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SUMMARY

Stroke causes focal brain lesions that disrupt functional connectivity (FC), a measure of activity 

synchronization, throughout distributed brain networks. It is often assumed that FC disruptions 

reflect damage to specific cortical regions. However, an alternative explanation is that they reflect 

the structural disconnection (SDC) of white matter pathways. Here, we compare these 

explanations using data from 114 stroke patients. Across multiple analyses, we find that SDC 

measures outperform focal damage measures, including damage to putative critical cortical 

regions, for explaining FC disruptions associated with stroke. We also identify a core mode of 

structure-function covariation that links the severity of interhemispheric SDCs to widespread FC 

disruptions across patients and that correlates with deficits in multiple behavioral domains. We 

conclude that a lesion’s impact on the structural connectome is what determines its impact on FC 

and that interhemispheric SDCs may play a particularly important role in mediating FC 

disruptions after stroke.
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In Brief

Disruptions of brain network function in patients with focal brain lesions are often assumed to 

reflect damage to critical gray matter regions. Griffis et al. challenge this assumption by showing 

that network dysfunction primarily reflects the disconnection of white matter pathways, rather 

than the destruction of gray matter regions.

INTRODUCTION

Disorders such as stroke cause focal brain lesions but also produce dysfunction in distributed 

brain networks (Carrera and Tononi, 2014). Functional connectivity (FC), a measure of the 

correlation between spontaneous activity fluctuations in remote brain regions (Biswal et al., 

1995), has been used to identify several brain network abnormalities that predict behavioral 

deficits after stroke. These include reductions in (1) interhemispheric network integration 

(He et al., 2007; Carter et al., 2010; Wang et al., 2010; Park et al., 2011; Wu et al., 2011; van 

Meer et al., 2012; Golestani et al., 2013; Bauer et al., 2014; Lim et al., 2014; New et al., 

2015; Siegel et al., 2016b; Tang et al., 2016); (2) ipsilesional network segregation 

(Baldassarre et al., 2014; Bauer et al., 2014; Eldaief et al., 2017); and (3) network 

modularity (Gratton et al., 2012; Siegel et al., 2018). An important next step is to determine 

how these FC abnormalities depend on the properties of the focal lesion (Carrera and 

Tononi, 2014; Corbetta et al., 2018).

Prior work on this topic has primarily focused on how FC disruptions depend on the FC 

network properties of damaged gray matter (GM) regions (Eldaief et al., 2017; Gratton et al., 
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2012; Nomura et al., 2010; Ovadia-Caro et al., 2013). Based on this work, it has been 

proposed that damage to cortical “connector hub” regions, which interface with multiple FC 

networks, produces broad disruptions of FC and behavior (Gratton et al., 2012; Warren et al., 

2014). However, this explanation ignores the fact that stroke, tumors, and traumatic brain 

injuries frequently affect the white matter (WM) (Corbetta et al., 2015; Esmaeili et al., 2018; 

Sharp et al., 2014) and overlooks evidence implicating the structural disconnection (SDC) of 

WM pathways in complex disorders such as spatial neglect (He et al., 2007; Thiebaut de 

Schotten et al., 2014) and aphasia (Fridriksson et al., 2013; Yourganov et al., 2016; Griffis et 

al., 2017a, 2017b).

Structural connectivity (SC) directly and indirectly shapes FC in the healthy brain (Adachi et 

al., 2012; Goñi et al., 2014; Greicius et al., 2009; van Den Heuvel et al., 2009; Honey et al., 

2009). Accordingly, we expected that SDCs fundamentally shape the FC disruptions caused 

by stroke. This expectation aligns with the general predictions of computational studies that 

have simulated the effects of lesions on FC (Alstott et al., 2009; Cabral et al., 2012; Saenger 

et al., 2018; Váša et al., 2015), as well as with empirical reports of FC disruptions associated 

with callosal resections and traumatic brain injuries (Jilka et al., 2014; Johnston et al., 2008; 

Roland et al., 2017). Thus, we aimed to test the hypothesis that a lesion’s distributed impact 

on the structural connectome, not its focal impact on critical GM regions, is what determines 

its impact on FC.

The relationship between SC and FC is an important topic in systems neuroscience (Mišič 

and Sporns, 2016; Park and Friston, 2013). However, because the structural connectome 

cannot be experimentally manipulated in human subjects, few studies have empirically 

examined how direct perturbations of the structural connectome are reflected in the 

functional connectome (Jilka et al., 2014; Johnston et al., 2008; Roland et al., 2017). 

Because focal brain lesions can be conceptualized as naturally occurring perturbations of the 

structural connectome, we also aimed to empirically characterize the relationship between 

SDC and FC patterns across patients.

We were particularly interested in whether this relationship might be dominated by a few 

core structure-function profiles. Stroke produces a small set of related FC abnormalities, and 

behavioral deficits appear similarly low-dimensional such that a few components account for 

most of the variance in performance within and across behavioral domains (Corbetta et al., 

2015). A potential explanation for this is that strokes often disrupt multiple proximal fiber 

pathways that traverse vascular territories, leading to correlated deficits and network 

dysfunction (Corbetta et al., 2018). If this is true, then the relationship between SDC and FC 

patterns should also be low-dimensional, and the FC patterns identified based on their 

relationships to SDCs should reflect the core FC disruptions that have previously been 

identified based on their relationships to behavior.

RESULTS

Structural Measures

Structural MRI data acquired from 114 sub-acute stroke patients (mean time since stroke = 

13.09 days, SD = 4.75 days) (Table S1) were used along with a regional GM parcellation 
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(359 regions) and a WM structural connectome atlas (70 tracts) to measure each lesion’s 

focal and distributed anatomical impacts at different spatial scales (Figure 1A). For each 

patient, we defined two measures of focal damage: (1) a voxel-based measure indicating the 

lesion status (i.e., lesioned versus spared) of each voxel in the brain, including both GM and 

WM voxels (Figure 1B, voxel-based damage); and (2) a region-based measure quantifying 

the proportion of voxels in each GM region that overlapped with the lesion (Figure 1B, 

region-based damage). We also defined two measures of distributed SDCs: (1) a tract-based 

measure quantifying the proportion of streamlines in each tract that intersected the lesion 

(Figure 1B, tract-based SDC), and (2) a region-based measure quantifying the proportion of 

streamlines between each pair of brain regions that intersected the lesion (Figure 1B, region-

based SDC). See STAR Methods for details.

Disconnection Measures Capture Common Effects of Disparate Lesions

Lesions in different locations can produce similar SDCs due to the spatially distributed 

nature of WM pathways (Catani et al., 2012). Thus, SDC measures should reveal 

commonalities among patients with heterogeneous lesions. To illustrate this, we summed the 

(1) binary voxel-based damage measures and (2) binarized region-based SDC measures 

across patients to create maps quantifying the number of patients with damage and 

disconnection at each voxel and connection in the brain (Figure 1C). Notably, the region-

based SDC overlap distribution (Figure 1D, orange histogram) was shifted to the right 

relative to the voxel-based damage overlap distribution (Figure 1D, blue histogram), 

indicating that SDC overlaps (max = 47; see dashed orange line in Figure 1D) were much 

more frequent than lesion overlaps (max = 18; see dashed blue line in Figure 1D) across 

patients. Thus, SDC measures can reveal common structural disruptions across patients with 

heterogeneous lesions.

Functional Connectivity Measures

Resting-state fMRI data acquired from 114 sub-acute stroke patients and 24 

demographically matched controls (Table S1) were used to measure FC between 324 cortical 

regions associated with different brain networks (Figures S2A–S2C). We defined 12 

network-level summary measures to capture core FC disruptions associated with stroke, 

namely reductions in (1) interhemispheric network integration, (2) ipsilesional network 

segregation, and (3) network modularity. For each patient, we extracted the mean 

interhemispheric FC values for nine bilateral cortical networks (Figure S2D, left) and 

averaged these values to summarize interhemispheric within-network integration across the 

cortex (Figure S2D, left inset). We also extracted the mean FC values between the 

ipsilesional dorsal attention (DAN) and default mode (DMN) networks to summarize 

network segregation in the lesioned hemisphere (Figure S2D, middle). Finally, we averaged 

modularity estimates for a priori network partitions across multiple edge density thresholds 

to summarize the overall network structure (Figure S2D, right; mean shown in inset). These 

FC measures were used as dependent variables in subsequent analyses.

Functional Connectivity Disruptions in Sub-acute Stroke

The mean FC matrices for patients and controls had similar topographies (Figure S2B; r = 

0.96, p < 0.001). Subtracting the patient matrix from the control matrix revealed magnitude 
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differences that were often in opposite directions for connections with positive versus 

negative values in the mean control matrix (Figure S2C; r = 0.42, p < 0.001), consistent with 

reduced within-network integration and between-network segregation after stroke. As 

expected, patients showed marked abnormalities in network-level summary measures 

relative to controls (Figure S2D), and this was not attributable to differences in total FC 

between groups (STAR Methods).

Total Disconnection Is Superior to Cortical Hub Damage for Explaining Reduced 
Modularity

Reductions in modularity have been associated with damage to cortical regions with diverse 

between-network FC (“connector hubs”) but not with damage to regions with diverse within-

network FC (“provincial hubs”) (Gratton et al., 2012). Connector hubs have therefore been 

proposed as critical GM regions that produce widespread dysfunction when damaged 

(Warren et al., 2014). We aimed to replicate this effect in our data and compare its 

explanatory power to that of a simple summary measure of SDC severity, defined for each 

patient as the total number of region-based SDCs caused by their lesion (i.e., total SDC). For 

each patient, we also defined measures of FC connector and provincial hub damage as 

weighted means of the control-derived participation coefficient (PC) and within-module 

degree (WMD) values for damaged cortical regions as in the study by Gratton et al. (2012) 

(Figure 2A).

Replicating the connector damage effect, a 2-predictor multiple regression model, identified 

a significant effect of connector hub (Figure 2B; model 1, PC Dmg) but not provincial hub 

(Figure 2B; model 1, WMD Dmg) damage on modularity (see also Figure 2C, left). 

