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Abstract

Recently developed single-cell profiling technologies hold promise to provide new insights 

including analysis of population heterogeneity and linkage of antigen receptors with gene 

expression. These technologies produce complex data sets that require knowledge of 

bioinformatics for appropriate analysis. In this minireview, we discuss several single-cell immune 

profiling technologies for gene and protein expression, including cytometry by time-of-flight, 

RNA sequencing, and antigen receptor sequencing, as well as key considerations for analysis that 

apply to each. Because of the critical importance of data analysis for high parameter single cell 

analysis, we discuss essential factors in analysis of these data, including quality control, 

quantification, examples of methods for high dimensional analysis, immune repertoire analysis, 

and preparation of analysis pipelines. We provide examples of, and suggestions for, application of 

these innovative methods to transplantation research.
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1 | INTRODUCTION

Cellular and molecular assays have addressed many important questions in transplantation. 

In particular, protective and pathogenic immunity have been assessed through measurements 

of immune cell differentiation, antigen specificity, and cellular function. The majority of 

these analyses have utilized techniques that evaluate bulk cell populations. For example, 

bulk T cell receptor (TCR) sequencing has demonstrated deletion of alloreactive T cell 
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clones in tolerant transplant recipients.1 Bulk RNA sequencing of kidney allograft biopsies 

has been used to count single nucleotide variants from donor and recipient and compute a 

measure of cellular trafficking into the graft.2 These and other bulk analyses have 

contributed substantially to the state of knowledge in transplantation research.

While bulk techniques have provided substantial insight into fundamental processes, there 

remain significant areas of transplantation related research that cannot be addressed with 

these approaches. First, bulk analyses do not address phenotypic heterogeneity, which can be 

crucial to identifying a cellular subpopulation that contributes to either protection or disease.
3 Second, they do not provide a precise definition of individual antigen receptor clones.4 

Third, they do not link specific antigen receptors with defined functions. Fourth, in a mixed 

population of donor and recipient cells, they do not differentiate donor versus recipient gene 

expression.

Recent advances in single-cell profiling technologies present novel opportunities to address 

these limitations, and to study transplant in unprecedented detail (Figure 1A,B). These 

technologies include cytometry by time-of-flight (CyTOF), RNA sequencing, antigen 

receptor sequencing, and novel tissue imaging approaches. Each has similarities to 

preexisting solutions that utilize either a lower parameter number (cytometry, imaging), or 

bulk assay (RNA and antigen receptor sequencing). Due to the expense and complexity of 

single-cell assays, it is often advisable to begin with a bulk approach, identify hypotheses 

that require single-cell approaches, and then proceed with the appropriate single-cell assay 

(Figure 1A). An analysis workflow for single-cell data will need to be developed in order to 

take advantage of the richness of data (Figure 1B). Collaborations of bench and 

bioinformatics scientists are often required, given the complexities inherent to both sides of 

the process. We present information on available techniques, tools to analyze and interpret 

the data, and how these methods can move the transplant research field forward. This 

resource summarizes key considerations and provides references to more comprehensive 

reviews throughout the text and tables.

2 | SINGLE-CELL GENE AND PROTEIN EXPRESSION METHODOLOGY

2.1 | Cytometry—flow and CyTOF

Flow cytometry and fluorescence-activated cell sorting (FACS), which determine multiple 

but limited parameters per cell, gave birth to single-cell molecular profiling. FACS has been 

used to analyze a variety of cell phenotypes (Table 1), including cell isolation for a variety of 

down-stream sequencing applications, including single-cell approaches described below. 

Cells in suspension are stained with fluorophore-conjugated antibodies and analyzed for 

emission of fluorescent light. Instruments are available that measure as many as 50 

parameters in one sample,5 but due to the limitations of commonly available instrumentation 

and reagents, and the complexity of controlling for spectral overlap, it is generally more 

practical to complete experiments using at most 18 to 20 parameters per sample.6

CyTOF overcomes this limitation through detection of heavy metal isotopes conjugated to 

antibodies via time of flight mass spectrometry. The use of heavy metals eliminates spectral 

overlap, allowing for measurement of 34+ parameters in one sample.7 CyTOF measures the 
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same parameters and cellular functions as flow cytometry, and the higher parameter number 

increases the depth of analysis, particularly relevant for experiments with limited and 

valuable patient samples (Table 1). Incorporation of antibodies to total histones and histone 

modifications allows indepth analysis of epigenetic markers alongside immune phenotyping, 

in a technique termed Epigenetic landscape profiling using cytometry by Time-Of-Flight 

(EpiTOF).8 However, the dynamic range of expression of some parameters is greater with 

fluorescent labels than metal labels, so CyTOF may not be appropriate for all stains. 

