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Abstract

Objectives: Hypertensive heart disease (HHD) and hypertrophic cardiomyopathy (HCM) are 

associated with increased left ventricular wall thickness (LVWT). Contemporary guidelines define 

HCM as LVWT ≥15 mm unexplained by other disease, which complicates the diagnosis in cases 

of co-occurrences.

Background: Conventional global native T1 mapping involves calculation of mean T1 values, as 

a surrogate for fibrosis. However, there may be differences in its spatial localization, such as 

diffuse and more focal fibrosis in HHD and HCM, respectively. As radiomic texture analysis (TA) 

can quantify spatial distributions of pixel intensity levels, we hypothesize that TA would allow 

differentiation between HHD and HCM.

Methods: We identified 232 subjects (53 HHD, 108 HCM, 71 controls) for TA who 

consecutively underwent free-breathing multi-slice native T1 mapping. Four sets of texture 

descriptors were applied to capture spatially dependent and independent pixel statistics. Six 

texture features were sequentially selected with best discriminatory capacity between HHD and 

HCM and tested using Support Vector Machine (SVM) classifier. Each disease group was 

randomly split 4:1 (Feature Selection:Test Validation), where the pattern’s reproducibility was 

analyzed in the test validation dataset.
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Results: The selected texture features provided the maximum diagnostic accuracy of 86.2% (c-

statistic 0.820, CI 0.769–0.903) using SVM. For the test validation dataset the pattern’s accuracy 

remained high at 80.0% (c-statistic 0.89, CI 0.77–1.0). Global native T1 with an accuracy of 64% 

separated only modestly between HHD and HCM patients (c-statistic 0.549, CI 0.452–0.640).

Conclusions: Radiomics analysis of native T1 images discriminates between HHD and HCM 

patients and provides incremental value over global native T1 mapping.
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Introduction

The differential diagnosis between hypertensive heart disease (HHD) (1) and hypertrophic 

cardiomyopathy (HCM) (2,3) occurs frequently in clinical practice with a representative 19–

23% co-occurrence in gene-positive HCM patients (4,5). Particular the presence of 

hypertension and left ventricular wall thickness (LVWT) ≥15 mm, the major diagnostic 

criterion of HCM, is a diagnostic challenge and requires elaborate cardiac imaging (6). 

Considering that both disease have late gadolinium enhancement (7), reduced left ventricular 

(LV) strain (8), diastolic dysfunction (9), asymmetric (10) as well as concentric LV 

hypertrophy (11) in common, the diagnosis based on cardiac imaging alone remains often 

uncertain.

The histological correlates of compensated LV hypertrophy, the predominant form in HHD, 

are hyperplasia of normally arranged cardiomyocytes (12) and a structured interstitial 

fibrosis supporting the increased biomechanical load (13). HCM on the other hand is 

characterized by myocyte disarray (11,14), arranged frequently around central cores of 

collagen (15), and a heterogeneous distribution of collagen rich areas (14). The distribution 

of fibrosis in HCM is therefore of more focal nature than the rather diffuse fibrosis in HHD.

Several parametric mapping techniques in cardiovascular magnetic resonance (CMR) 

imaging are capable of quantifying myocardial fibrosis (16). Of these, native T1 is best 

established in HHD (9,17) and HCM (9,18), including a strong correlation with histological 

findings (19). Hinojar et al. also demonstrated that native T1 discriminates between HCM 

and HHD (9). Furthermore, CMR and histology findings have similar regional distributions: 

on histology fibrosis is often more severe in the ventricular septum (11), a finding identical 

to increased native T1 values (9,18).

Traditional visual inspection of CMR images and averaging intensity levels in large regions 

of interest, performed in native T1 imaging, often ignores subtle changes such as fibrosis 

patterns. Radiomics, motivated by the concept that biomedical imaging contains information 

reflecting on disease specific processes and accessible by quantitative image analyses (20), 

has the potential to extract such information. CMR examples are the detection of ventricular 

myocardial scar (21) or the differentiation between HCM patients and controls (22), both 

based on qualitative non-contrast T1-weighted image texture analyses (TA). Another CMR 
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image approach for TA is the use of semi-quantitative late gadolinium enhancement (23) or 

