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a b s t r a c t 

Oral disintegrating tablets (ODTs) are a novel dosage form that can be dissolved on the 

tongue within 3 min or less especially for geriatric and pediatric patients. Current ODT for- 

mulation studies usually rely on the personal experience of pharmaceutical experts and 

trial-and-error in the laboratory, which is inefficient and time-consuming. The aim of cur- 

rent research was to establish the prediction model of ODT formulations with direct com- 

pression process by artificial neural network (ANN) and deep neural network (DNN) tech- 

niques. 145 formulation data were extracted from Web of Science. All datasets were divided 

into three parts: training set (105 data), validation set (20) and testing set (20). ANN and 

DNN were compared for the prediction of the disintegrating time. The accuracy of the ANN 

model have reached 85.60%, 80.00% and 75.00% on the training set, validation set and testing 

set respectively, whereas that of the DNN model were 85.60%, 85.00% and 80.00%, respec- 

tively. Compared with the ANN, DNN showed the better prediction for ODT formulations. 

It is the first time that deep neural network with the improved dataset selection algorithm 

is applied to formulation prediction on small data. The proposed predictive approach could 

evaluate the critical parameters about quality control of formulation, and guide research 

and process development. The implementation of this prediction model could effectively 

reduce drug product development timeline and material usage, and proactively facilitate 

the development of a robust drug product. 

© 2018 Shenyang Pharmaceutical University. Published by Elsevier B.V. 
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1. Introduction 

Oral dosage forms are always the most widely used dosage
form because of their convenience of self-administration,
good stability, accurate dosing and easy manufacturing [1] .
However, swallowing difficulty of the pediatric or geriatric pa-
tient is a big concern for conventional tablets. Dysphagia is
observed in about 35% of the general population among all
age groups, as well as in up to 40% of the elder population and
18%–22% of all patients in long-term care facilities [2] . To over-
come the difficulty in swallowing, oral disintegrating tablets
(ODTs) have been developed since the 1990s [3,4] . ODTs are
designed to be dissolved on the tongue rather than swallowed
whole as conventional tablets [5,6] . The disintegrating time of
ODTs is within 3 min or less in the saliva without the intake of
water [7,8] . In recent years, there is the growing demand about
good ODT formulations with new disintegrants and conve-
nient preparation methods. There are three major techniques
which are widely used for ODT manufacturing: freeze dry-
ing, tablet molding, and tablet compression [9,10] . Comparing
with many other preparation methods, direct compression is
most widely used because of its most effective and simplest
process [11] . The formulations of ODTs with direct compres-
sion method usually contain the filler, binder, disintegrant, lu-
bricant and solubilizer [12] . Therefore, formulation design of
ODTs is critical to minimize the disintegrating time with good
tablet quality. 

Current pharmaceutical formulation development usually
depends on experimental trial-and-error by personal experi-
ences of formulation scientists, which is inefficient and time-
consuming. To improve the efficiency of formulation screen-
ing, the SeDeM diagram expert system was developed to op-
timize formulations [13] . SeDeM diagram expert system was
able to evaluate the influence of every excipient on the final
formulation for direct compression based on the experimen-
tal study and quantitative characterization parameters [14] .
Then this expert system considered the type of excipients and
physicochemical properties to output a recommended formu-
 

Fig. 1 – The network s
lation. Moreover, the mathematical analysis of SeDeM was
able to recommend not only formulation components but also
the optimal ratios of excipients [14,15] . Firstly, 43 excipients
were investigated the suitability for direct compression, es-
pecially the compressibility of disintegrants. According to the
ICHQ8, the suitability was described as these parameters: bulk
density, tapped density, inter-particle porosity, Carr index, co-
hesion index, Hausner ratio, angle of repose, powder flow, loss
on drying, hygroscopicity, particle size and homogeneity in-
dex. The SeDeM system could show the profile of every ex-
cipient and evaluate how suitable it can be used for direction
compression [12] . According to the predicted result and com-
bining with the experimental study, 8 excipients with the bet-
ter properties were chosen to make a comparison using the
new expert system. Compared with the old system, the new
system could quantify the compressibility index of every ex-
cipient with the higher precision [16] . For example, ibuprofen
ODT formulations were investigated with the suitability of 21
excipients and obtained the final SeDeM diagram with 12 pa-
rameters [17] . Current SeDeM method just focused on the rec-
ommended formulation, but it cannot quantitatively predict
the disintegrating time of ODT formulations. With the chal-
lenge of pharmaceutical research, we need to establish a pre-
diction method to assist experts evaluate the performance of
ODT formulations. 