Drawbacks of CyTOF also include lower flow rates and cell numbers compared with flow 

cytometry, as well as the need for reagents free from heavy metal contaminants (Table 1). 

Additionally, because CyTOF atomizes cells, this approach cannot isolate viable cells, so 

FACS remains the gold standard for isolation of purified cells.

2.2 | RNA sequencing

Single-cell RNAseq (scRNAseq) approaches fall into two broad categories based on the 

method of isolation: plate-based and microfluidic (Table 1). Several considerations affect 

data quality regardless of the specific methodology. First, cell viability is critical as dead 

cells release RNA, decreasing the quality of the RNA and complicating analysis.9 Second, 

cDNA amplification is required to obtain sufficient sample for sequencing from single cells, 

which can introduce bias towards amplification of specific sizes of cDNA transcripts, further 

complicating quantification.4 Many protocols introduce unique molecular identifiers (UMI) 

during reverse transcription (RT) such that the expression level of a transcript can be 

represented by the number of distinct UMI for that gene.4

Both plate-based and microfluidic sequencing approaches require cells in suspension. Cell 

isolation may be followed immediately by library preparation without purification, or by 

purification through magnetic bead enrichment, FACS sorting, and other methods. Plate-

based approaches typically involve a sort of single cells into individual wells of 96- or 384-

well plates. Some platforms allow index sorting, a function that records data on fluorescence 

intensity of each parameter for each sorted cell to incorporate into final analysis.10 In 

contrast, samples prepared for microfluidic PCR can be isolated in a bulk sort. After cells 

are put in a single-cell suspension, an emulsion is created to isolate individual cells for RT, 

amplification, and sequencing.4 The primary advantages of the emulsion approach are 

significantly higher cell numbers and reduced labor in library preparation.5

These methods are not restricted to cells in suspension but can also be used on tissue 

specimens including archived biopsy tissues (Table 1). Cells or nuclei can be isolated from 

fresh or archived biopsy tissue.11 Many scRNAseq protocols can be used on biopsy samples; 

the NanoString nCounter system is one such approach compatible with formalin-fixed 

paraffin embedded biopsy specimens and does not require amplification (Table 1).12 An 

advantage of scRNAseq from tissue is the ability to analyze disease states of both immune 

cells and adjacent endothelial and epithelial cells in the tissue.13

While microfluidic methods have significant advantages in time and labor savings as well as 

typically higher throughput, plate-based approaches present solutions not always possible 

with microfluidic approaches. Specifically, preparation of emulsions requires specialized 

microfluidic equipment for loading single cells into droplets through microfluidics. Second, 
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until recently, these approaches have traditionally not preserved protein expression data. 

However, recently developed protocols use oligonucleotide-conjugated surface staining 

antibodies such that the RT includes DNA barcodes identifying the antibodies.14 The 

oligonucleotide sequence consists of polyA for RT, a barcode, and sequence for 

amplification with specific primers.

2.3 | Barcoding

Many single-cell protocols incorporate the use of barcodes for sample identification and 

tracking. Barcodes allow for sample pooling, which is advantageous both for consistent 

sample preparation and for decreased costs. In FACS or CyTOF experiments, barcodes can 

be created through combinations of different fluorophores and metals conjugated to the same 

antibody.15 In sequencing experiments, barcodes of 4–8 bp sequences can be incorporated 

into primers.4

2.4 | Antigen receptor repertoire analysis

TCR and B cell receptor (BCR) sequences provide a wealth of information on the nature of 

an immune response, including which V and J subunits are involved, the degree to which 

there is expansion of antigen-specific clones, and whether the repertoire changes over time.
16 BCR sequencing also measures somatic hypermutation. Single-cell approaches measure 

paired TCR or BCR. Bulk analyses quantitatively measure clonality of the repertoire, but 

cannot identify paired receptor chains, detect dual productive TCRα rearrangements in one 