quantitative CMR images (24), which better reflect on physical tissue properties leading to 

improved disease substrate registration. TA itself consists of a wide range of mathematical 

computation techniques quantifying spatial distributions of pixel intensities levels (20–25), 

which in combination with a variety of robust predictive models can provide reliable 

diagnostic tools (20). CMR examples are the differentiation between HCM and control 

subjects with gray-level non-uniformity, a run-length matrix feature, using a Boruta machine 

learning algorithm (22), and identification of high and low arrhythmic risk patients using 

local binary patterns and Support Vector Machine (SVM) classifiers (25). Independent from 

the methodology chosen, CMR based TA has proven potential for several clinical 

applications (20–25). We hypothesized that a radiomic approach using TA on quantitative 

CMR images would allow the detection of HCM and HHD specific patterns which reflect on 

myocardial fibrosis and differentiate between both diseases characterized by an increased 

LVWT phenotype.

Methods

Study populations

We included 232 consecutive subjects, who were referred for CMR imaging between July 

2014 and March 2018. Informed consent was obtained from all participants and the imaging 

protocol was approved by the Institutional Review Board. Inclusion criteria for the three 

patient groups (controls, HHD and HCM patients) were based on established diagnostic 

criteria and CMR measurements (2,3,26–28).

HCM (n=108) was diagnosed in one of two ways: normal LV cavity size with wall thickness 

≥15 mm, or a wall thickness above the normal range with high clinical suspicion (i.e. 

electrocardiogram abnormalities, apical variant phenotype, HCM family history + LVWT 

≥13 mm), both not explained by loading conditions (2,3). HCM patients with previous septal 

ablation or myectomy were excluded.

HHD (n=53) was defined as increased LVWT (≥12 mm) (28) associated with the diagnosis 

of arterial hypertension (26) in the absence of severe chronic kidney disease, LV cavity 

dilatation, and cardiac disease that could result in a similar magnitude of hypertrophy (i.e. 

moderate-to-severe valvular heart disease, inherited/acquired cardiomyopathies).

The control group (n=71, Supplemental Methods) demonstrated normal cardiac dimensions/

volumes, normal cardiac function, and absence of late gadolinium enhancement. With the 

exception of premature ventricular beats and mild valvular disease, none of the control 

subjects had a history of cardiac disease including cardiac surgery or interventions.

Exclusion criteria for all subjects were the established diagnosis of amyloidosis, iron-

deposition or Anderson-Fabry disease, evidence of inflammatory processes in the myo- or 

pericardium, history of ST-segment elevation myocardial infarction, and athletic activity 

with sufficient duration, intensity and frequency to explain abnormal LVWT.
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Cardiovascular Magnetic Resonance

CMR was performed using a 1.5T scanner (Achieva, Philips Healthcare, Best, The 

Netherlands) equipped with a 32-element cardiac coil. Native T1 mapping was performed 

using the slice-interleaved T1 mapping (STONE) sequence which enables acquisition of 5 

slices in the short-axis plane during a 90 seconds free breathing scan (29). Five short-axis 

slices of native T1 mapping images were analyzed using custom software (MedIACare, 

Boston, Massachusetts, US). Motion correction was performed using the adaptive 

registration of varying contrast-weighted images for an improved tissue characterization 

approach (30). The Supplemental Methods contains native T1 mapping parameters, and 

clinical CMR details.

A single reader (U.N.) extracted the LV myocardium from T1 maps by manually delineating 

the LV epicardial and endocardial borders. Three month later two readers (U.N. & H.E.) 

repeated segmentation of the test validation dataset for intra- and interobserver 

reproducibility assessment. Both readers were blinded to clinical information and, to omit 

artifacts from the registration process, excluded motion-corrupted regions. Myocardial 

regions of each slice were reshaped to rectangles of standard size (32×192 pixels). The lower 

left corner of the rectangle corresponds to the inferior right ventricular-LV insertion point 

providing comparable orientation and position of all T1 segments. For each study 

participant, 5 rectangular T1 maps at different slice levels are stacked to provide a single 

map with whole heart coverage (Figure 1). Using a PC with Intel Xeon 2.60 GHz CPU and 

32 GB RAM, manual epi- and endocardial border definition as well as computation of TA 

features (0.5 seconds) required in total ~3 minutes per patient.