However, a 3-predictor model that included total SDC explained significantly more variance 

(F1,110 = 22.6, p < 0.001) and featured total SDC as the only significant predictor (Figure 

2B, model 2). This model was not improved by adding lesion volume, and total SDC 

remained the only significant predictor after lesion volume was added (Figure 2B, model 3). 

Correlational analyses confirmed that modularity was more strongly related to SDC than to 

connector hub damage (Figure 2C, left), even when adjusting for lesion volume (Figure 2C, 

right). Thus, the loss of modularity after stroke is better explained by SDC severity than by 

damage to cortical connector hub regions.

Disconnection Provides the Best Anatomical Account of Network Dysfunction after Stroke

We next compared the ability of multivariate damage and SDC information to explain each 

network-level measure of FC disruption. For each FC measure (see Figure S2D), we fit four 

separate partial least-squares regression (PLSR) models by using the different structural 

measures (see Figure 1B) as predictors. The optimal number of PLS components for each 

model was determined by jackknife cross-validation, and confidence intervals (CIs) for the 

model fits were obtained by bootstrap resampling (1,000 bootstraps). To identify the best 

model of each FC measure, we compared Akaike information criterion (AIC) weights 

among models. AIC weights can be interpreted as conditional probabilities that a model is 

the best of a set given the data and the set of models (Wagenmakers and Farrell, 2004).
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Across FC measures, the SDC models consistently explained more variance than the damage 

models (Figure 3A). Although SDC models tended to use more PLS components than 

damage models (Figure 3B), subsequent comparisons using AIC weights accounted for 

differences in model complexity, and similar results were obtained when only a single 

component was used for all models (Figure S3). Comparisons of AIC weights revealed that 

nine of the best models were region-based SDC models and the remaining three were tract-

based SDC models (Figure 3C). SDC model performance could not be attributed to lesion 

volume effects, as the damage measures contained the most information about lesion volume 

(STAR Methods). Thus, SDC measures (particularly region-based SDC) consistently 

outperformed region-level and voxel-level damage measures for explaining core FC 

disruptions associated with stroke.

Disconnection Patterns Associated with Core FC Disruptions

Prior work indicates that FC disruptions involving different networks are correlated across 

patients (Corbetta et al., 2018). We observed moderate-to-strong correlations among the 

different FC measures (bottom triangle in Figure 4A) that were reflected in the correlations 

of the unthresholded PLSR weights from the region-based SDC models (top triangle in 

Figure 4A). Consistent with the proposal that correlations among FC disruptions reflect the 

simultaneous disruption of proximal WM pathways within vascular territories (Corbetta et 

al., 2018), FC disruptions and corresponding SDC weight patterns were highly correlated 

among networks with dense connections traversing the middle cerebral artery (MCA) 

territory (Figure 4A, networks other than the visual network [VIS]; see Figure S1D) but 

were weakly-to-negatively correlated between these networks and other networks (Figure 

4A, VIS).

To characterize the most salient SDCs associated with each core FC disruption, we extracted 

the region-based SDC PLSR model weights with significant 99% CIs (1,000 bootstraps) and 

positive signs (signs were flipped so that positive weights predicted more severe FC 

disruptions in all models) from the models of mean interhemispheric within-network FC, 

ipsilesional DAN-DMN FC, and network modularity. Mean model weights were larger for 

interhemispheric SDCs than for intrahemispheric SDCs (Figure 4B, compare orange and 

blue dots), and top weights corresponded overwhelmingly to interhemispheric SDCs within 

the MCA territory (Figure 4B, dots above the dashed lines; Figure 4C; see also Figure S4). 

The top weights also included several intrahemispheric SDCs involving right 

thalamocortical, fronto-parietal and fronto-temporal, and/or left frontal, frontostriatal, and 

frontothalamic pathways (Figure 4C; see also Figure S4). SDCs and/or lesions involving the 

cerebellum and brainstem (and to a lesser extent, VIS) were associated with less severe FC 

disruptions (Figures S4 and S5), consistent with the interpretation that the correlation among 

FC disruptions reflects co-occurring SDCs of diverse commissural and association pathways 

in the MCA territory.

Low-Dimensional Covariance of Disconnection and Functional Connectivity Patterns

The results reported above support the conclusion that SDCs underlie core FC disruptions 

associated with stroke. However, because they were originally identified based on their 

relationships to behavior (rather than to SDCs), these core FC disruptions may not be the 
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only or even the primary FC consequences of SDCs. To characterize the broader 

relationships between SDC and FC patterns across patients, we applied a data-driven partial 

least-squares correlation (PLSC) analysis to the full connection-level (i.e., un-summarized) 

SDC and FC matrices from the patient sample. PLSC performs a linear decomposition of the 

cross-covariance matrix to obtain a set of orthogonal latent variables (LVs)–linear 

combinations of the original structural and functional connections–that maximally explain 

the covariance between the SDC and FC datasets. The multivariate SDC and FC 

topographies linked by each LV are reflected in connection-level loadings (i.e., weights), and 

patient-level scores for each LV are obtained by multiplying the original data matrices by the 

corresponding loading vectors.

Consistent with the expectation that SDC and FC patterns would exhibit a low-dimensional 

relationship, 87% of the covariance between the full SDC and FC datasets was explained by 

the first 10 LVs (Figure 5A). Permutation testing (1,000 permutations) revealed that the first 

two LVs (i.e., LV1 and LV2) each explained significantly more covariance (45% and 21%, 

respectively) than expected under the empirical null (false discovery rate [FDR], p = 0.005). 

For each significant LV, we identified significant loadings (i.e., individual connections) as 

those with absolute bootstrap (1,000 bootstraps) signal-to-noise ratios (BSRs) greater than 

2.5. Although both LV1 and LV2 accounted for a significant portion of the total covariance, 

the loadings on LV2 did not achieve significance (see Figure S6 for characterization of 

LV2). We therefore focused on characterizing LV1. Mean LV1 SDC (t112 = 1.0, p = 0.34) 

and FC scores (t112 = 0.62, p =0.53) did not differ significantly between patients with left 

versus right hemispheric lesions, indicating that LV1 was similarly expressed in both patient 

groups (see Figure S7 for separate analyses of each group).

At the patient level, expression of the LV1 SDC pattern was reliably associated with the 

expression of the LV1 FC pattern, as indicated by the correlation of SDC and FC scores 

across patients (Figure 5B; 99% CI = 0.73–0.78, 1,000 bootstraps). In terms of loading 

topographies, significant SDC loadings had only positive signs and corresponded to 

interhemispheric SDCs within and between networks (Figures 5C and 5D, see LV1 SDC). 

Significant FC loadings with positive signs consisted of interhemispheric and 

intrahemispheric functional connections that were almost exclusively between different 

networks (Figure 5C, LV1 FC; Figure 5D, right panels), whereas loadings with negative 

signs corresponded overwhelmingly to interhemispheric functional connections both within 

and between networks (Figure 5C, LV1 FC; Figure 5D, middle panel). These topographies 

are summarized in Figure 5D and show that the expression of the inter-hemispheric SDC+ 

pattern (Figure 5D, see SDC+) was associated with stronger FC between networks (i.e., 

reducing segregation; Figure 5D, see FC+) and weaker interhemispheric FC that was most 

pronounced within networks (i.e., reducing integration; Figure 5D, see FC–).

LV1 Underlies Core Functional Connectivity Disruptions and Correlates with Behavior

The FC patterns associated with LV1 resembled two core FC disruptions associated with 

stroke: reductions of within-network interhemispheric FC and increases in between-network 

FC (Figures 6C and 6D). This suggests that the core FC disruptions associated with stroke 

are, in fact, primary consequences of SDCs. We confirmed this correspondence by 
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correlating the patient LV1 scores with the a priori FC measures (Figure 6A, top row). 

Patient FC scores for LV1 showed an extremely strong negative correlation with mean 

interhemispheric within-network FC and moderately strong correlations with the other 

measures. Similar, but weaker, relationships were observed for LV1 SDC scores (Figure 6A, 

bottom row). Thus, core FC disruptions previously identified based on their relationships to 

behavior appear to largely reflect a single underlying FC pattern associated with 

interhemispheric SDCs.

To confirm that LV1 captured a behaviorally relevant structure-function relationship, we 

correlated patient-level LV1 scores with performance scores obtained from PCAs of multiple 

tests in the language, attention, visual memory, spatial memory, and motor domains 

(Corbetta et al., 2015). LV1 expression significantly correlated with behavioral impairments 

in multiple domains (Figure 6B, left), even when adjusting for lesion volume (Figure 6B, 

right). Together with the results described above, these results support the view that the low 

dimensionality of behavioral and brain dysfunction after stroke reflects correlated SDCs 

resulting from lesions within arterial territories.

Disconnection Topographies Are Partially Reflected in Functional Connectivity Patterns

The SC and FC patterns that covary across healthy individuals feature divergent 

topographies, suggesting that they primarily reflect indirect network-level relationships 

(Mišić et al., 2016). However, normal inter-individual variability in SC measures might 

conceivably be dominated by relatively minor variations around a conserved macroscale 

architecture that underlies stable group-level FC phenomena like resting-state networks 

(Greicius et al., 2009; van Den Heuvel et al., 2009). Because SDCs are direct perturbations 

of this core architecture, we expected that their topographies would be at least partially 

reflected in linked FC patterns.

We assessed the topographic similarity of the SDC and FC components of LV1 by 

correlating the unthresholded loadings common to both components (Figure 7A). This 

revealed a weak but significant negative relationship between SDC and FC loadings (Figure 

7B). Because the degree of structure-function correspondence might be expected to differ 

among connections with distinct network and/or hemispheric attributes, we separately 

computed the correlations between the SDC and FC loadings for different hemispheric and 

network connection categories. Although considerable correspondence was observed for 

within-network connections, very little was observed for between-network connections 

(Figure 7C). This finding was not driven by regional damage, as similar results were 

obtained in patients with little-to-no cortical damage (Figure S8). Thus, direct perturbations 

of the structural connectome are directly reflected by changes in the FC of disconnected 

nodes, but this effect appears to be primarily driven by within-network SDCs.