cell, or quantitate somatic hypermutation across both BCR chains. Some single-cell 

approaches can be coupled to gene expression data to link information on differentiation 

state and function of cells with a known antigen receptor.3,17

Antigen receptor sequencing utilizes similar approaches to scRNAseq protocols, with some 

features specific to this application (Table 1). There are two general approaches to antigen 

receptor sequencing: targeted analysis, and extraction of data from scRNAseq transcriptome 

analysis.16 In targeted protocols, the antigen receptor gene must be amplified to ensure 

sequence detection in a high proportion of cells. Linkage of TCR or BCR to gene expression 

requires either splitting the sample for antigen receptor and transcriptome sequencing 

separately, or data extraction from transcriptome sequencing. Extracting TCR or BCR from 

scRNAseq data allows quantification, but requires a more complex computational pipeline. 

Several groups have produced algorithms for identification of TCR or BCR from scRNAseq 

datasets.3 Recent studies coupling single-cell antigen receptor sequencing and computational 

analysis have been used to predict antigen specificity from shared motifs with TCRs of 

known specificity.3

While TCR clonality as well as V and J regions can be identified from the complementarity 

determining region (CDR)3 region sequences, somatic hypermutation requires the entire 

transcript to be sequenced adding additional complexity to analysis of BCR sequence. This 

can be accomplished through the use of 5’- Rapid Amplification of cDNA Ends (RACE), in 

which the entire cDNA is amplified.16 In addition, identification of BCR gene segments and 

rate of somatic hypermutation depends on alignment to a germline database. Thus, there will 

be some BCRs for which more than one V region may be a statistically valid call.18
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2.5 | Tissue imaging

New imaging approaches are also available for single-cell analysis of biopsy specimens 

(Table 1). Multiplexed immunohistochemistry (mIHC) involves staining one biopsy 

specimen with multiple antibodies, with either chemical or fluorescent detection.19,20 CO-

Detection by indexing (CODEX) and cyclic immunofluorescence (CycIF) utilize staining 

with oligonucleotide-conjugated antibodies and an iterative process of sequential primer 

extension with fluorescently labeled nucleotides in order to image expression of two markers 

at a time, for as many iterations as necessary.21,22 The result is multiplexed image data with 

gene expression for many more genes than previously possible. A second approach is 

multiplexed ion beam imaging (MIBI) which uses metal-conjugated antibodies and 

secondary ion mass spectroscopy to image tissue sections. Due to the use of metals, MIBI 

can be used with up to 100 antibodies in one stain.23 Other advances in imaging have 

increased the number of fluorescent parameters analyzed through improvements in antibody 

stripping.19

2.6 | Additional single cell techniques

In addition to the above, other techniques have been adapted to single-cell analysis. These 

approaches include protein level analysis by western blot,24 cytokine capture with barcoded 

antibodies,25 metabolite profiling through mass spectrometry,26 and Assay for Transposase-

Accessible Chromatin using sequencing.27 Imaging flow cytometry is an innovation in 

microscopy that links darkfield images of cells with parameters typically identified by 

FACS, providing a single-cell approach to study cellular signaling and other processes 

affected by subcellular localization of proteins.28

3 | ANALYSIS OF SINGLE CELL DATA

Analysis of single-cell data consists of several steps that are common with bulk data 

analysis: quality control and preprocessing followed by quantification, dimensionality 

reduction, and visualization. Early errors in data preprocessing and quality checks can 

introduce subtle errors that propagate throughout the rest of the analysis, making it 

especially important to create a robust preprocessing and quality control procedure. Single-

cell analysis has many of its own unique issues as well. For example, in scRNAseq, one 

must contend with dropout (when expression values are zero due to technical issues rather 

than true biology).

3.1 | Quality control and data processing

Despite best efforts, a systematic shift in measurements, called a batch effect, is virtually 

unavoidable when data are collected on multiple days and/or machines. Batch effects can 

lead to erroneous conclusions due to confounding effects. To correct for this, a number of 

techniques have been developed. For data types with a large number of parameters (eg 

transcriptomics), the ComBat29 method can be used. ComBat assumes that data come from 

normal distribution. In cases where data do not meet this assumption, manifold alignment 

attempts to find a transformation that aligns distributions across batches.30 Normalization 

and transformation are also integral components of a preprocessing pipeline. Downstream 

analyses may make assumptions about the distribution and scale of the data, which 
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necessitates transformation. For example, in RNAseq, expression data are bounded at zero. 