Feature Extraction and Selection

Image TA represents a statistical assessment technique of pixel signal intensity distributions 

and relationships between neighboring pixels. As such, it not only allows quantification of 

image structure but also provides means for pattern recognition, which can be used to 

enhance diagnostic accuracy in medical imaging. For our purpose, we extracted texture 

features from each stack of normalized rectangular myocardial T1 maps using four sets of 

distinct texture descriptors (Table 2, Supplemental Methods). To develop and validate a 

tissue feature pattern for the differentiation between HHD and HCM, both groups were 

randomly divide ~4:1 (Feature Selection vs Test Validation dataset) (Figure S1). In order to 

reduce the dimensionality of extracted features in the feature selection dataset, we used a 

sequential forward feature selection strategy (Supplemental Methods). To replicate our 

initial result in an additional cohort, a step supporting generalizability, we tested the selected 

features within the remaining 20% of participants. This was accomplished using the images 

of the test validation dataset for feature quantification and SVM classifier trained on the 

feature selection dataset. Additionally, a subset of patients (equal LVWT subgroup) was 

matched for potential cofounding factors to examine the test’s diagnostic value in patients 

with similar morphology. Therefore HHD patients with LVWT ≥15 mm (n=10) and HCM 

patients with LVWT <15 mm (n=13) were matched exactly by gender, presence of LV 

hypertrophy and maximal LVWT, whilst grouping patients with similar age, LV mass index, 

global and septal T1 (Table S1). To improve comprehension of disease specific tissue 

characteristic identified by the selected features, controls subjects were compared with HHD 
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and HCM patients of the feature selection dataset. The feature extraction and selection 

processes were performed with Matlab (The MathWorks Inc., Natick, Massachusetts, US).

Statistics

Data were analyzed using SPSS (version 18.0; International Business Machines Corp., 

Armonk, New York, USA). Normality of data distribution was determined using the 

Kolmogorov-Smirnov test and visual inspection of Q-Q plots. The Chi-squared test, two-

sample t-test or the Mann-Whitney U-test was conducted as appropriate. Areas under the 

receiver operating characteristic curves were compared using the DeLong method (31). To 

provide comparability between our radiomics and global native T1 analyses, test accuracy, 

sensitivity, specificity, and c-statistics were calculated using probabilities derived from linear 

SVM classifier. To represent the selected features, the Hx-index was calculated based on a 

linear regression model (Hx=β0+β1x1+ … +β6x6) using all selected features as independent 

and the diagnosis HHD or HCM as binary dependent variables. The intraclass correlation 

coefficient for a 2-way mixed-effects model with absolute agreement was calculated to 

assess the intra- and interobserver reproducibility of selected features. Based on intraclass 

correlations coefficients, agreement was defined as fair (0.4–0.59), good (0.6–0.74), and 

excellent (≥0.75) (32).

Results

Subject characteristics are presented in Table 1. The HCM cohort consisted of patients with 

asymmetric septal hypertrophy (n=61, 57%), concentric hypertrophy (n=27, 25%), and 

apical variant (n=20, 19%) (6).

T1 mapping

Global native T1 was significantly higher in HCM compared to HHD patients (P<0.001, 

Table 1). Exams of HHD and HCM patients with LV hypertrophy had increased global 

native T1 (HHD, 1086±31 vs. 1060±20 ms, P=0.002; HCM, 1104±39 vs. 1080±26 ms, 

P=0.001). Septal native T1 was higher than global native T1 (P<0.001 for all). In HCM but 

not in HHD patients, global native T1 and LV mass index (R=0.30, P=0.001) or maximal 

LVWT (R=0.30, P=0.002) were mildly correlated. This finding persisted for septal native T1 

(LV mass index: R=0.28, P=0.003; maximal LVWT: R=0.25, P=0.10).