DISCUSSION

Stroke disrupts the macroscale functional connectome (Grefkes and Fink, 2014; Baldassarre 

et al., 2016a; Carrera and Tononi, 2014; Fox, 2018). A complete understanding of stroke 

pathophysiology must link these functional disruptions back to the underlying structural 

lesion. Here, we advanced this goal by highlighting a key role of SDCs in determining the 
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effects of stroke on brain network function. Specifically, we found that core FC signatures of 

stroke (1) are better explained by SDCs than by focal damage, and (2) largely reflect a single 

latent FC pattern that covaries with the severity of inter-hemispheric SDCs and partially 

reflects the underlying SDC topography.

Anatomical Determinants of Functional Connectivity Disruptions after Stroke

We tested the hypothesis that SDCs are the primary anatomical factor underlying FC 

disruptions after stroke. Across multiple analyses, SDC measures outperformed focal 

damage measures for explaining core FC disruptions (Figures 2 and 3; Figure S3). Region-

based SDC measures typically performed best, but the comparable performance of the tract-

based SDC measures is noteworthy given their macroscale resolution and their independence 

from the regional parcellation scheme. Voxel-based damage models, which largely 

emphasized WM damage in their weight maps (Figure S5), also outperformed region-based 

damage models that only considered GM damage (Figure 3A).

These results support the conclusion that FC disruptions primarily reflect SDCs and argue 

against the notion that most focal lesions selectively disrupt function within damaged 

functional networks (Nomura et al., 2010; Warren et al., 2014) while damage to cortical 

connector hubs causes broad network dysfunction (Gratton et al., 2012; Warren et al., 2014). 

Although this account has been highly influential, it has been challenged by recent evidence 

indicating that (1) lesions can disrupt FC between undamaged networks while sparing FC 

within damaged networks (Eldaief et al., 2017); (2) damage to “connector” regions may not 

be particularly important for predicting FC disruptions in multivariate GM damage models 

(Yuan et al., 2017); and (3) task-evoked network disruptions can result from lesions that 

minimally overlap with constituent cortical regions but that cause extensive within-network 

SDCs (Griffis et al., 2017a). Although we directly replicated the effect of connector hub 

damage on modularity, the addition of SDC information increased the variance explained by 

a factor of 2.5 (Figure 2B), and the effect of connector hub damage was significantly weaker 

than the effect of total SDC even when accounting for lesion size (Figure 2C). More broadly, 

our PLSR results strongly argue against GM damage as a primary source of FC disruptions 

in patients with focal brain lesions, as the region-based damage models were consistently the 

worst-performing models tested (Figure 3; Figure S3).

The finding that SDCs can largely explain FC disruptions after stroke complements prior 

work on the role of SDCs in determining the cognitive and behavioral consequences of 

stroke (Catani et al., 2012; Chechlacz et al., 2013; Thiebaut de Schotten et al., 2014; 

Corbetta et al., 2015; Kuceyeski et al., 2015, 2016a; Yourganov et al., 2016; Griffis et al., 

2017b, 2017a; Marebwa et al., 2017). Speculatively, SDC-behavior relationships may be 

partially mediated by the large-scale functional disruptions precipitated by SDCs. Future 

studies using path modeling or mediation analyses are an important next step toward 

understanding the complete relationship linking focal lesions to functional disruptions and 

behavioral impairments.

Our results also confirm a general prediction of previous computational modeling work—

namely, that a lesion’s impact on FC is strongly influenced by its expected impact on the 

structural connectome (Alstott et al., 2009; Cabral et al., 2012; Saenger et al., 2018; Váša et 
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al., 2015). However, most computational studies have simulated SDCs by region-wise or 

random connection removal, and this makes it difficult to compare their specific results to 

results obtained from analyses of real patient data. For example, region-wise connection 

removal cannot account for WM damage that spares a region and/or a subset of its 

connections, and random connection removal cannot account for correlations among SDCs 

within the same vascular territories or fiber bundles. As our approach to measuring expected 

SDCs does not have these limitations, the incorporation of similar approaches into future 

modeling studies might enable more realistic simulations and improve the generalizability of 

specific findings.

Links between Structural Disconnection, Functional Connectivity, and Behavior

We empirically characterized how perturbations of the structural connectome are reflected in 

whole-brain FC patterns. Our analyses revealed a low-dimensional relationship between 

SDC and FC, such that two-thirds of the SDC-FC covariance could be attributed to two LVs 

(Figure 5A). Principal-component analyses (PCAs) indicated that this result did not simply 

reflect an intrinsic low dimensionality of the lesion, SDC, or FC data (Figure S9). Although 

this does not imply that more specific SDC-FC relationships do not exist, it indicates that 

any such relationships account for a minority of the total covariance.

This analysis was partially motivated by the consideration that the FC patterns that 

maximally covary with SDCs might be distinct from the core FC disruptions reported in the 

literature. However, the FC pattern captured by LV1 clearly reflected core FC disruptions 

(Figures 5 and 6A) that have been identified based on their relationships to behavior and 

deviations from controls (for review, see Corbetta et al., 2018). Accordingly, patient-level 

expression of LV1 correlated with behavioral impairments (Figure 6B). This was particularly 

pronounced for attention, spatial memory, and motor domains, consistent with the notion 

that cortico-cortical FC is critical for higher cognitive functions (Corbetta et al., 2018) and 

with previous reports of corrrelated motor and attention deficits after stroke (Baldassarre et 

al., 2016b). Because the FC profile associated with LV1 was identified based on its 

relationship to SDCs rather than behavior, we speculate that it contains an aggregate of 

different behaviorally relevant FC topographies that covary with partially overlapping sets of 

interhemispheric SDCs. Consistent with this interpretation, the LV1 FC pattern qualitatively 

resembles the FC pattern that was found to predict multi-domain behavioral deficits in a 

previous analysis of FC data from this sample (Siegel et al., 2016b).

The relationships shown in Figure 6B are consistent with evidence indicating that 

behaviorally relevant FC abnormalities are correlated and tend to vary in topography and 

severity but not form (Corbetta et al., 2018). The weakening of interhemispheric FC is a 

common signature of impairments in multiple behavioral domains, and domain-specific 

deficits are associated with specific topographies of weakened connections (Carter et al., 

2010; Park et al., 2011; Tang et al., 2016; Baldassarre et al., 2016b). Our results advance a 

mechanistic explanation for the low dimensionality of behavioral and FC disruptions after 

stroke. Specifically, they suggest that strokes within the MCA territory disrupt 

interhemispheric SC both within and between cortical networks, producing both direct and 
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network-level effects on FC that lead to a breakdown in the balance of network integration 

and segregation.

Why might interhemispheric SDCs be particularly important for determining the functional 

consequences of focal brain lesions? One explanation is that stable interhemispheric 

integration is a fundamental component of large-scale FC organization (Shen et al., 2015a, 

2015b) that shapes broader aspects of FC. This explanation is consistent with modeling 

results indicating that the interaction between callosal SC and physiological factors may 

partially mediate FC between other regions (Messé et al., 2014) and with empirical data 

indicating that interhemispheric SDCs both reduce inter-hemispheric FC and increase 

intrahemispheric FC in non-human primates (O’Reilly et al., 2013). Nonetheless, this is an 

open question that should be addressed in detail by future work.

The observed low-dimensional relationship between SDC and FC contrasts sharply with 

recent reports of high-dimensional covariance between SC and FC patterns in healthy 

individuals. For example, a recent PLSC study reported that 5 LVs explained only 22.6% of 

the covariance between SC and FC patterns in a sample of 156 healthy participants (Mišić et 

al., 2016). In contrast, the first 5 LVs identified by our PLSC analysis together explained 

over 80% of the structure-function covariance across patients (Figure 5A). One explanation 

for this stark difference is that normal variability in MRI measures of SC may reflect 

relatively minor but not inconsequential variations around an otherwise conserved structural 

scaffold that shapes the core FC topographies identified by group-level analyses, whereas 

variability in SDC measures reflects major differences in the integrity of this core scaffold. 

This explanation is consistent with the fact that the topographies of the SC and FC 

components of the LVs identified by Mišić et al. (2016) were discordant, whereas the SDC 

and FC components of LV1 identified by our analysis exhibited significant topographic 

similarity that was especially pronounced for within-network connections (Figure 7). Even 

so, the correspondence between the linked SDC and FC patterns was still relatively weak, 

and many of the most stable SDC loadings corresponded to connection types that showed 

weak topographic similarity (e.g., see interhemispheric between-network in Figures 5C and 

7C). This suggests that much of the covariance between SDC and FC may reflect indirect 

SDC effects that arise by propagation along serial connections in polysynaptic pathways 

(Carter et al., 2012; Lu et al., 2011) or through large-scale network dynamics (Adachi et al., 

2012; Alstott et al., 2009; Mišić et al., 2016) arising from the sudden loss of diverse afferent 

and/or efferent connections throughout distributed brain networks. Future studies should aim 

to characterize the nature of putative indirect SDC effects.

Considerations for Studying Structure-Function Relationships in the Lesioned Brain

The current study featured several methodological advantages over previous work on this 

topic. By explicitly incorporating SDC measures, we were able to account for the effects of 

interest beyond what was possible using focal damage measures. This contrasts with the 

historical focus on GM damage by studies in this domain (Gratton et al., 2012; Nomura et 

al., 2010; Ovadia-Caro et al., 2013; Yuan et al., 2017), which ignores potentially relevant 

information about WM damage (e.g., compare voxel and regional damage model fits in 

Figure 3) and may lead to the mis-localization of WM effects into nearby GM regions 
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(Figure S5). The latter might occur when relevant variables (i.e., WM voxels) are not 

measured, but proxy information is available from correlated measured variables (i.e., GM 

regions). Hypothetically, this could also lead to distorted SDC weight topographies if 

outcomes were largely driven by GM damage. We accounted for this possibility by 

performing an additional PLSR analysis that included both region-based damage and SDC 

measures as predictors (see STAR Methods). Although the SDC weight topographies were 

unchanged, the damage weight topographies were substantially altered when SDCs were 

simultaneously modeled. This emphasizes the importance of accounting for potentially 

relevant lesion effects when drawing conclusions about critical locations or topographies in 

lesion analyses.