Most methods assume these data are log-transformed before analysis. Therefore, RNAseq 

values are log transformed after adding a small constant to prevent taking the logarithm of 

zero.

3.2 | Quantification

Different single-cell technologies require different quantification approaches. Yet a common 

key consideration for quantification across all technologies is appropriately controlling for 

experimental biases. For instance, in case of scRNAseq, samples with UMIs added during 

RT can be quantified by counting all instances of a gene expressed with the same UMI as 

one RNA molecule. For scRNAseq without UMI, quantification is intrinsically imprecise, 

and should use a transformation that reflects the uncertainty of the measurements.

In contrast, quantification of antigen receptor data requires the number of cells with each 

receptor to identify clonally expanded cells. Accuracy of antigen receptor data depends on 

the sampling which varies widely. For plate-based approaches with 100–200 cells per 

sample, measurement of clonal expansion is highly unlikely to be representative for clones 

that constitute less than 10% of the population due to the high probability of sampling bias. 

However, even a sample of 50 000 cells from human blood represents 0.0005% of the total 

lymphocytes in that individual’s blood, which represent ~2% of the lymphocytes in the 

individual.31 Hence, single-cell data always represent an extremely small sample of the 

lymphocyte population.

3.3 | Dimensionality reduction

The high dimensionality of single-cell technologies presents substantial challenges due to 

increased sparsity, generally referred to as the “curse of dimensionality.” For instance, the 

spread of distances between points compresses as dimensionality increases which can wreak 

havoc with distance-based algorithms. This can impede automated subset identification.

A variety of dimensionality reduction techniques have been developed to express the 

information from these high dimensional samples into substantially smaller number of 

dimensions (usually 2–3) such that relationships between samples are maintained, but are 

more interpretable. One of the most commonly used techniques is principal components 

analysis (PCA) that maps data onto the lower dimensional space such that a large amount of 

variance in data are explained by a very small number of dimensions, called principal 

components (PCs), which are readily interpretable as linear combinations of the original 

dimensions. T-Distributed Stochastic Neighbor Embedding (t-SNE)32 is conceptually 

similar, but differs from PCA in that the resulting lower dimensional space is not a linear 

projection and can represent complex nonlinear forms in high dimensional space. Recently 

described Uniform Manifold Approximation and Projection (UMAP)33,34 is also a nonlinear 

dimensionality reduction technique, leading to similar results as t-SNE. However, UMAP is 

significantly faster than t-SNE which allows for investigation of an order of magnitude 

greater data simultaneously. While these techniques are often used with CyTOF and 

scRNASeq data, it is important to note that they can be used to analyze almost any type of 

high dimensional data.

Higdon et al. Page 6

Am J Transplant. Author manuscript; available in PMC 2020 February 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Several additional dimensionality reduction techniques represent high dimensional data as 

network graphs including SPADE, CITRUS, and SCAFFOLD.35–37 Nodes representing 

populations in high dimensional space are connected by edges. Due to the nature of the 

graph structure, rotation of nodes without breaking their connections does not represent a 

change in the overall structure (one can visualize this by thinking of a mobile for a crib: 

rotating branches of the mobile does not create a new mobile). Once represented as a 

network graph, several network analysis techniques can be used to discover a multitude of 

different properties of the high dimensional dataset. For example, critical nodes can be 

identified by examining their connections to other nodes and how many paths through the 

network traverse those nodes.38

3.4 | Clustering

Unlike bulk methods which compress diverse sub-populations of cells into a single value, 

single-cell data can be used to examine the natural heterogeneity within a population of 

cells. Clustering algorithms attempt to find these subsets of cells within or across samples. 

Typically, this is unsupervised, meaning the researcher allows the algorithm to find clusters 

in the data without any outside knowledge (such as the disease status, etc.). A myriad of 

techniques exists for clustering (k-means, hierarchical clustering, DBSCAN39). Some 

require specification of the number of clusters beforehand whereas others can estimate this 

from the data. Moreover, as clustering is typically performed in high dimensional space, 

these clusters might not be apparent from examination of the data in two or three dimensions 

at a time. In single-cell data, clustering can be used to identify novel populations of cells that 

are defined by some phenotypic characteristic.