Texture Feature selection

During the feature selection process six of the 152 original features were selected for their, 

in combination, superior differentiation capacity between HHD and HCM. The resulting 

features were: 2 run-length matrix features (run-length non-uniformity [135°] [RLN(135°)], 

short run high gray-level emphasis [135°] [SRHGE(135°)]) and 4 local binary pattern (LBP) 

histogram indices (15, 20, 25, 28) (33). These features contributed to the TA pattern in the 

following order (highest to lowest): LBP(28), RLN(135°), LBP(15), LBP(25), 

SRHGE(135°), LBP(20). The distribution of these six features in each study cohort is 

described in Table 3. With the exception of LBP(20) (P≥0.05 for all), selected LBPs (ρ: 

0.731 to 0.788, P<0.001 for all) and run length matrix features (ρ=0.904, P<0.001) were 

well correlated within their category, but only moderately between categories (ρ: −0.212 to 
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−0.328, when P<0.05) (Figure 2). The variability of individual texture feature correlations 

within and between categories for all 152 features is illustrated in Figure S2.

Test qualities of selected texture features

The six selected texture features provided in combination a diagnostic accuracy of 86.2% 

(c=0.82, CI 0.77–0.90) in the feature selection dataset and of 80.0% (c=0.89, CI 0.77–1.0) in 

the test validation dataset (Figure S1). The combination of the two most contributing feature 

LBP(28) and RLN(135°) provided a diagnostic accuracy of 80.0% (c=0.77, CI 0.71–0.86) 

for the feature selection dataset. The accuracy in the equal LVWT subgroup was 73.9% 

(c=0.70, CI 0.59–0.88). Test sensitivities and specificities are summarized in Table 4. 

Overall accuracies of global native T1 and septal T1 for differentiation between HCM and 

HHD were only 64.0% (c=0.55, CI 0.45–0.64) and 66.4% (c=0.45, CI 0.35–0.56), 

respectively. The discriminatory power of the selected features over global native T1 is 

illustrated in Figure 3, where the Hx-index (HCM vs. HHD, 0.58±1.68 vs. −2.00±1.75, 

P<0.001), and global native T1 (HCM vs. HHD, 1091±36 vs. 1067±26 ms, P<0.001) are 

plotted for HHD and HCM patients in the feature selection dataset.

For overall comparison of HCM with control subjects, the test accuracy of the selected 

features was 81.0% (c=0.85, CI 0.79–0.91), whereas their capacity to differentiate between 

HHD and control subjects was only minimal (accuracy 66.1%; c=0.67, CI 0.58–0.78).

The intraobserver reproducibility was good to excellent for all selected features (Table 5). 

The interobserver reproducibility was good to excellent for five features, but only fair for 

LBP(20) (Table 5). With the exception of LBP(20), Bland-Altman analyses showed narrow 

limits of agreement for the selected features on intra- and interobserver level (Figure S3).

Discussion

Our proof-of-concept study demonstrates that TA is feasible for native T1 images and 

represents the first study applying TA/radiomics on T1 mapping to a common clinical 

diagnostic challenge, the phenotype differentiation between HHD and HCM. The selected 

image pre-processing and feature extraction strategy provides robust tissue feature 

quantification as illustrated by the good to excellent intra- and interobserver reproducibility 

and the narrow limits of agreements by Bland-Altman analyses for the majority of selected 

features. One feature, LBP(20), was more sensitive to myocardial segmentation. However 

the five more robust feature had in combination an accuracy of 85.5% for differentiation 

between HHD and HCM, which emphasizes the minimal contribution of LBP(20) to the 

test’s discriminatory power.

Whilst global native T1 is able to differentiate between HHD and HCM (9), the overlap of 

measured values is extensive (Figure 3) leading to an accuracy of 64% only. Compared to 

results reported by Hinojar et al. (9) test accuracies were lower in our cohort. This 

observation is probably contributed to three differences: multiple instead of single slice 

coverage, use of the STONE instead of the MOLLI T1 mapping sequences (19), phenotype 

severity and heterogeneity (see Supplemental Material). The selected radiomics approach 

improves the differentiation capacity of quantitative CMR images significantly, as 
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documented by the large difference between selected feature’s and native T1’s area under the 

curve (P<0.001). Since global native T1 belongs to the histogram features (Table 2), our 

observation suggests that the selected features provide incremental diagnostic information 

beyond native T1 values.

A major challenge of TA is the large quantity of available texture features. To reduce the 

effect of overfitting, we selected a variety of well-established texture features (20–23,25,34). 