We also used data collected from a relatively large sample of first-ever stroke patients in the 

sub-acute recovery phase. Most previous studies utilized data obtained from relatively small 

samples of patients with diverse lesion etiologies (e.g., stroke, traumatic brain injury, and 

tumor resection) and/or at varying stages of recovery (Nomura et al., 2010; Gratton et al., 

2012; Eldaief et al., 2017; Yuan et al., 2017). Larger patient samples increase power and 

stabilize effect estimates (Poldrack, 2012; Yarkoni, 2009), but the importance of studying 

patients with similar lesion etiologies at the same phase of recovery warrants further 

discussion.

All lesions are not created equal. The pathological origin of a given lesion contributes to its 

physiological and behavioral consequences (Anderson et al., 1990). For example, slow-

growing lesions (e.g., tumors) tend to produce less severe cognitive and behavioral deficits 

than sudden-onset lesions (e.g., ischemic stroke). This may reflect differences in the brain’s 

ability to compensate for lesions that develop on different time scales (Des murget et al., 

2007). Lesions resulting from specific pathologies may also exhibit spatial biases—medial 

prefrontal regions are frequently affected by low-grade glioma (Duffau and Capelle, 2004) 

but are infrequently affected by stroke (Corbetta et al., 2015; Sperber and Karnath, 2015). 

Furthermore, the behavioral and physiological consequences of brain lesions are not static 

but evolve throughout the course of recovery (Corbetta et al., 2005; Heiss et al., 1999; 

Ramsey et al., 2016; Rehme et al., 2011; Saur et al., 2006). Therefore, it is important to 

utilize data from patients with similar lesion etiologies and in the same recovery phase to 

minimize the risk of latent confounders in lesion analyses.

Limitations

Diffusion MRI data were not available for this sample, and SDC measures were defined by 

intersecting patient lesions with a structural connectome atlas (see STAR Methods). Similar 

atlas-based approaches have been used by other recent lesion studies (Foulon et al., 2018; 

Griffis et al., 2017a; Hope et al., 2018; Kuceyeski et al., 2015, 2016a, 2016b; Pustina et al., 

2017a), and analogous strategies are often used to study SCFC relationships in animal 

models (Adachi et al., 2012; Grandjean et al., 2017; Grayson et al., 2016; Shen et al., 

2015b). These approaches assume similar approximations of individual structural 

connectomes by the atlas and cannot account for interindividual variability in un-damaged 

fiber pathways (Forkel and Catani, 2018; Forkel et al., 2014), but they also offer protection 

against potential biases arising from inter-individual differences in diffusion MRI data 
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quality, reconstruction, etc. and provide an intuitive means of estimating SDCs relative to a 

common reference that can be used across independent samples and/or studies. Furthermore, 

the structural connectome atlas was based on very high-quality data (i.e., 90 direction high-

angular resolution diffusion imaging) from a very large sample of participants (i.e., N = 842) 

and was expert-vetted to reduce the likelihood of false-positive connections (Yeh et al., 

2018). Thus, although direct patient SDC measures would be ideal, our results show that 

atlas-based measures provide important information about FC beyond what is present in 

focal damage measures.

Similarly, template-based areal parcellations may not provide comparable approximations of 

areal boundaries for all participants. Previous analyses of data from this sample have shown 

that the parcellation delineates largely homogeneous functional regions in both patients and 

controls (Siegel et al., 2018), but inter-individual variability in areal boundaries and/or 

network topographies could still influence our measures (Braga and Buck-ner, 2017; Gordon 

et al., 2017; Gratton et al., 2018; Marek et al., 2018). However, template-based parcellation 

approaches have advantages that are analogous to those described for template-based SDC 

approaches. Furthermore, the large amount of necessary data (Gordon et al., 2017) and the 

potential for distortions by lesion and/or hemodynamic factors (Siegel et al., 2017) make 

individual functional parcellations infeasible in sub-acute stroke patients.

Previous studies have successfully used expected SDC measures to model behavioral 

impairments (Foulon et al., 2018; Fridriksson et al., 2013; Griffis et al., 2017b; Kuceyeski et 

al., 2015, 2016b) and changes in brain structure (Foulon et al., 2018; Kuceyeski et al., 2014), 

but SDC measures may not always provide unique information (Hope et al., 2018). The 

utility of SDC measures will likely depend on several factors, including the degree to which 

the outcome of interest depends on SDCs versus focal damage, the quality of the SDC 

measures, and the lesion characteristics of the patient sample. Because SDC information is 

implicit in the lesion, it is likely that voxel-based lesion measures will provide similar 

information as SDC measures when lesion coverage and diversity is sufficiently high to 

recover the implicit SDCs, although this would likely require huge samples with diverse 

lesions and dense coverage throughout the brain (e.g., N = 818 in Hope et al., 2018). Even in 

scenarios where SDC and damage information enable similar prediction, we consider the 

inclusion of SDC information useful from a neuroscientific perspective.

STAR★METHODS

LEAD CONTACT AND MATERIALS AVAILABILITY

Requests for additional information or resources should be directed to the Lead Contact, 

Gordon Shulman (gshulman@wustl.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Participant information—Patients and controls provided written informed consent prior 

to participation in the study. Study procedures were performed in accordance with the 

Declaration of Helsinki ethical principles and approved by the Institutional Review Board at 

Washington University in St. Louis. The complete data collection protocol is described in 
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full detail in our previous publication (Corbetta et al., 2015). Data from 132 first-time stroke 

patients who presented with clinical evidence of cognitive and/or behavioral impairment and 

data from 33 demographically matched healthy controls were considered for inclusion in the 

study. Data from 114 patients and 24 controls met quality control criteria (described below) 

and were included in the study. Participant demographics are shown in Table S1.

METHOD DETAILS

Neuroimaging data collection—Neuroimaging data were collected using a Siemens 3T 

Tim-Trio scanner at the Washington University School of Medicine with a 12-channel head 

coil, and are fully described elsewhere (Corbetta et al., 2015; Siegel et al., 2016b). Sagittal 

T1-weighted MP-RAGE (TR = 1950 msec; TE = 2.26 msec, flip angle = 90 degrees; voxel 

dimensions = 1.0×1.0×1.0 mm), transverse T2-weighted turbo spin-echo (TR = 2500 msec; 

TE = 43 msec; voxel dimensions = 1×1×1), and sagittal T2-weighted FLAIR (TR = 750 

msec; TE = 32 msec; voxel dimensions = 1.5×1.5×1.5 mm) structural scans were obtained 

along with gradient echo EPI (TR = 2000 msec; TE = 2 msec; 32 contiguous slices; 4×4 mm 

in-plane resolution) resting-state functional MRI scans. During the fMRI scans, participants 

were instructed to fixate on a small white centrally-located fixation cross presented against a 

black background on a screen at the back of the magnet bore. An Eyelink 1000 eye-tracking 

system (SR Research) was used to monitor when participant’s eyes were opened/closed 

during each run. Between six and eight resting-state scans (128 volumes each) were obtained 

from each participant (~30 minutes total).

Lesion identification—Lesions were manually segmented on each patient’s structural 

MRI scans using the Analyze software package (Robb and Hanson, 1991). The T1-

weighted, T2-weighted, and T2-FLAIR scans were used in conjunction to ensure complete 

lesion delineation. If present, surrounding vasogenic edema was included in the lesion 

definition for all patients. All segmentations were reviewed by two board certified 

neurologists (Maurizio Corbetta and Alexandre Carter), and were reviewed a second time by 

MC. The final segmentations were used as binary lesion masks for subsequent processing 

and analysis steps. Lesion masks were transformed to MNI atlas space using a combination 

of linear transformations and non-linear warps and were resampled to have isotropic voxel 

resolution.

Behavioral measures—Participants performed a behavioral battery consisting of 

multiple assessments within motor, language, attention, verbal memory, spatial memory, and 

visual domains. Principal components analyses (PCA) were used to decompose the 

behavioral data from each domain. Detailed descriptions of the behavioral testing and PCA 

analyses can be found in the Supplemental Material for Corbetta et al. (2015) and Siegel et 

al., (2016b). Analogously to other previous work (Ramsey et al., 2017; Siegel et al., 2016b, 

2018), the first PCs from each behavioral domain (with the exception of vision) were 

considered as domain scores of interest and were used in analyses that related imaging 

measures to behavior (Figure 6B). Of the 114 patients that were included in the main 

analyses, 108 had data for the language domain, 93 had data for the attention domain, 101 

had data for the motor domain, and 84 had data for the verbal and spatial memory domains.
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MRI data processing—Functional MRI data pre-processing consisted of slice-timing 

correction using sinc interpolation, correction of inter-slice intensity differences resulting 

from interleaved acquisition, normalization of whole-brain intensity values to a mode of 

1000, correction for distortion via synthetic field map estimation, and within- and between- 

scan spatial re-alignment. BOLD data were re-aligned, co-registered to the corresponding 

structural images, normalized to atlas space, and resampled to 3mm cubic voxel resolution 

using a combination of linear transformations and non-linear warps. Prior to estimating FC, 

additional processing steps were applied to account for non-neural sources of signal 

variance. Confounds related to head motion, global signal fluctuations, and non-gray matter 

signal compartments were removed from the data by regression of the six head motion 

parameters obtained from rigid body correction, along with the global GM signal and the 

CSF and white matter signals extracted from FreeSurfer tissue segmentations (Dale et al., 

1999). BOLD data were band-pass filtered (0.009 < f < 0.08 Hz) to retain low-frequency 

fluctuations. A frame was censored if it exceeded a 0.5 mm framewise displacement 

threshold, and the succeeding frame was also censored to further reduce confounds related 

to motion (Power et al., 2014). The first four frames of each run were discarded to allow for 

the scanner to achieve steady-state magnetization.