The neural network is a wonderful biologically-inspired
model that learns from observational data. That is an arti-
ficial network with seriously connected units by simulating
the neural structure of the brain [18] . Neural network has
been applied to solve problems in many fields, such as voice
recognition and computer vision. Artificial neural network
and deep neural network are two widely used neural net-
works, as shown in Figs. 1 and 2 [19] . ANN is a simple neu-
ron network with only one hidden layer, while DNN is a more
powerful technique with many complex layers to reach the
high-level data representation. In pharmacology and bioinfor-
matics research, ANN also has been used over two decades,
included prediction of protein secondary structure and quan-
titative structure–activity relationship [20] . As the pharma-
tructure of ANN. 
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Fig. 2 – The network structure of DNN. 
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test set. 
eutical research, the prediction models were developed for 
reak force and disintegration of tablet formulation by ANN,
enetic algorithm, support vector machine and random for- 
st approaches [21] . Another ANN example was quantitative 
tructure activity relationships (QSAR) of antibacterial activ- 
ty study [22,23] . DNN is a type of representation learning with 

ultiple levels of neural networks. Unlike the traditional ANN 

ith manual feature extraction, deep-learning can automati- 
ally extract feature and even transform low-level representa- 
ion to more abstract level without any feature extractor [24] .
oreover, deep-learning is more sensitive to irrelevant and 

articular minute variations with complicated parameters of 
he network, which could reach higher accuracy rather than 

he conventional machine learning algorithms [19] . In recent 
ears, DNN has been applied in pharmacy research, such as 
rug design, drug-induced liver injury and virtual screening 

25] . In most cases, deep-learning could generate a novel and 

omplex system to represent various objects through molec- 
lar descriptor so that it would be very helpful for drug dis- 
overy and prediction [26] . Junshui Ma et al. extracted data 
rom internal Merck data and included on-target and absorp- 
ion, distribution, metabolism, excretion (ADME), each molec- 
lar was described as serious features. Finally, they used deep 

eural nets to evaluate QSAR and the result was better than 

andom forest commonly used [27] . 
The aim of current research was to establish the quanti- 

ative prediction model of the disintegrating time of ODT for- 
ulations with direct compression process by ANN or DNN. 

. Methodology 

.1. Data extraction 

ormulation data collection was the foundation of building 
he prediction model. To ensure the data reliability, the key- 
ord search strategy was used in Web of Science database.
he synonym strings of keywords were used, such as “oral” + 

disintegrating” + “tablets” with 461 results, “fast” + “disinte- 
rating” + “tablets” with 407 results, “rapidly” + “disintegrat- 
ng” + “tablets” with 266 results, and “oral” + “dispersible” + 
tablets” with 84, respectively. Among these results, only re- 
earch articles were selected for further data extraction. After 
he manual screening, 145 direct compressed ODT formula- 
ions with the disintegrating time were extracted including 
3 active pharmacological ingredients (APIs) groups for our 
odel, as shown in Table S1 . All APIs were described as nine
olecular parameters, including molecular weight, XLogP3,

ydrogen bond donor count, hydrogen bond acceptor count,
otatable bond count, topological polar surface area, heavy 
tom count, complexity and logS. According to the function 

f excipients, all excipients were divided into five categories: 
ller, binder, disintegrant, lubricant, and solubilizer. Each type 
f excipient was individually coded for further training. The 
ormulation data included API molecular descriptors and its 
mount, the type of encoded excipients and its amount, man- 
facture parameters (e.g. the hardness, friability, thickness 
nd tablet diameter) and the disintegrating time of each for- 
ulation. 

.2. Dataset classification: Training set, validation set 
nd testing set 

o ensure good prediction ability of computational model,
specially in the small amount of pharmaceutical data, the 
ataset should be carefully divided into three parts, including 
raining set, validation set and testing set. The three datasets 
trategy is an effective way to test the accuracy on new data 
ut of our datasets. In details, the training set is for training 
odel and the validation set is used for adjusting the param- 

ters and finding the best model, while testing set shows the 
rediction accuracy on real unknown data from the datasets,
s shown in Fig. 3 . Therefore, how to select data for three 
atasets appropriately is the key step. Compared with random 

election, manual selection and maximum dissimilarity algo- 
ithm selection, the improved maximum dissimilarity algo- 
ithm (MD-FIS) is the best choice. MD-FIS is based on the max- 
mum dissimilarity algorithm considering small group data 
n the whole dataset, it will avoid selecting data mostly from 

mall group and ensure the representation of validation and 
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Fig. 3 – The flowchart of establishing model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.3. Hyperparameters of artificial neutral network and 