3.5 | Trajectory analysis

High dimensional single-cell technologies present unique opportunities to investigate 

developmental or spatial relationships such as stem cell differentiation. These techniques 

aim to determine a trajectory different cells follow in high dimensional space (Table 2) that 

assume each cell is a snapshot along various trajectories. Virtually all techniques first build a 

network using the single-cell data, followed by finding paths from a certain cell type to 

another along the network. These trajectories allow inferring developmental programs, 

bifurcation points, and key intermediate stages that might not have been found by looking at 

the data from a static perspective. We refer to a comprehensive review by Saelens et al who 

compared 29 of these methods on various datasets.40

3.6 | Single cell repertoire analysis

Advances in sequencing technology also allow examination of the sequences of the 

complementarity determining region 3 (CDR3) from TCRs and BCRs at the single-cell 

level. Combining this data with single-cell phenotypic data can be extremely powerful. Due 

to the inherently discrete nature of sequence data, a slightly different set of techniques must 

be used (as compared to gene expression data). CDR3 sequences can be compared through a 

variety of means, the most common of which is Levenshtein distance. This metric represents 

the number of changes (either amino acids or nucleotides) needed to get from one sequence 

to another. These distances can then be used to cluster CDR3s or to create CDR3 networks. 

A common question asked is whether there is an enrichment of a particular motif amongst 
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CDR3s. Algorithms for TCRs such as GLIPH and TCRdist can identify motifs of interest 

which may confer specificity.3 Identification of groups of cells with similar TCR or BCR is 

typically followed by analysis of the clonal diversity of each group. For example, 1 might 

find that all of the activated T cells are oligoclonal. Various metrics such as the Gini 

coefficient, Hill diversity, and Chao1 have been used to compare clonal diversity under 

various biological conditions in TCR data. While these methods are generally applicable 

across TCRs and BCRs, BCRs can also be studied in a phylogenetic context. Due to affinity 

maturation via somatic hypermutation, a single ancestral B cell clone can diversify, forming 

a clonal family comprising several clones which recognize a particular antigen. Family trees 

of BCRs can be constructed using methods from evolutionary biology. We refer readers to a 

review by Miho et al41 for more details about single-cell repertoire analysis.

3.7 | Analytic pipelines

A number of analytic pipelines are available that perform the steps described above in 

logical order with minimal input, and are accessible to those with minimal bioinformatics 

background. These include CytoBank, FlowJo, SeqGeq, and the 10X Genomics Loupe 

Browser. For those with bioinformatics experience, published code is available for some 

analyses in R and Python, including tools available through the online resource GitHub. 

Resources to learn how to use these tools include R tutorials, help pages, and courses in R 

and data analysis available through Coursera.

3.8 | Considerations for interpretation of high dimensional analysis

It is essential to keep in mind the limitations and assumptions that go into each of these 

algorithms as this is key to interpretation of their results. Misinterpretation can lead to 

erroneous or misleading conclusions. For example, one must be careful comparing the 

distances between clusters in t-SNE.42 t-SNE requires the user to specify a value for 

perplexity, which approximately corresponds to the number of nearest neighbors.32 Different 

perplexity values will produce different t-SNE plots. Lower perplexity values favor the 

preservation of fine local structure over global structure whereas higher values preserve 

global structure. Overall, just as an experimental immunologist would not be wise to use a 

flow cytometer without understanding antibodies or fluorescence, a researcher should invest 

the time to understand the inner workings of these algorithms.

4 | CONSIDERATIONS FOR FEASIBILITY

Many single-cell technologies are labor intensive, expensive, and require specialized 

technology. Most importantly, they require close collaboration between bench researchers 

and with those with bioinformatics expertise. It is worth considering all options, such as 

creating core facilities, collaborating with other institutions, or paying for library preparation 

and/or sequencing services from a company. Perhaps the biggest factor affecting feasibility 

of these experiments is the bioinformatic capability to analyze the data (Figure 1A, Table 2). 