Cortical surface generation and subsequent fMRI data processing generally followed 

previously published minimal preprocessing procedures (Glasser et al., 2013), although 

some modifications were required to accommodate lesioned brains (Siegel et al., 2016b, 

2017). FreeSurfer was used to automatically obtain anatomical surfaces from the T1-

weighted structural scans (Dale et al., 1999; Fischl et al., 1999), and the resulting 

segmentations were visually inspected to ensure accuracy. Data from patients with failed 

registrations and/or segmentations were modified by replacing the values of lesioned voxels 

with normal values from the structural atlas prior to running the registration and 

segmentation procedures, and the modified voxels were masked out after running the 

procedures (Siegel et al., 2017). Each hemisphere was resampled to 164,000 vertices, and 

the two hemispheres were registered to each other (Van Essen et al., 2001). The data were 

then down-sampled to 32,000 vertices per hemisphere. Ribbon-constrained sampling in 

Connectome Workbench was used to sample functional MRI volumes to each participant’s 

individual surface, and voxels with coefficients of variation > 0.5 standard deviations above 

the mean of all voxels within a 5 mm sigma Gaussian neighborhood were excluded from 

volume to surface mapping (Glasser et al., 2013).

Participants were excluded if they had less than 180 usable frames of resting-state data after 

applying quality controls, and this resulted in the exclusion of 18 patients and 9 controls. 

The remaining 114 patients and 24 controls who had sufficient FC data were included in the 

primary analyses.

Parcels and network assignments—We used the Gordon333 cortical parcellation and 

network community assignments to obtain region-level and network-level measures of 

functional connectivity. This parcellation is based on functional connectivity boundary 

mapping and InfoMap community detection analyses of resting-state fMRI data from 120 

healthy individuals (Gordon et al., 2016), and consists of 333 cortical regions associated 

with 13 large-scale networks. Previous studies involving the current dataset excluded 9 
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regions for having very low numbers of vertices, and so they were also excluded here for 

consistency (Siegel et al., 2016b, 2018). The remaining 324 surface-based cortical regions 

were used for subsequent surface-based estimation of functional connectivity.

In addition to the 324 cortical regions, we also defined a set of 35 sub-cortical and cerebellar 

regions to allow for the complete quantification of damage and disconnection throughout the 

brain. This set of regions consisted of 34 parcels from the automatic anatomical labeling 

(AAL) atlas (Tzourio-Mazoyer et al., 2002) that corresponded to different portions of the 

thalamus, basal ganglia, and cerebellum, and also included 1 region from the Harvard-

Oxford Subcortical Atlas that corresponded to the brainstem. The full set of 359 regions is 

shown in Figure S1 and was used for subsequent estimation of regional damage and 

structural disconnection. The cortical regions were dilated by 2mm using the “dilate” 

command in DSI_studio to improve the sensitivity of subsequent structural connectivity 

analyses (van Den Heuvel et al., 2009; Wilson et al., 2011) and to allow for a slightly 

relaxed threshold for determining cortical damage (Pustina et al., 2018).

Functional connectivity estimation—Region-wise functional connectivity matrices 

were constructed by correlating the average (i.e., across all within-region vertices) nuisance-

regressed BOLD timeseries of each surface region with the average nuisance-regressed 

BOLD timeseries of every other region and applying the Fisher z-transformation to the 

resulting linear correlation values. For each patient, vertices that fell within the boundaries 

of the lesion were masked out, and regions with less than 60 vertices remaining after 

excluding lesioned vertices were completely excluded by setting the values to NaN, 

analogously to previous reports (Siegel et al., 2016b; Siegel et al., 2018). We note that 

analyses that were performed without removing lesioned vertices produced very similar 

results for all analyses (not shown), likely owing to the relatively low frequency of cortical 

lesions in our sample (Figure 1C; Figure S8A).

Template structural connectome—We used a publicly available diffusion MRI 

streamline tractography atlas to create a template structural connectome. The tractography 

atlas was constructed using data from 842 Human Connectome Project participants (Yeh et 

al., 2018), and atlas data were accessed under the WU-Minn HCP open access data use term. 

To summarize the atlas construction, Yeh et al. (2018) reconstructed the high-angular 

resolution diffusion MRI data (b-values: 1000, 2000, and 3000 s/mm2; diffusion sampling 

directions: 90, 90, and 90; in-plane resolution: 1.25mm) from 842 Human Connectome 

Project participants in MNI space using Q-space diffeomorphic reconstruction (Yeh and 

Tseng, 2011), averaged the resulting spin distribution functions (SDFs) to obtain population-

level streamline trajectories, and performed deterministic fiber tracking (Yeh et al., 2013b) to 

extract 550,000 streamline trajectories that were then vetted and labeled by a team of 

neuroanatomists (for detailed descriptions of the procedures, see Yeh et al., 2018). Thus, the 

tractography atlas consisted of expert-vetted end-to-end streamline trajectories in MNI space 

that were each associated with 1 of 66 neuroanatomically defined fiber bundles (e.g., 

superior longitudinal fasciculus, corpus callosum, etc.) corresponding to commissural, 

association, projection, brainstem, and cerebellar pathways (cranial nerves were not 

included). Because we expected that different segments of the corpus callosum might show 
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different relationships to FC in the tract disconnection analyses, we split the corpus callosum 

into 5 segments based on the FreesurferSeg ROIs included with DSI_studio, resulting in a 

total of 70 tracts.

We used command line utilities provided in the DSI_studio software package to define the 

normative region-based structural connectome template based on the tractography atlas 

(Figure S1). To define the region-based structural connectome, we first combined the labeled 

streamline bundles from the structural connectome atlas (e.g., short-range U-fibers, callosal 

projections, etc.) into a single aggregate .trk file, and then extracted all streamlines that 

bilaterally terminated (i.e., began and ended) within any pair of the 359 volume-based 

regions. This resulted in a 359×359 structural connectivity adjacency matrix AS where each 

entry AS
ij indexed the number of streamlines connecting regions i and region j. Due to the 

close proximity of ventral visual and dorsal cerebellar regions, a small number of dorsal 

cerebellar streamlines were captured by the dilated visual regions. Therefore, we removed 

any connections between visual areas and the cerebellum.

QUANTIFICATION AND STATISTICAL ANALYSIS

All quantification and statistical analyses were performed in MATLAB version 2015a that 

included the Statistics and Machine Learning Toolbox. Brain visualizations were created 

using the Connectome Workbench, MRIcroGL and SurfIce software packages. The 

matlab_nifti toolbox was used to convert raw voxel data in the nifti file format for 

visualization in MRIcroGL. The GRETNA toolbox was used to convert raw connection 

vectors/matrices into .edge and .node files for brain visualization in SurfIce.

Functional connectivity measures—Functional connectivity matrices were averaged 

from each group to create the group-averaged functional connectivity matrices shown in 

Figure S2B. The mean matrix from the control group was subtracted from the mean matrix 

from the patient group to create a difference matrix (Figure S2C). Linear correlations 

between the upper triangles of the group-averaged and difference matrices were used to 

assess the similarity of mean functional connectivity topographies with each other and with 

the difference matrix.

We defined 12 a priori measures of network dysfunction based on previously reported 

functional connectivity abnormalities in sub-acute stroke patients. For each of nine bilateral 

functional networks, we averaged the FC strengths over all within-network interhemispheric 

functional connections. This resulted in nine network-specific interhemispheric functional 

connectivity measures (Figure S2D, left). To obtain a general measure of interhemispheric 

integration, we averaged the nine network-specific interhemispheric functional connectivity 

measures to obtain a single measure of mean interhemispheric within-network functional 

connectivity. We note that this measure essentially corresponded to the first principal 

component of the nine interhemispheric functional connectivity measures (R2 = 0.94), which 

explained 70% of the total variance across the nine network-specific interhemispheric 

functional connectivity measures. To obtain a measure of network segregation, we averaged 

the functional connectivity values for all ipsilesional DAN and DMN functional connections 

(Figure S2D, middle). We chose this measure because previous analyses data from this 
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sample have reliably reported reduced segregation between the DAN and DMN in patients 

(e.g., Ramsey et al., 2016; Siegel et al., 2016b). Finally, to obtain a global measure that 

considered both integration and segregation, we measured network modularity (Newman’s 

Q) using the community_louvain function from the Brain Connectivity Toolbox (Rubinov 

and Sporns, 2010). Modularity estimation was performed using the 280 regions with specific 

a priori network assignments (i.e., excluding unassigned regions), and modules were defined 

a priori as the default network assignments in the Gordon333 parcellation for the reasons 

described in Siegel et al. (2016b). As in previous studies that have measured modularity in 

patients with focal brain lesions (Gratton et al., 2012; Siegel et al., 2018), we performed our 

analyses across multiple connection density thresholds ranging from 4% and 20% 

connection density in 2% steps (Figure S2D, right). The final modularity measure was 

obtained by averaging over connection density thresholds. We considered this appropriate as 

modularity estimates were highly correlated across thresholds such that a single principal 

component accounted for 95% of the total variance across thresholds (this component was 

almost perfectly colinear with the mean across thresholds – R2 = 0.99). Unequal variance t 

tests were used to compare the a priori measures between patients and controls, and false 

discovery rate (FDR) correction was used to correct for multiple testing (Benjamini and 

Hochberg, 1995). Results of these analyses are shown in Figure S2D. We note that while 

some recent work suggests a potential for biases related to connection density thresholding 

when performing patient-control comparisons (e.g., Váša et al., 2018), this approach to 

modularity estimation was chosen as it was most comparable to the approaches used by 

previous studies on similar topics (e.g., Gratton et al., 2012; Siegel et al., 2018).