deep neural network 

The prediction model for ODTs was trained by ANN and
DNN, respectively. In the training process, all data are nor-
malized and then divided into three sets with our previous
proposed MD-FIS selection algorithm in R language. For ANN
and DNN networks, Deeplearning4j machine learning frame-
work ( https://deeplearning4j.org/ ) was used to train predic-
tion models. All the source codes can be found on the web-
site ( http://ml.mydreamy.net/pharmaceutics/ODT.html ). The
ANN model in Fig. 1 with termination condition at 15,000
epochs and hidden nodes is 200. The deep-learning process in
Fig. 2 uses full-connected deep feedforward networks includ-
ing ten layers with 2000 epochs. This neural network contains
50 hidden nodes on each layer. All networks choose tanh as
the activation function except the last layer with sigmoid ac-
tivation function. Learning rate is set to 0.01. Batch gradient
descent with the 0.8 momentum is used for training the net-
works. 

Note that epoch indicates how many times the dataset is
used for training. Feedforward network means that the output
of the network is computed layer-by-layer from one-direction
without any inside loop. Learning rate impacts how fast the
network will be convergent. Batch gradient descent is a train-
ing strategy to use all datasets to train the model at each time.
Momentum indicates how much the speed will be kept in each
training step. 

2.4. Pharmaceutical evaluation criterion 

European Pharmacopeia defined that ODT could disintegrate
within 3 min in the mouth before being swallowed. In all our
formulation data, the disintegrating time ranges from 0 s to
100 s. Usually, the successful prediction in pharmaceutics is
that absolute error is less than 10%. Thus, a good model is that
the prediction deviation of the disintegrating time is not more
than 10 s. The accuracy of prediction disintegrating time is the
percentage of successful prediction to total predictions: 

Accurac y PDT = 

Number 
(∣∣ f ′ − f 

∣∣ ≤ 10 
)

A 

ll Predictions 

where, f ′ is the prediction value, f is the label (real) value. All
predictions are the number of predicted data. 
3. Results and discussion 

Fig. 4 showed the label (true) value and predictive value of dis-
integrating time on ANN model (A. training set; B. validation
set; C. testing set), while indicated the true value and predic-
tive value of disintegrating time on DNN model (D. training set;
E. validation set; F. testing set). As shown in Fig. 4 , the training
set and validation set of both ANN and DNN showed good re-
sults. As Table 1 shows, the predictive accuracy of ANN model
is 85.60% on training set and 80.00% on validation set, while
the DNN model is 85.60% and 85.00%, respectively. However,
the testing set of ANN with only 75.00% accuracy is lower than
that of DDN (80.00%), which indicated that DNN is able to sig-
nificantly better predict real unknown data than ANN. 

As the result shows, ANN is an efficient network for train-
ing prediction model within the adjustment of validation set,
reaching a high accuracy on training set and validation set.
However, when predicting real unknown data, the accuracy
of testing set dropped significantly, which is called overfitting
in machine learning. DNN performs well in all three datasets
with over 80% accuracy and predicted stably with average
value, which is more capable of establishing a better predic-
tion model for ODT than ANN. 

When analyzing the different network structures between
ANN and DNN, ANN just includes one hidden layer, while DNN
includes ten layers with 2000 epochs and each layer contains
50 hidden nodes. Thus, DNN could extract the feature of data
with higher level and give a more accurate predictive result. It
is unsurprising that DNN, as an innovative and effective tech-
nique for pharmaceutical research, can provide a higher accu-
racy prediction about disintegrating time than ANN. Thus, the
desired DNN with the proposed MD-FIS selection algorithm
can be used to achieve good predictive results on pharmaceu-
tical formulations with small data. 

In order to ensure a satisfied prediction accuracy, two key
factors are to be considered: data and algorithm. The first
issue is the reliable data in pharmaceutical research. Deep-
learning attempts to learn these characteristics to make better
representations and create models from reliable data. Thus,
data extraction is a critical step. In current research, reliable
formulation datasets were manually extracted and labeled
from the research articles of Web of Science by experienced
pharmaceutical scientists. 

https://deeplearning4j.org/
http://ml.mydreamy.net/pharmaceutics/ODT.html
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Fig. 4 – The true value and predictive value on dataset: (A) the true value and predictive value of training set and (B) 
validation set and (C) testing set on ANN model. (D) the true value and predictive value of training set and (E) validation set 
and (F) testing set on DNN model. 
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Table 1 – The accuracies of OFDT on training, validation 

and testing set. 