The use of quantitative mapping data in opposite to qualitative CMR improves 

standardization as well as reflection on physical tissue properties (35). We identified six 

features which in combination accomplished the highest accuracy for differentiation 

between HHD and HCM. The accuracy of the selected features decreased in the test 

validation dataset, a frequent observation in cardiac ‘omics’ research (36). Also, the ability 

of the selected features to differentiate between healthy controls and HCM but only to small 

extent between healthy controls and HHD patients implies the detection of HCM specific 

myocardial changes (Table 3).

The two most contributing TA features were LBP(28) and RLN(135°). The former 

represents a rotation invariant image descriptor computed from discrete Fourier transforms 

of LBP histograms, which maintains spatial orientation information (33). RLN(135°) 

measures the diversity of pixel intensities on a line with a 135° angle towards the horizontal. 

Higher values therefore reflect on increased pixel level inhomogeneity in the myocardium of 

HCM patients. The combination of LBP(28) and RLN(135°) or all six selected texture 

features leads to an increment in test accuracy, suggesting that each feature contains 

different information despite intra- and interclass correlations. Radiomic analysis is 

prompted by the concept that biomedical images contain information reflecting on disease 

specific changes accessible with quantitative image analyses (20). Our results proved the 

concepts validity for the differentiation between HHD and HCM. Our findings probably 

reflect on disease specific differences in fibrosis patterns, particular as native T1 is a 

surrogate marker of fibrosis (19) and as the pathohistological substrate of HCM is different 

from HHD (11–14). As shown in the equal LVWT subgroup, these findings appeared 

independent of a number of co-founding factors, including global/septal native T1. As CMR 

is standard of care for clinical assessment of HCM (2,3), supplemental radiomics analyses 

could be easily implemented in routine practice. Multidimensional hyperplanes defined by 

SVM during a feature selection process could be used to diagnose individual patients. 

Alternatively, cut-off values for a one-dimensional index comparable to our Hx-index (Table 

S4) could be used. However, these cut-offs should be validated in an independent cohort, as 

proof of overall robustness requires external validation.

Limitation

Our study has several limitations. Our definition of HHD relied on presence of increased 

wall thickness (28) instead of LV hypertrophy (1). This approach was chosen to adjust for 

the diagnostic criteria of HCM, LVWT ≥15 mm rather than LV hypertrophy (2). Second the 

influence of sarcomeric and non-sarcomeric HCM (37), different feature selection methods 

(21), T1 sequences (19), field strength, and image pre-processing (20–23,25) on TA features 

needs to be investigated. Third, we included rotation invariant LBPs and direction-dependent 
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features to capture two dimensional spatial orientation of texture features, however 

integration of three-dimensional features might provide additional diagnostic information in 

future studies. Finally, we performed our radiomics TA in a small single center cohort using 

one 1.5T CMR scanner with internal validation only, whilst larger multicenter, multivendor, 

multifield studies might provide better generalizability of results including overall proof of 

robustness in the context of external validation.

Conclusion

TA is feasible for native myocardial T1 imaging and helps to discriminate between HHD and 

HCM populations. Additionally, the identified six tissue feature pattern provides incremental 

value over global native T1 mapping. For verification multicenter multivendor studies in 

larger cohorts are warranted before implementing radiomics analyses of quantitative native 

T1 imaging in clinical practice.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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SVM Support vector machine
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Perspectives

Competences in Medical Knowledge:

• Radiomic analysis of quantitative cardiovascular magnetic resonance images 

enables discrimination between hypertensive heart disease and hypertrophic 

cardiomyopathy.

• Texture-based features derived from native T1 mapping improve the disease-

specific classification accuracy of averaged T1 values.

