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We review the theory of weakly coupled oscillators for
smooth systems. We then examine situations where
application of the standard theory falls short and
illustrate how it can be extended. Specific examples
are given to non-smooth systems with applications
to the Izhikevich neuron. We then introduce the
idea of isostable reduction to explore behaviours that
the weak coupling paradigm cannot explain. In an
additional example, we show how bifurcations that
change the stability of phase-locked solutions in a pair
of identical coupled neurons can be understood using
the notion of isostable reduction.

This article is part of the theme issue ‘Coupling
functions: dynamical interaction mechanisms in the
physical, biological and social sciences’.

1. Introduction to weak coupling

Because of its generality and its wide applications in
physics, chemistry and biology, the theory of weakly
coupled oscillators has been widely developed and
applied over the last 40 years. Starting with Kuramoto [1]
and Neu [2], there has been a great deal of development
of the theory both in terms of mathematical rigour [3,4]
and in applications [5,6]. In this paper, we will briefly
review the original theory of weakly coupled oscillators
and then describe several different extensions that (i)
allow for systems with discontinuities and (ii) extend
beyond weak coupling to include slowly decaying
amplitude terms.
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(a) General theory for weak coupling

We begin with just a pair of weakly coupled oscillators in order to show the procedure and how to
get the associated coupling functions. Generalizations to N oscillators will be shown afterwards.
We also describe approaches to delay equations and to PDE models that use the same ideas. We
consider a pair of oscillators

dX; , .
L =F(X) +€Gi(X; X0, j=1,2k=3-} (1.1)
where 0 < € <« 1 is a small parameter. F : R” — R™ will be assumed to be sufficiently smooth. We
assume that the ODE, X’ = F(X) has an asymptotically stable T-periodic function, U(t). That is,
consider the linearized equation:

dv
L(tyv:= T Atv =0,

where A(t) = DxF(X)x—u. Solutions to this equation have the form, v(t)= et Pi(t), where
P(t 4+ T) = Pi(t). We assume that there is a simple 11 = 0 eigenvalue with P1(t) = U’'(t) and that all
the remaining Ay, k=2, ..., mhave negative real parts. The quantities, vy = exp(A(T) are called the
Floquet multipliers. Thus, |vx| <1 for k > 1. There are two approaches to studying the dynamics
of the coupled system. The geometric approach makes successive changes of variables and then
applies the theory of averaging [2,7]. The more straightforward, though less intuitively appealing,
method uses an analytic approach and direct perturbation; often called the adjoint method [4].
While this method was rigorously formulated by Malkin [4], it has been widely used as a formal
perturbation method. We will start with the space of square-integrable periodic functions with
the inner product

T

(u(t), v(t)) = JO u(t) - v(t) dt.

With this inner product, the linear operator, L has an adjoint operator

L*(tv = —% — AT, (1.2)

where AT is the transpose of A. Since L has a one-dimensional nullspace, spanned by U'(f),
the adjoint operator also has a one-dimensional nullspace spanned by Z(t), L*(t)Z(t) =0 with
the normalization, Z(t) - U'(t) = 1. There are several different ways to solve for Z(f), numerically
and analytically. One can solve the adjoint equation by solving the appropriate boundary value
problem, or by integrating it backwards in time with some random initial data. A more recent
method of forward integration uses the Koopman operator and Fourier averages and extends
the notion of isochrons beyond simple periodic orbits [8]. For smooth systems away from
bifurcations, backward integration works fine; near bifurcations and for stiff systems, it is better
to use the boundary value method or forward integration. Finally, it is assumed that the Fredholm
alternative holds. That is L(t)u = b(t) has a bounded periodic solution if and only if (Z(t), b(t)) = 0.
With these preliminaries in mind, we now derive the coupling functions for a pair of weakly
coupled limit cycle oscillators. We introduce a fast time, s =t and a slow time scale, T = €t and
look for solutions to equation (1.1) that have the form:

Xj(t) = Xo,i(s, 7) +€Xpj(s, T) + -+,
where at each step, Xjj(s + T, v) = Xj 5(s, ). The order 1 equation is