The parcel-level participation coefficients and within-module degree z-scores shown in 

Figure 2A were estimated by applying the Brain Connectivity Toolbox functions 

participation_coef and module_degree_zscore to the mean functional connectivity matrix 

from the control group (shown in Figure S2B) using the same regions and range of 

connection density thresholds as the modularity analyses (described above), and averaging 

across thresholds. Note that functional connectivity between parcels with Euclidean 

distances of less than 20mm was not used in the computation of these measures (Power et 

al., 2013). The connector hub and provincial damage measures (Figure 2) were defined 

according to the same procedure described by Gratton et al. (2012). For each patient, this 

involved multiplying the amount of damage to each region by its participation coefficient 

(connector hub damage) or its within-module degree z-score (provincial hub damage) and 

then averaging measures over regions. This produced a single connector hub damage 

measure and a single provincial hub damage measure for each patient.

We performed additional analyses to ensure that the observed group differences in 

modularity were not driven by false positives that could arise from applying proportional 

thresholding to data from groups that might differ in overall functional connectivity (van den 

Heuvel et al., 2017). We performed these analyses using overall functional connectivity 

defined as the mean of all positive functional connectivity values (van den Heuvel et al., 

2017). First, we compared overall functional connectivity between patients and controls, and 

found that it did not significantly differ between groups (t = 0.29, p = 0.77). Next, we 

regressed overall functional connectivity out of the modularity measure and compared the 

residuals between patients and controls. Across the entire dataset, only ~11% of the variance 
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was attributable to the effects of overall functional connectivity, and group differences 

persisted after regressing out the effect of overall functional connectivity. Similar results 

were also obtained when functional connectivity magnitude-based thresholds were used 

rather than edge density thresholds, and when modularity was computed on the weighted 

functional connectivity matrices (Rubinov and Sporns, 2011).

Structural lesion features—MATLAB scripts utilizing functions from the matlab_nifti 

toolbox were used to obtain voxel-based damage and parcel-based gray matter damage 

measures (Figure 1B). For each patient, we re-shaped their 3×3×3mm lesion mask into a 1-

dimensional vector indexing the presence versus absence of damage at each voxel within the 

group-level lesion coverage area (hereafter referred to as “voxel-based damage”). We also 

computed the proportion of each gray matter region that overlapped with each patient’s 

lesion to create a 1-dimensional vector quantifying the amount of damage to each region 

within the group-level lesion coverage area (hereafter referred to as “region-based damage”). 

MATLAB scripts implementing command line functions from the DSI_studio software 

package were used to obtain expected disconnections for each patient based on the 

intersection of their MNI-registered lesion and the structural connectome template, as 

described below.

For each patient, we extracted all streamlines that passed through the lesion to obtain a 

359×359 structural disconnection adjacency matrix AD where each entry AD
ij quantified the 

number of streamlines connecting region i and region j that intersected the lesion (i.e., that 

were disconnected in that patient). We then normalized each structural disconnection matrix 

AD via element-wise division by the structural connection matrix AS, such that entries in the 

resulting matrix ADnorm quantified the proportion of streamlines connecting region i and 

region j that were disconnected by the lesion. This step accounted for differences in the 

number of streamlines connecting different region pairs and ensured that all disconnection 

measurements were directly comparable and intuitively interpretable in terms of 

proportional disconnection rather than raw number of streamlines. The upper triangles 

(excluding diagonal elements) of the normalized disconnection matrices were then extracted 

and reshaped into a 1-dimensional vector quantifying the amount of disconnection for each 

connection (hereafter referred to as “region-based disconnection”). For each patient, we also 

calculated the proportion of each neuroanatomically defined fiber bundle from the structural 

connectome atlas that was disconnected by the lesion, resulting in a 1-dimensional vector 

quantifying the amount of disconnection for each tract (hereafter referred to as “tract-based 

disconnection”). Prior to performing any statistical analyses, the damage/disconnection 

vectors from all 114 patients were stacked on top of each other to form four separate data 

matrices.

Damage and disconnection frequency maps (Figure 1) were created using the voxel-based 

damage and region-based disconnection data. Voxel-based damage maps were summed 

across patients, resulting in a map that quantified the number of patients with damage to 

each voxel in the brain (Figure 1C, top). Region-based disconnections were binarized at a 

1% disconnection threshold and summed across patients, resulting in a map that quantified 

the number of patients with damage to each connection in the structural connectome (Figure 
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1C, bottom). The damage and disconnection frequency measures were used to create the 

histograms shown in Figure 1D.

Multiple linear regressions and partial correlations—We used multiple linear 

regressions to compare the effects of connector hub damage, provincial hub damage, and 

total disconnection (defined by summing the binarized region-based disconnections for each 

patient) on network modularity (Figure 2). We first fit a linear regression model that 

included connector hub and provincial hub damage as predictors (Figure 2B, Model 1). We 

then added total disconnection to the model to determine whether total disconnection 

explained additional variance beyond what could be attributed to the hub damage measures 

(i.e., F-test on R2 change statistic; Figure 2B, Model 2), and to simultaneously evaluate the 

effects of all three measures in a single model. We then added lesion volume to determine 

whether the same effects were observed when lesion volume was included in the model 

(Figure 2B, Model 3). Effects were considered significant if they survived FDR correction at 

0.05.

Because the original study by Gratton et al., (2012) used a correlation (i.e., rather than 

regression) approach, and because this allowed us to directly compare the strength of the 

relationships between different structural measures and modularity, we also performed 

correlational analyses (Figure 2C). For these analyses, we first computed the linear 

correlations between network modularity and total disconnection, connector hub damage, 

and provincial hub damage. We then compared each correlation using Steiger’s z-tests. 

These analyses were then repeated after adjusting for lesion volume (i.e., partial correlation). 

Because the comparison between connector hub damage and provincial hub damage was 

intended to replicate the effect reported by Gratton et al., we used a one-tailed test (i.e., 

connector hub damage > provincial hub damage). Two-tailed tests were used to compare the 

correlations for total disconnection and connector hub damage. Effects were considered 

significant if they survived FDR correction at 0.05.

Partial least-squares regressions—We used partial least-squares regressions (PLSR) 

to predict our a priori network-level functional connectivity measures from our structural 

damage and disconnection measures (Figures 3 and 4). PLSR is a multivariate regression 

technique (Wold et al., 2001) that is closely related to principal components regression 

(PCR) (Hotelling, 1957). Both PLSR and PCR are particularly useful for situations where 

there are more variables than observations and/or when there is high collinearity among the 

predictor variables. However, PLSR has important advantages over PCR (Abdi, 2010) that 

are primarily due to differences in the criteria used for decomposition of the predictor 

matrix. Namely, while PCR decomposes the predictor matrix X into a set of linearly 

independent components that maximally account for the variance in X and uses the scores 

on some subset of those components to predict Y, PLSR performs a dual decomposition of 

X and Y to obtain components from X that maximally account for the covariance with Y. 

This typically results in simpler models and is advantageous over PCR because it reduces 

the potential for important variables to be omitted from the model on the basis that they 

explain only small amounts of the variance in X (Abdi, 2010; Krishnan et al., 2011). 

Detailed descriptions of the theory and algorithms behind the PLSR approach can be found 
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elsewhere (Abdi, 2010; Krishnan et al., 2011; McIntosh and Lobaugh, 2004; Tie Jong, 1993; 

Wold et al., 2001). We performed PLSR using the SIMPLS algorithm implemented in the 

plsregress function included with the MATLAB Statistics and Machine Learning Toolbox. 

Structural data matrices were mean-centered column-wise (default option for plsregress) 

prior to analysis. Predictor matrices were restricted to columns that had greater than two 

non-zero observations.

We fit PLSR models for each functional connectivity measure using the four different 

structural lesion measures as predictors. Leave-one-out (i.e., jackknife) optimization was 

used to identify the number of components (i.e., predictors) included for each model by 

adding components and measuring the change in prediction error with the inclusion of each 

additional component (Abdi, 2010). Components were added until the sum of squared 

prediction errors for the held-out cases increased with the addition of the new component, as 

increases in prediction error following the inclusion of additional components indicate 

overfitting to the training set (Abdi, 2010). This approach has been previously used for 

similar neuroimaging applications of PLSR (Kuceyeski et al., 2016b). The number of 

components for each model is shown in Figure 3B.

PLSR models were then fit to the full dataset using the optimal number of components 

identified for each model (Kuceyeski et al., 2015, 2016b). Bootstrap resampling (1000 

bootstraps) was used to estimate CIs for the model fits and beta weights using the bias-

corrected and accelerated percentile method (Efron and Tibshirani, 1986) as implemented in 

the MATLAB function bootci (Figures 3A and 4). 95% CIs for model fits were adjusted to 

control the family-wise error rate for all 4 models fit to each FC measure, and therefore 

correspond to ~99% confidence intervals. 99% CIs were also estimated for the beta weights 

from each model. The signs of model weights were flipped as necessary so that positive 

weights predicted more severe FC disruptions for all models. Beta weights were also 

rescaled for the plots in Figures 4, S4, and S5 by multiplying all weights by a scalar value of 

1000 (i.e., so that scientific notations would not overlap with the plot titles). Plots in Figure 

4B were created using the MATLAB function plotSpread.

Comparisons of the different anatomical models of each functional connectivity outcome 

were performed using Akaike’s information criterion weights (AICw; Figure 3C), as they 

incorporate information about both goodness-of-fit and model complexity (Kuceyeski et al., 

2016b; Wagenmakers and Farrell, 2004). For each outcome variable, AICw were calculated 

as:

AICw = exp ΔAIC
2 /∑exp ΔAIC

2

where ΔAIC corresponds to the difference between the AIC of each model and the minimum 

AIC across models for that outcome variable. The AIC weights for a given model from a set 

of candidate models can be interpreted as expressing the conditional probability that a given 

model is the best of all candidate models when considering both model performance and 

model complexity (Wagenmakers and Farrell, 2004). Thus, models with AIC weights closer 

to 1 are considered superior to models with AIC weights closer to 0. Linear correlations 
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were computed among the unthresholded parcel disconnection weights from all 12 models 

and among all 12 functional connectivity measures (Figure 4A). Region-based disconnection 

model weights were extracted and plotted for different connection type categories (Figure 

4B). The top 20% of significant weights from each model were projected to the brain for 

visualization (Figure 4C).