Translational Outlook:

• Further verification multicenter multivendor studies in larger cohorts are 

warranted before implementing radiomics analyses of quantitative native T1 

imaging in clinical practice.
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Figure 1: Hypertrophic Cardiomyopathy (HCM) vs Hypertensive Heart Disease (HHD) 
comparison of stacked myocardial T1 maps.
Myocardial T1 maps of rectangular shape for 5 slices of the heart from base to apex, stacked 

on each other (epicardial on top of endocardial region). HCM is characterized by a patchy 

pattern predominantly in the septal region, whilst HHD presents with a rather smooth 

homogeneous profile in most parts of the myocardium. Endo, endocardial orientation; Epi, 

epicardial orientation; RV, right ventricular.
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Figure 2. Correlogram to illustrate the relationship among the selected texture features.
Smaller/lighter circles indicate lower correlation compared to larger/darker circles. Red 

circles represent negative correlations whilst blue circles represent positive correlations.
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Figure 3. Global myocardial native T1 values and the Hx-index measured over 5 slices in HHD 
(green) and HCM (blue) patients of the feature selection dataset.
The Hx-index was calculated by a linear combination of the six selected texture analysis 

features using regression analyses. Depicted dots represent individual patients and the 

corresponding mean and standard deviation is represented adjacently. The Hx-index showed 

improved discrimination (i.e. smaller overlap) between HHD and HCM in comparison to 

global native T1.
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Table 1

Patient Characteristics, Global Morphological, and Functional Measures based on Cardiovascular Magnetic 

Resonance.

Total (n=232) Controls (n=71) HHD (n=53) HCM (n=108)

Age, years 55±14 53±14 60±10 55±14*

Sex, male n (%) 166 (72) 37 (51) 44 (81) 85 (75)

Body surface area, m2 2.0±0.2
1.9±0.2 

ǁ† 2.1±0.2 2.0±0.2*

Systolic Blood Pressure, mmHg 130±17
125±16 

§† 140±16
128±16 

†

Diastolic Blood Pressure, mmHg 78±13
75±10 

§* 85±12
77±14 

†

Heart Rate, bpm 67±10 69±11 67±11 67±9

New York Heart Association, stage

 Stage II, n (%) 22 (9) 0 (0) 9 (17) 13 (12)

 Stage III, n (%) 3 (1) 0 (0) 0 (0) 3 (3)

Caucasian, n (%) 163 (70) 60 (82) 36 (67) 67 (62)

Hypertension, n (%) 134 (58)
26 (36)

† 54 (100)
54 (50)

†

Antihypertensive treatment, n (%) 136 (59)
21 (29)

†§ 47 (89)
68 (63)

†

 ACEI/ARB, n (%) 76 (32)
14 (20)

† 31 (58)
31 (29)

†

 Beta-Blocker, n (%) 75 (32)
7 (10)

†§ 28 (53)
40 (37)

‡

 Calcium Channel Blocker, n (%) 56 (24)
10 (14)

† 25 (47)
21 (19)

†

 Diuretics, n (%) 40 (17) 8 (11)* 17 (32) 15 (14)*

Dyslipidemia, n (%) 132 (57)
32 (44)

‡ 38 (72)
62 (57)

‡

Diabetes mellitus, n (%) 31 (13)
3 (4)*# 13 (24) 15 (14)*

Serum Creatinine, mg/dl 1.0±0.3
0.8±0.2 

† 1.1±0.3
1.0±0.2 

‡

Estimated Glomerular Filtration 81±22 92±23* 73±19
80±20 

‡

Rate (Modification of Diet in Renal Disease equation), %

Transthoracic Echocardiography (n=163)

Diastolic dysfunction, grade

 Grade I (inverted E/A ratio), n (%) 54 (23) 8 (11) 20 (38) 26 (24)

 Grade II (pseudonormalization), n (%) 23 (10) 0 (0) 3 (6)
20 (19)

†

E/E’ 10±4
7±2 

§† 10±3 11±4

Deceleration time (ms) 208±52 208±53 211±47 206±55

LV outflow tract-gradient, n (%) 37 (16) 0 (0) 6 (11) 31 (29)

Systolic Anterior Motion, n (%) 34 (15) 0 (0) 3 (6) 31 (29)*

Cardiovascular Magnetic Resonance

Left Atrial Diameter, mm 38±8
33±7 

§† 40±7 40±8

LV end-diastolic volume, mL 147±34
140±30 

‡ 155±41 146±32
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Total (n=232) Controls (n=71) HHD (n=53) HCM (n=108)

LV ejection fraction % 64±7
62±5 

# 65±6 66±7

LV mass index, mg/m2 64±25
45±11 

§† 64±17 92±51*

Maximal LVWT, mm 14±5
8±2 

†§ 13±2
18±4 

†

LVWT ≥ 15 mm, n (%) 107 (46) 0 (0) 10 (19)
97 (85) 