9Xo,
— —F(Xo)),
9s ( O,])
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which has a solution Xy (s, ) = U(s + 6;(r)) where 6;(7) is the (at this point) arbitrary phase shift.
The order 1 equation is

00;
L(s +6)X1,= UG + 91')371 + Gj(U(s + ), Us + 6))-

Applying the solvability condition, we obtain

89]'
57 = Hiltc—6), (1.3)

where
1 T
B =1 | 20 GUE UG +e)ds

defines the coupling functions. Before analysing the coupled system, we say a few words about the
coupling functions. Clearly H;(¢ + T) = Hj(¢), so that they are T-periodic. Their form depends on
both the nature of the coupling, G; and also on the shape of Z. The theory of weak coupling has
frequently been applied to networks of spiking neurons (see later in this paper) in which case the
coupling has one of two forms:

G(X;, Xk) = gjksk()I(E — V(1)) (1.4)

synaptic coupling, where gisi(f) is the synaptic conductance and Vj(f) is the post-synaptic
potential of the neuron. Note that when synaptic coupling is used, the two oscillators interact
through perturbations to their voltage components. Let Z,(t) be the voltage component of the
adjoint solution. In a neural context, Z,(t) is called the infinitesimal phase resetting curve (iPRC) and
can be measured in real neurons by applying timed current pulses. For synaptic coupling in this
form

2T
Hi@) =5 | Zu0ste+ O)E = VO,

where V(t) (s(t)) is the voltage (synaptic) component of the oscillator, U(t). The other form of
coupling is called linear diffusive

Gj(Xj, Xk) = Djx(Xy — Xj). (1.5)

Synaptic coupling is linear in s so that if we know it for, say s = o (t), then if we apply a linear
filter, to o (t), it commutes with the coupling function. Specifically, let

T

Ho@)=1 | ot+0z,0E- v,

and let s(t) = [ f(¥)o (t — ¥') dt’ be a filtered version of 0. Then

Hi(g) = ff(t/)Hg 6 —1)dr.

In particular, if the filter is just a delay, f(t) = §(t — t), then the coupling function is just H(¢ — t),
a phase-shift. These considerations demonstrate how important the timing of interactions are with
respect to the shape of the coupling function. Many authors have studied how different model
parameters affect the shape of the coupling function, and notably, the shape of the iPRC [9]. For
example, Van Vreeswijk et al. [10] showed that there were transitions between synchrony and
other phase-locked patterns as the time scale of the synapses changed (specifically, they studied
the shapes of the coupling functions for f(t) = a?te~? as o varied).
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For diffusive coupling

1 (T
Hu@) = | 26)- DuUs +9) ~ e as.

Note that for diffusive coupling, Hy(0)=0. If the diffusion is scalar, that is Dj =djl, then,
Hji(¢) = dj(h(¢) — h(0)) with

1 T
h@) = JO Z(SU(s + ¢) ds.

Given that we have the coupling functions, we can ask what they tell us about the behaviour
of the pair of oscillators. Let ¢ =6, — 61. Then
d¢
o Hy(=¢) — Hi(¢) :=C(¢).
T
Zeros of C(¢), ¢o correspond to phase-locked solutions to the coupled system and if C'(¢g) <0
(respectively, > 0), the locked solution is stable (unstable). If the oscillators are identical, i.e. H} =
Hj = H, then C(¢) is proportional to the odd part of H(¢) and so there are always the roots, ¢ =0,
synchrony, and ¢ = T/2, anti-phase (There can, of course, be other roots as well, but they will
always occur symmetrically in pairs due to the fact that C(¢) is an odd function).

