the basal activity of leukemia cells [34] in. Resveratrol 
was proved to affect ovarian, breast and digestive tract 

Fig. 11  Validation of UALCAN website. a, b The expression of MAL and ASPM in EC tissues of primary tumor are all higher than normal tissues. c, d 
Survival analysis of MAL and ASPM
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tumors [35–38]. Trichostatin A, as a histone deacetylase 
(HDAC) inhibitor, exhibits anticancer effects when used 
in combination with radiotherapy or chemotherapy [39, 
40].

We found that ASPM, BCHE and MAL were highly 
EC-prognosis-related. BCHE mutation showed posi-
tive correlation with EC prognosis. Using UALCAN and 
TCGA datasets, we found the higher expression of MAL 
and ASPM in EC tissue than in normal tissue, and their 
expression levels were negatively related to the over-
all survival of the EC patients. In addition, MAL and 
ASPM had higher expression levels in EC tissues of dif-
ferent subtypes, such as serous carcinoma, endometrioid 
adenocarcinoma and mixed serous and endometrioid 
adenocarcinoma. Their expression levels also increased 
with EC stage. Finally, ROC curve analysis was conducted 
for evaluating the capacity of MAL and ASPM in distin-
guishing EC from normal tissues. Immunohistochemistry 

staining demonstrated the higher expression of ASPM 
in EC samples, compared with that in the normal sam-
ples. Data in the Oncomine 4.5 database revealed that 
DNA copy number variation (CNV) of MAL was signifi-
cantly higher in different subtypes of EC tissues than in 
the healthy tissues. We further validated the expression 
of MAL in clinical tissues using qRT-PCR. Interestingly, 
the relative expression level of MAL was significantly ele-
vated in tumor tissues compared to the normal tissues. 
GSEA enrichment analysis showed that MAL and ASPM 
were mostly associated with cell cycle.

Butyrylcholinesterase (BChE) is a plasma enzyme that 
hydrolyzes ghrelin and bioactive esters. Its modulation 
in prostate cancer development has been proven [41]. 
Bernardi et  al. found that amplification and deletion of 
BCHE was related to cholinesterase genes in sporadic 
breast cancer [42].

Fig. 12  Validation of UALCAN website. a, b The expression of MAL and ASPM in EC tissues of different histological subtypes are all higher than 
normal tissues. c, d The expression of MAL and ASPM in EC tissues at different stages are all higher than normal tissues
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A study has confirmed that MAL serves as a bridge 
between TLR2/TLR4- and MyD88-mediated signaling 
to orchestrate downstream inflammatory responses and 
regulate intestinal homeostasis and colitis-associated 
colorectal cancer in mice [43]. Choi et al. found that MAL 
was significantly down-regulated and methylated in gas-
tric cancer tissues [44]. Van Baars et al. found that MAL 

methylation in cervical scrapes could indicate the status 
of underlying lesion. Zanotti et  al. found that in high-
grade serous ovarian carcinoma, MAL overexpression 
predicted chemoresistance and poor prognosis [45, 46]. 
In the present study, MAL as the hub gene also showed 
its aberrant expression in EC development, a finding that 
can guide the future exploration into EC mechanism.

In prostate and hepatocellular cancers, ASPM pro-
moted the progression and exacerbated the prognosis, 
which means ASPM might be a novel marker for can-
cer progression [47, 48]. Researches showed that ASPM 
worsened the prognosis of ovarian cancer in many ways 
[49, 50]. ASPM can also increase the aggressiveness of 
pancreatic tumor [51]. In the present study, we verified 
the prognostic value of ASPN in EC, which broadens the 
landscape of ASPM research.

There are some highlights of our study. First of all, we 
obtained hub genes by taking the intersection between 
DEGs of TCGA and GEO,finding that BCHE, MAL and 
ASPM are tumor-related genes and can be used as poten-
tial biomarkers in EC treatment. Second, the prognostic 
model in our study can effectively predict EC patients’ 
outcomes, which provide a new method to evaluate 
patients’ prognosis. Third, Thioguanosine, resveratrol 
and trichostatin A can be used as antagonists against EC.

Fig. 13  ROC curve analysis and AUC statistics were implemented to evaluate the capacity of MAL and ASPM to distinguish EC from normal tissues. 
a ASPM. b MAL

Fig. 14  Immunohistochemistry of ASPM based on the Human 
Protein Atlas. Protein levels of ASPM in normal tissue (staining: Low; 
intensity: Weak; quantity: 75–25%; Location: Cytoplasmic/membrano). 
Protein levels of ASPM in tumor tissue (staining: Medium; intensity: 
Moderate; quantity: > 75%; Location: Cytoplasmic/membrano)



Page 14 of 18Liu et al. Cancer Cell Int           (2020) 20:59 

However, there are some limitations in this study. For 
example, our research was actually an analysis based on 
previous data; therefore, additional experimental stud-
ies in vivo and vitro are needed. In the future, based on 
the results of this study, we will design PCR, Western 
blotting and immunohistochemistry tests to explore the 

molecular mechanisms. Second, the clinical sample size 
of PCR was not large enough. Finally, the therapeutic 
effects of candidate drugs targeting DEGs should be veri-
fied. In all, more well-designed studies should be carried 
out to support our findings.

Fig. 15  MAL transcription in EC (Oncomine) and the validation in clinical samples. a Box plot showing MAL copy number in The Cancer Genome 
Atlas (TCGA) Endometrium and Endometrial serous Adenocarcinoma dataset. b Box plot showing MAL copy number in The Cancer Genome Atlas 
(TCGA) Endometrium and Endometrial mixed Adenocarcinoma dataset. c Box plot showing MAL copy number in The Cancer Genome Atlas (TCGA) 
Endometrium and Endometrial endometrioid Adenocarcinoma dataset. d The relative expression level of MAL in clinical samples using qRT-PCR
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Fig. 16  GSEA using TCGA UCEC databases. The eight most functional gene sets enriched in EC samples with ASPM highly expressed
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Fig. 17  GSEA using TCGA UCEC databases. The eight most functional gene sets enriched in EC samples with MAL highly expressed
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Conclusion
In conclusion, BCHE, MAL and ASPM may be potential 
prognostic markers in EC. Thioguanosine, resveratrol 
and trichostatin A can be used as antagonists against EC.
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