Network Training set (%) Validation set (%) Testing set (%) 

ANN 85.60 80.00 75.00 

DNN 85.60 85.00 80.00 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

On the other hand, small data in pharmaceutical research
is the key issue to be solved. Although there are many DNN ex-
amples about imaging recognition, natural language process-
ing and auto-mobile car, the application of deep-learning in
pharmaceutical researches are still very few. Generally speak-
ing, deep-learning methods require a large amount of data
for training. This is not a problem in other fields which have
the big data source. However, this is a big challenge for the
pharmaceutical researches due to the experimental limita-
tion. Thus, the most important problem is how to train a good
prediction model on small data with high-dimensions input
space. For example, the formulation data of ODTs includes the
chemical and physical properties of APIs, multiple excipients
with various ratios and four tablets characteristic parameters.
In our 145-formulation data, it was found that nearly half of
APIs groups’ size is less than 3 (small API group). Therefore,
the splitting strategy of dataset is critical for model establish-
ment. Firstly, 20-representative testing set was picked up from
the whole dataset by pharmaceutical scientists. As for training
set and validation set selection, before using automatic selec-
tion algorithm, manual selection approach was adopted to en-
sure the appropriate selection of these two datasets. However,
the manual selection needs experts with strong background
knowledge, which is time-consuming and non-standardized.
When trying the random selection method, the data from
small API groups with no representation was easily selected.
Thus, the improved maximum dissimilarity algorithm (MD-
FIS) is developed to select training set and validation set. MD-
FIS is based on the maximum dissimilarity algorithm with the
small group filter, representative initial set selection algorithm
and new selection cost function. In the MD-FIS process, the
data go through a filter to get rid of the data from the small
API groups, then the MD-FIS randomly gets the initial datasets,
computes each distance from the initial dataset to the corre-
sponding remaining data, and the minimum distance data are
chosen as the final initial set. The final initial set and remain-
ing data are the inputs to the dissimilarity algorithm with new
selection cost function. The selected data is the validation set,
while the remaining data is used as the training set. Because
of the small group filter, the validation set from the general
groups could represent the feature of whole dataset. 

The second important issue is the selection of network al-
gorithm. As deep convolutional networks inspired from vi-
sual neuroscience usually achieve a good result for process-
ing images, video, speech and audio [28] . Recurrent neural
networks contained history information of the sequence that
have brought the breakthrough in sequential data such as text
and speech [29] . Our pharmaceutics data only includes proper-
ties of API, excipients with its amount and tablet parameters.
There is no chronic relationship between each data. Our tar-
get is to predict the disintegrating time. Hence, compared with
the deep convolutional networks and recurrent neural net-
works, the full-connected deep feedforward networks should
be the best choice for the proposed problem. The challenges
about deep feedforward network are computing too many pa-
rameters and vanishing the gradient. The results show that
the satisfied accuracy could be reached by DNN. The deep-
learning method with the proposed data selection algorithms
and pharmaceutics evaluation criterion can reach the desired
models, which satisfy the accuracy requirements in the phar-
maceutics. This deep-learning approach could save a lot of
time, manpower and material resource for formulation devel-
opment of ODTs. This will greatly benefit the formulation de-
sign in pharmaceutical research. 

Although DNN has reached the expected prediction ac-
curacy on small pharmaceutical datasets, the mechanism of
DNN is still a black box, and it is difficult to explain the map-
ping procedure from the input layer to the output layer. For
example, it is unclear how each formulation component con-
tributes to the disintegrating time. Moreover, current model
cannot be directly applied to another evaluation parameter of
formulations. Current prediction model for ODTs is just the
first step in intelligent research for formulation development.
Further research in intelligent formulation systems is under-
way in our laboratory. 

4. Conclusions 

The traditional “trial-and-error” method for formulation de-
velopment has existed hundreds of years, which always costs
a large amount of time, financial and human resources. Oral
disintegrating tablets are a novel and important formulation
form in recent years because of its convenience and good dis-
integration ability. Current research developed the DNN with
MD-FIS select algorithm to establish a good prediction model
for the disintegrating time of ODT formulations. On the other
hand, this research is also a good example for deep-learning
on small data. The proposed predictive approach not only con-
tains formulation information of ODTs, but considering the in-
fluence of tablet characteristic parameters, which could eval-
uate critical parameters of formulation quality and guide for-
mulation research. This deep-learning model could also be ap-
plied to other dosage forms and more fields in pharmaceu-
tical research. The implementation of this prediction model
could effectively reduce drug product development timeline
and material usage, and proactively facilitate the develop-
ment of a robust drug product. 
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