Partial least-squares correlations—We used partial least-squares correlation (PLSC) 

of the full region-based disconnection and functional connectivity datasets to identify the 

patterns of structural disconnection and functional connectivity that maximally covary 

across patients (Figures 5, 6, and 7; Figures S6, S7, and S8). PLSC is a data-driven 

technique that is closely related to PLSR. PLSC seeks to define linear combinations of two 

data matrices (X and Y), referred to as latent variables (LVs), that maximally explain the 

covariance between the data matrices, and essentially involves performing a singular value 

decomposition (SVD) on the cross-block covariance matrix (Abdi, 2010; Krishnan et al., 

2011; McIntosh and Lobaugh, 2004). PLSC has been successfully used to characterize 

covarying patterns of structural and functional connectivity in healthy individuals (Mišić et 

al., 2016) and has been successfully applied to other problems involving the relationships 

between structural and functional connectivity (Shen et al., 2015a, 2015b; Zimmermann et 

al., 2016).

Prior to performing the PLSC analysis, the upper triangle (excluding diagonal elements) of 

each patient’s z-transformed functional connectivity matrix was extracted and reshaped into 

a 1-dimensional vector. The resulting vectors were then stacked on top of each other to 

create a patient-by-connection functional connectivity matrix, and an analogous patient-by-

connection matrix that was created using the region-based disconnection matrices. Because 

the PLSC approach cannot accommodate missing values, functional connectivity between 

parcels that had been excluded from previous analyses (i.e., regions with < 60 vertices 

remaining) was set to 0 as in previously published multivariate analyses involving dense 

functional connectivity matrices from this sample (Siegel et al., 2016b). However, analyses 

that were performed without removing lesioned regions produced highly similar results (not 

shown), and control analyses that only included patients for whom no regions were removed 

(n = 51; see Additional Analyses) also produced results that were highly consistent with the 

main analyses (Figure S8). The patient-by-connection region-based disconnection (X 
matrix) and functional connectivity (Y matrix) matrices were mean-centered column-wise 

and used to compute the cross-product matrix X’Y. Singular value decomposition (SVD) 

was then applied using the MATLAB function paq to obtain the solution:

X′Y = USV′

where

U′U = V′V = I

producing a set of N-1 orthogonal LVs that each consisted of singular vectors U and V, and a 

diagonal matrix S containing the singular values. The singular vectors contained weighted 
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linear combinations of the original data matrices that maximally covaried together, and the 

singular values encoded the proportion of the covariance between the original data matrices 

that was accounted for by each LV. Score matrices were computed by multiplying the 

original data matrices by the corresponding loading matrices to project each patient’s data 

onto the LVs.

Permutation testing was used (1,000 permutations) to determine the significance of 

individual LVs (Abdi, 2010; Krishnan et al., 2011; McIntosh and Lobaugh, 2004), and 

bootstrap resampling (1,000 bootstraps) was used to compute bootstrap signal-to-noise ratios 

(BSRs) for the singular vector loadings associated with each LV by dividing the loadings by 

their bootstrapped standard error estimates (Abdi, 2010; Krishnan et al., 2011; McIntosh and 

Lobaugh, 2004). The (BSRs) quantify the stability of the loading estimates, and approximate 

z-scores (Efron and Tibshirani, 1986). Because the permutation and bootstrap procedures 

can produce LVs that do not match those obtained from PLSC of the original data, Procruste 

rotation was applied to the LVs obtained from the permutation/bootstrap analyses to ensure 

that they corresponded to those obtained from the original analyses (Krishnan et al., 2011; 

McIntosh and Lobaugh, 2004; Mišić et al., 2016). LVs obtained from the main PLSC 

analyses were considered significant if the permutation p value was less than 0.05 after 

correcting for tests across all 10 LVs that accounted for at least 1% of the covariance, and 

loadings were considered stable if the corresponding absolute BSRs were greater than 2.5 

(i.e., p~0.01) (Krishnan et al., 2011; Mišićet al.,2016). Relevant results are shown in Figures 

5, S6, S7, and S8.

Linear correlation was used to assess the strength of the relationship between LV1 functional 

connectivity and disconnection scores. Bootstrap resampling (1,000 bootstraps) was used to 

compute a 95% confidence interval on the correlation (Krishnan et al., 2011). Patient scores 

on the first LV (LV1) were linearly correlated with mean interhemispheric within-network 

functional connectivity, ipsilesional DAN-DMN functional connectivity, and network 

modularity measures, and with each of the behavioral measures (Figure 6). Linear 

correlations were also computed between the unthresholded disconnection and functional 

connectivity loading vectors for LV1 to characterize the topographic similarity of the linked 

structural and functional patterns (Figure 7). This analysis only considered loadings that 

were non-zero in both vectors (i.e., only cortico-cortical edges that had non-zero 

disconnection loadings). FDR correction was used to correct for multiple testing for each set 

of correlations.

Additional analyses—We performed additional analyses to (1) ensure that our main 

PLSR and PLSC results were not impacted by vascular factors as indexed by hemodynamic 

lags (Lv et al., 2013; Siegel et al., 2016a), (2) ensure that our main PLSR results held when 

all models were fit with only a single component, (3) ensure that our main PLSR and PLSC 

results did not depend on the inclusion of patients with lesions in either hemisphere, (4) 

ensure that the topographical similarity analyses of the PLSC loadings were not driven by 

the exclusion of highly damaged regions from the functional connectivity estimation, (5) 

ensure that the topographies of the region-based PLSR model weights were not distorted by 

including only disconnection information in the region-based disconnection PLSR models, 

(6) ensure that the main PLSR results were not attributable to lesion volume effects, and (7) 
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ensure that the low-dimensionality of the PLSC results was not constrained by an intrinsic 

low-dimensionality of the structural and/or functional measures. These analyses are 

described in more detail below.

Controlling for large ipsilesional hemodynamic lags in PLSR/PLSC analyses—
Identification of patients with abnormal hemodynamic lags proceeded as follows. For each 

voxel, hemodynamic lags were with estimated with respect to the global gray matter signal 

using a window size of −8 s to 8 s (i.e., 4 TR), and the average difference in lag values 

between the lesioned and unlesioned hemispheres was computed for each patient as in 

previous work (Siegel et al., 2016a). To ensure that our main results were not driven by 

patients with potentially abnormal hemodynamics, supplemental PLSR and PLSC analyses 

were performed that excluded patients with lag differences greater than 2 standard 

deviations from the control mean (i.e., > 0.32 s; 20/114 patients excluded). We note that this 

threshold (0.32 s) is conservative compared to thresholds used in prior work (Siegel et al., 

2016b, 2018). Results from the PLSR and PLSC analyses that excluded high-lag patients 

were highly consistent with the main results and are shown in Figure S3A and S7A.

Controlling for differences in the number of PLSR components across models
—The PLSR parcel SDC models presented in Figure 3 often utilized more components than 

the damage models. While the number of components for each model was determined in a 

principled manner using jackknife cross-validation and the AIC weights incorporated 

information about model complexity, we wanted to ensure that similar results were obtained 

when all models utilized only a single component. We therefore fit all of the PLSR models 

using only a single component solution. The results of these analyses were highly consistent 

with the main analyses and are presented in Figure S3B.

Controlling for the inclusion of patients with lesions in either hemisphere—
The analyses presented in the main text utilized data from patients with lesions in either the 

left or right hemisphere. To determine whether our main results held when analyses were 

restricted to patients with lesions in a single hemisphere, we performed separate PLSR and 

PLSC analyses for patients with left versus right hemispheric lesions. Results from the 

PLSR and PLSC analyses that were restricted to patients with lesions in a single hemisphere 

were highly consistent with the results from the main analyses and are shown in Figures S3C 

and S3D, and S7B and S7C, respectively.

Controlling for removal of damaged regions in PLSC analyses—As described in 

the description of the functional connectivity estimation procedures, lesioned vertices were 

not included in the estimation of functional connectivity, and regions that had less than 60 

vertices remaining after excluding lesioned vertices were removed for each patient by setting 

them to NaN. When computing functional connectivity summary measures, this allowed us 

to completely exclude highly damaged regions. However, the PLSC analyses used the dense 

functional connectivity matrices and therefore could not accommodate NaN values. 

Therefore, functional connectivity for removed regions was set to 0 as in previous 

multivariate analyses (Siegel et al., 2016b). However, we were concerned that the removal of 

highly damaged regions from the functional connectivity matrices might introduce 
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systematic covariance between disconnections caused by the lesions that resulted in region 

removal and the zero-valued cells in the functional connectivity matrix, as this could bias the 

solution and lead to artificial topographic similarity between the structural and functional 

loadings. While region removals were relatively infrequent (Figure S8A), we still wanted to 

control for this possibility. Therefore, we repeated the PLSC and topographic similarity 

analyses using only data from 51 patients for whom no regions were sufficiently damaged to 

be removed from the analyses. These patients had essentially minimal to no cortical damage 

(Figure S8B), and therefore the results could not be attributed to the effects of regional 

damage on functional connectivity. The results obtained from these analyses were highly 

similar to those obtained from the main analyses and are presented in Figure S8.

PLSR analyses with composite SDC and damage models—The results shown in 

Figure S5 suggested that region-based damage PLSR models sometimes mis-localized WM 

damage effects to nearby gray matter regions. This suggested that the region-based damage 

models were taking advantage of damage to gray matter regions that was correlated with the 

white matter damage effects identified by the voxel damage models. Because the region-

based disconnection models lacked explicit information about gray matter damage, we were 

concerned that the region-based disconnection topographies might be susceptible to similar 

distortion. Therefore, we performed supplemental analyses to determine whether the region-

based disconnection weight topographies were affected by including information about 

region-based gray matter damage. This analysis consisted of running the PLSR analyses 

with both the region-based disconnection and damage measures as predictors in the same 

model, and then correlating the resulting (unthresholded) PLSR weight vectors with those 

obtained from the original analyses. This revealed that the weight topographies of the 

region-based SDC models were virtually unchanged by the inclusion of the region-based 

damage measures (across-model mean correlation of weight vectors = 0.98, SD = 0.04). 