†

Left ventricular hypertrophy, n (%) 73 (31) 0 (0) 10 (19) 63 (55)*

Late Gadolinium Enhancement, n (%) 59 (25) 0 (0) 3 (6)
56 (52)

†

T1 mapping

 Global native T1 (ms) 1078±33
1069±29 

§ 1066±25
1091±35 

†

 Septal native T1 (ms) 1094±39
1078±33 

§ 1089±32 1106±42*

ACEI, angiotensin-converting enzyme inhibitor; ARB, angiotensin 2 receptor blocker; HCM, hypertrophic cardiomyopathy; HHD, hypertensive 
heart disease; LV, left ventricular; LVWT, left ventricular wall thickness

†
P<0.001 when compared with HHD subgroup

*
P<0.01 when compared with HHD subgroup

‡
P<0.05 when compared with HHD subgroup

§
P<0.001 when compared with HCM subgroup

ǁ
P<0.01 when compared with HCM subgroup

#
P<0.05 when compared with HCM subgroup
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Table 2

Overview of all computed texture categories with corresponding features

Texture Category Texture Feature (no)

Histogram Mean, variance, skewness, kurtosis, 5th to 10th central moments (n=10)

Run-length matrix (computed for four angles [vertical, 
horizontal, 45°, and 135°]) (38)

Short & long run emphasis, gray-level non-uniformity, run-length non-
uniformity, run percentage, low & high gray-level run emphasis, short run low & 
high gray-level emphasis, long run low & high level emphasis (n=44)

Co-occurrence matrix (computed for four directions 
[vertical, horizontal, 45°, and 135°] with 10 displacements 
[from 1 pixel to 10 pixels], where all directions were 
averaged) (39)

Correlation, energy, contrast, homogeneity of T1 mapping values, entropy, sum of 
squares (n=60)

Local binary patterns (computed based on binarisation 
using center pixel value as threshold) (33)

Histogram representation of these patterns in a 3x3 pixel neighborhood was used 
to create rotationally-invariant Fourier descriptors (n=38)

A detailed description of listed run-length and co-occurrence matrix features is provided in Table S2 and S3.
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Table 3

Differences of selected texture features between controls, HHD, and HCM.

Controls (n=71) HHD (n=44) HCM (n=87)

LBP(15), 10−2 2.9±0.6 2.9±0.3 2.6±0.4*†

LBP(20), 10−2 1.3 [0.7;2.3] 1.1 [0.7;1.9] 1.1 [0.3;2.2]

LBP(25), 10−2 3.4±0.4 3.2±0.3 3.0±0.4*

LBP(28), 10−2 1.1±0.3 1.0±0.3 0.7±0.3*†

RLN(135°), 104 1.8±0.3 1.8±0.3 2.1±0.5*†

SRHGE(135°), 104 2.5 [2.0;3.0] 2.4 [2.1;2.7] 2.8 [2.4;3.3]

LBP, local binary pattern; RLN, run-length non-uniformity; SRHGE, short run high gray-level emphasis.

*
P<0.00033 when compared with controls

†
P<0.00033 when compared with HHD

P-values were Bonferroni corrected (0.05/152) to account for type I error rates.
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Table 4

Diagnostic capacity of the selected tissue features for HCM detection

Patient Groups Accuracy (%) Sensitivity (%) Specificity (%) AUC (95% CI)

Feature selection (n=131) 86.2 90.8 77.2 0.82 (0.77–0.90)

Test Validation (n=30) 80.0 94.0 61.5 0.89 (0.77–1.00)

Equal LVWT subgroup (n=46) 73.9 73.9 73.9 0.70 (0.59–0.88)
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Table 5

Intraclass correlation coefficients for the intra- and interobserver reproducibility of the selected texture 

features (highest to lowest).

LBP(28) RLN(135°) LBP(15) LBP(25) SRHGE(135°) LBP(20)

Intraobserver 0.93 0.98 0.87 0.88 0.99 0.64

Interobserver 0.86 0.96 0.71 0.88 0.96 0.53

LBP, local binary pattern; RLN, run-length non-uniformity; SRHGE, short run high gray-level emphasis.
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