As described above, a variety of tools are available to help researchers with limited 

bioinformatic experience complete these analyses (Seurat is particularly useful for 

scRNAseq data).43 Either when collaborating with a bioinformatician or when using 

premade tools, it is important to understand how the tool works and what fine-tuning will be 
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appropriate for the analysis. For example, dimensionality reductions such as t-SNE and k 

means clustering can produce slightly different results each time they are completed, and 

thus should be completed multiple times to account for stochastic effects. Other analyses 

may need to be customized based on experimental design, for example if a specific 

transformation or normalization is required, or if adjustments need to be made based on the 

number of cells. Depending on the specific experiment, however, these tools may or may not 

be of use. Thus, collaborations with bioinformaticians are strongly recommended whenever 

possible.

5 | APPLICATIONS TO TRANSPLANT RESEARCH

The techniques and analyses described have been applied to a variety of biological and 

clinical questions, but their potential for the study of both protective and pathogenic 

immunity in the context of transplantation has yet to be fully tapped. Available methods 

measure immune cell differentiation, antigen specificity, cellular function, and heterogeneity 

within cell populations. All of these methods can be used to probe cellular function in 

animal models and in humans. These techniques provide new approaches to investigate 

crucial and difficult to answer questions in transplantation: identification of key cell 

populations involved in protective or pathogenic responses, definition of donor and recipient 

immune infiltrates in the allograft, underlying mechanisms of heterologous immunity, and 

accurate quantification of T cell or B cell clones in transplant recipients (Figure 1B).

Single-cell protein and/or RNA analysis identifies gene expression across and within cell 

populations, providing an accurate measure of small subpopulations that might not be 

detected by bulk analyses. CyTOF has identified a specific subset of T cells associated with 

operational tolerance in pediatric liver transplant recipients, and specific populations that 

predict response to desensitization therapy in sensitized kidney transplant candidates.44 The 

ability to characterize subpopulations is of particular interest for development of biomarkers. 

Gene and protein expression analyses have been used as biomarkers to predict risk and 

diagnose rejection as well as additional posttransplant pathology.45–47 Single-cell 

approaches have the potential to enhance the predictive power of currently available 

biomarkers and identify new ones especially in situations where differential expression is 

limited to a subpopulation of cells.

Allograft biopsies can now be analyzed in unprecedented depth with the use of single-cell 

methods. Kidney biopsies are commonly analyzed by immunofluorescent microscopy for 

morphology and expression of a limited set of genes. scRNAseq can measure expression of 

many more genes in single cells in a biopsy, potentially improving diagnostics both before 

and after transplantation.11 These analyses include both immune infiltrates and cells 

belonging to the tissue, potentially identifying tissue cells with disease phenotypes.13 

scRNAseq datasets can include sequence that differentiates between individuals, such as 

HLA alleles, and single nucleotide polymorphisms.48 In a sample including both donor and 

recipient cells, this may provide an opportunity to improve data interpretation through 

distinguishing the two sources of cells.
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In addition to these analyses that have been completed in transplant samples, other exciting 

experiments are made possible with single-cell methodology. For instance, immune 

phenotyping and clonal analysis have been used already to define immune responses to viral 

infection after transplantation.49 Single-cell analyses coupling the two can determine 

whether virus-specific T cells change expression of key functional genes in the presence of 

immunosuppression or active infection. As such, single-cell assays will link analysis of 

phenotypes associated with a specific posttransplant diagnosis to a mechanistic 

understanding of the underlying processes. This will dramatically increase the potential for 

development of new transplant therapies based on mechanistic understanding of 

posttransplant disease.
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Abbreviations

5’-RACE 5’- Rapid Amplification of cDNA Ends

BCR B cell receptor

CDR complementarity determining region

CODEX CO-Detection by indexing

CyTOF cytometry by time of flight

EpiTOF Epigenetic landscape profiling using cytometry by Time-Of-Flight

FACS fluorescence-activated cell sorting

MIBI multiplexed ion beam imaging; PCA, principal components analysis

RT reverse transcription

scRNA seqSingle cell RNAseq

TCR T cell receptor

t-SNE t-Distributed Stochastic Neighbor Embedding

UMAP Uniform Manifold Approximation and Projection

UMI unique molecular identifiers
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FIGURE 1. 
Single-cell immune profiling workflow. A, Flow chart of how to use single-cell assays for 

hypothesis driven research. B, Types of questions that can be analyzed through the single-

cell assays. TCR, T cell receptor; BCR, B cell receptor; scRNAseq, single cell RNA 

sequencing.
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