However, this did have substantial effect on the region-based damage weight topographies 

(across-model mean correlation of weight vectors = 0.79, SD = 0.24), consistent with what 

would be expected under the scenario described above given that the functional connectivity 

measures were most strongly related to white matter damage and structural disconnection.

Comparing lesion volume information provided by damage and disconnection 
measures—To determine whether the effects observed for the disconnection measures 

might be driven by an underlying relationship to total lesion volume, we performed an 

additional PLSR analysis with lesion volume as the dependent variable. This allowed us to 

identify the multivariate damage/disconnection measure(s) that contained the most 

information about lesion volume. Given that lesion volume can be directly computed from 

the voxel-wise damage maps, and given that the total number of parcels damaged in a patient 

will be closely related to the size of the lesion, we expected that the damage measures would 

actually contain more information about lesion volume than the disconnection measures. 

The PLSR analysis revealed that the region-based and voxel-based damage models were 

able to almost perfectly explain the variance in lesion volume (R2’s = 0.98 and 0.99, 

respectively), and explained substantially more variance in lesion volume than the region-

based and tract-based disconnection models (R2’s = 0.67 and 0.72, respectively). 

Comparisons of AIC weights revealed that voxel-based damage measures provided the best 
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account of lesion volume. Therefore, the potential effects of lesion volume were actually 

greatest for the damage models. This indicates that even though the damage models were 

able to capitalize directly on information about lesion volume to a much greater extent than 

the disconnection models, the disconnection models still outperformed them for explaining 

functional connectivity disruptions.

Dimensionality of structural and functional data—To ensure that the low-

dimensionality of the PLSC results was not simply reflecting an intrinsically low-

dimensionality of the structural measures or functional connectivity measures, we performed 

principal component analyses (PCA) on the dense voxel-based damage, region-based 

disconnection, and functional connectivity data from the patient sample (Figure S9). Recall 

that in the PLSC analyses, the first 5 LVs explained over 80% of the total covariance 

between the dense structural disconnection and functional connectivity datasets (Figure 5A). 

By comparison, the dense voxel-based damage data were relatively high-dimensional – 28 

components are necessary to explain 80% of the total variance across all voxels in the lesion 

coverage zone. The dense region-based disconnection data were lower-dimensional than the 

voxel-based damage data, but were still relatively high-dimensional – 15 components were 

necessary to explain 80% of the total variance in region-based disconnections across all 

connections in the disconnection coverage zone. Finally, the dense functional connectivity 

data were very high-dimensional – 72 components were necessary to explain 80% of the 

total variance in the functional connectivity data. These results indicate that there were far 

fewer salient covariance dimensions between the disconnection and functional connectivity 

data than there were variance dimensions in the voxel-based damage, region-based 

disconnection, or functional connectivity data. This argues against an intrinsic low-

dimensionality of the dense structural or functional data as a source of the observed low-

dimensional covariance.
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Highlights

• White matter structural disconnections explain brain network dysfunction 

after stroke

• Damage to the gray matter, including “hub” regions, provides less 

explanatory power

• Interhemispheric disconnections are linked to widespread functional 

disruptions

• Disconnection and disruption are topographically linked within functional 

networks
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Figure 1. Disconnection Measures Capture Common Effects of Disparate Lesions
(A) Structural data and atlases. From left to right: T2-weighted structural MRI scan from a 

single patient, regional GM parcellation, and diffusion MRI structural connectome atlas.

(B) Example structural measures. From left to right: voxel damage, regional GM damage, 

tract-based SDC, and region-based SDC measures for a single patient.

(C) Topographies of voxel damage (top) and region-based SDC (bottom) overlap across 

patients. Colormaps represent the number of patients with damage (top) and disconnection 

(bottom) at each voxel and connection, respectively. For SDC overlaps, lines represent 

connections and colored spheres represent regions. Sphere colors correspond to network 

assignments shown in Figure S2A.

(D) Bar heights (y axis) indicate the proportion of voxels (blue) and connections (orange) in 

the across-patient overlap maps that are damaged in different numbers of patients (x axis). 

Dashed lines correspond to the maximum number of patients with damage and 

disconnection at any voxel and connection, respectively.
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Figure 2. Total Disconnection Is Superior to Cortical Hub Damage for Explaining Reduced 
Modularity
(A) FC participation coefficients (top) and within-module degree Z scores (bottom) for each 

cortical region in the mean control FC matrix.

(B) Standardized betas (y axes) for structural measure predictor effects (x axes) from three 

nested regression models of network modularity in the patient group (n = 114). Error bars 

correspond to 95% CIs.

(C) Correlations (left, y axis) and partial correlations (right, y axis) between structural 

measures (x axes) and modularity. *FDR, p < 0.05.

See also Figure S2.
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Figure 3. Disconnection Provides the Best Anatomical Account of Network Dysfunction After 
Stroke
(A) PLSR model fits and family-wise error (FWE)-corrected 95% CIs. Plots show R2 values 

(y axes) for different anatomical models (x axes) of each FC measure obtained from the 

patient group (n = 114).

(B) Number of components included in each anatomical model (x axis) of each FC measure 

(y axis) as determined by jackknife cross-validation.

(C) Left: model AIC weights for each anatomical model (x axis) of each FC measure (y 

axis). Right: number of times (y axis) each anatomical model (x axis) was selected as the 

best model of the set. The red boxes highlight distinct core FC disruptions.

See also Figures S2 and S3.
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Figure 4. Disconnection Patterns Associated with Core FC Disruptions
(A) Correlations among the different FC measures (bottom triangle) and among the PLSR 

weight vectors from the region-based SDC models (top triangle).

(B) Distributions of significant region-based SDC weights associated with reduced 

interhemispheric within-network FC, increased DAN-DMN FC, and reduced modularity in 

the patient group (n = 114). Weights are shown separately for different network and 

hemispheric connection types. Data points correspond to single connections. Dashed lines 

correspond to 80th percentile cutoffs of thresholded weights (points above these lines are 

plotted in C). Means and SDs are shown as line plots and error bars.

(C) Brain plots show top 20% of weights in (B). See also Figures S4 and S5.
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Figure 5. Low-Dimensional Covariance of Disconnection and Functional Connectivity Patterns
(A) Proportion of total covariance explained by 1st 10 LVs from the PLSC of SDC and FC 

patterns in the patient group (n = 114). LV1 (red outline) is characterized in subsequent 

panels.

(B) Relationship between patient SDC (x axis) and FC (y axis) scores for LV1.

(C) LV1 SDC (left plot) and FC (right plot) BSRs (y axes) for different connection type 

categories (x axes). Dots correspond to individual connections. Dashed lines denote 

significance thresholds.

(D) Multivariate SDC and FC topographies linked by LV1. Brain images show top 20% of 

significant positive (shown in red) and negative (shown in blue) loadings for SDC and FC 

patterns with significant BSRs (i.e., data points above and/or below dashed lines in C).

See also Figures S6 and S7.
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Figure 6. LV1 Underlies Core Functional Connectivity Disruptions and Correlates with Behavior
(A) Scatterplots show relationships between core FC disruptions (y axes) and LV1 FC (top 

row) and SDC (bottom row) scores (x axes) in the patient group (n = 114).

(B) Bar plots show raw (left plot) and partial (right plot) correlations (y axes) between 

behavioral measures (x axes) and LV1 scores. Lang, language; Att, attention; MemV, verbal 

memory; MemS, spatial memory. *FDR, p < 0.05.
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Figure 7. Disconnection Topographies Are Partially Reflected in Functional Connectivity 
Patterns
(A) Unthresholded LV1 SDC (left; cortical only) and FC (right) loadings obtained from 

PLSC of data from the patient group (n = 114). Matrices are organized as in Figure S2.

(B) Relationship between LV1 SDC (x axis) and FC (y axis) loadings.

(C) Relationships for different connection type categories (WN, within-network; BN, 

between-network). *FDR, p < 0.05.

See also Figures S6 and S8.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Software and Algorithms

MATLAB2015a The MathWorks RRID:SCR_001622

DSLstudio Fang-Chen Yeh, DSLstudio RRID: SCR_009557; dsi-studio.labsolver.org/

Connectome Workbench Marcus et al., 2011 RRID:SCR_008750; https://www.humanconnectome.org/software/
get-connectome-workbench

Freesurfer Dale et al., 1999 RRID: SCR_001847;
http://surfer.nmr.mgh.harvard.edu/

Brain Connectivity Toolbox Rubinov and Sporns, 2010 RRID:SCR_004841;
http://sites.google.com/site/bctnet/

GRETNA NITRC RRID: SCR_009487;
https://www.nitrc.org/projects/gretna/

Analyze Robb and Hanson, 1991 RRID: SCR_005988;
https://analyzedirect.com/analyze-12-0/

Surflce NITRC https://www.nitrc.org/projects/surfice

MRICroGL NITRC https://www.nitrc.org/projects/mricrogl

4dfp_tools NIL ftp://imaging.wustl.edu/pub/raichlab/4dfp_tools/

paq Herve Abdi https://www.utdallas.edu/~herve/

plotSpread MATLAB Central https://www.mathworks.com/matlabcentral/fileexchange/37105-plot-
spread-points-beeswarm-plot

matlab_nifti MATLAB Central RRID:SCR_016895;
https://www.mathworks.com/matlabcentral/fileexchange/8797-tools-
for-nifti-and-analyze-image

Other

Gordon rsfMRI parcellation Gordon et al., 2016 https://sites.wustl.edu/petersenschlaggarlab/resources/

AAL Atlas Tzourio-Mazoyer et al., 2002 RRID:SCR_003550;
http://www.gin.cnrs.fr/en/tools/aal-aal2/

Harvard-Oxford Subcortical 
Atlas

Harvard Center for Morphometric 
Analysis

RRID:SCR_001476; https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Atlases

HCP-842 Diffusion MRI 
Tractography Atlas

Yeh et al., 2018 brain.labsolver.org/diffusion-mri-templates/tractography
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