(b) Example

As an example of what determines the shape of the coupling functions, we consider the behaviour
of the Morris-Lecar model in two different scenarios. We choose parameters (as in table 3.1 in [11])
to be near the saddle-node infinite cycle (SNIC) bifurcation with applied current lpp, = 45 or near
the sub-critical Hopf bifurcation with Ipp =92. The currents are chosen so that the oscillators
in each case have a frequency of about 10 Hz. Coupling is via synapses as in equation (1.4). We
choose excitatory (E =0mV) or inhibitory (E = —75mV) coupling. The synaptic variables satisfy

ds 5 1

@~ T T U ep(—(V —20)3)

and we choose 7 =5,15ms. Figure 1la shows the action potential (V) over one cycle of the
oscillation. The zero phase is set to be the peak of V(). The two different traces correspond
to the SNIC and the Hopf bifurcations. Both oscillators have an uncoupled frequency of 10 Hz
and the action potentials are similar in shape. In figure 1b, we show the solutions to the adjoint
equation, (1.2) for the two different cases. Z, is positive everywhere except in a small window
near 6 =0 for the SNIC. This is a general property of systems near an SNIC [12]. By contrast,
for the Hopf case, Zs has a large region of phase-delay that is half the period. These differences
in shape matter with respect to the coupling function. Figure 1c,d shows the coupling functions,
C(¢) for different types of synapses (excitatory and inhibitory) and different decay times (5, 15ms)
in the SNIC (left, ¢) and the Hopf (right, d) parameters. Intersection with the axis with negative
(positive) slopes correspond to stable (unstable) phase relationships between pairs of oscillators.
At 5ms delay, excitatory (E5, green) synapses lead to a coupling function with a stable phase
difference, ¢ ~ £ /5 that is neither synchronous (¢ = 0) nor anti-phase, (¢ = 7). However, once
the synapses slow down to r =15ms, the stable phase-shift is ¢ = (E15, blue). Similarly, with
inhibition at 5ms decay (I5, red), ¢ = & is the only attractor. However, at slower values of decay
(r =15, I15, orange), there is bistability between synchrony (¢ =0) and anti-phase (¢ = ). For
the Hopf case, excitatory synapses lead to stable synchrony (or near synchrony) (E5, green), while
inhibitory synapses lead to anti-phase (I5, red). These figures show that both the nature of the
coupling and the shape of Z play an important role in determining the phase-locking properties
of symmetrically coupled oscillators.

The fact that a pair of identical oscillators always leads to an odd effective coupling function
(the even terms do not matter) would lead one to believe that we could assume H is an odd
function. However, once more than two oscillators are connected, then the even component of the
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Figure 1. The Morris Lecar Model. (a) The voltages for parameters near an SNIC or Hopf bifurcation. (b) The solutions to the
adjoint equation in each case. (c) The interaction functions ((¢) in different scenarios for the SNIC. E (I) excitatory (inhibitory)
and T =5,15ms; so E15 is excitatory with T =15, e.g. (d) Same as (c) for the Hopf scenario; T =15 differs only in the
amplitudes and is not shown. (Online version in colour.)

coupling function does matter, both in the form of the phase-locked solutions and their stability.
Note that for identical oscillators, C'(¢g) = —(H'(—¢g) + H'(¢9)) so that if H' (£¢g) > 0, then we
have stability. (In particular, this is clear for ¢g =0, T/2.) For positive scalar diffusive coupling,
synchrony is always stable since /'(0) = (1/T) fg Z(s)U'(s) ds = 1. Nakao [13] reviews methods of
phase reduction applied to partial differential equations as well as to delay equations. In all cases,
the theory is essentially the same, but it becomes necessary to find the function Z for a PDE or
functional equation. There are several technical difficulties that centre around finding the correct
adjoint equations and dealing with certain boundary terms in the inner product. We will see this
type of issue raise its head in the section on non-smooth oscillators.

(c) Networks

It is now clear how to generalize the pair of weakly coupled oscillators to networks.
We will assume that coupling in the network has the form, Gj(Xy,...,Xn)=W;(X))+
Zszl gikG(Xj, Xx) for simplicity, where W; represents some weak heterogeneity. Letting w; =
1/7T) IOT Z(s)W;(U(s)) ds, and H(¢) = (1/T) fOT Z(s)G(U(s), U(s + ¢)) we obtain

N

6 =wj + > gikHO — ), (1.6)
k=1

where we have used 6’ to denote the derivative of 6 with respect to . When gjk=K/N and
H(¢)=sin¢, we recover the classic Kuramoto model. We define a phase-locked solution to
equation (1.6) as 0; = 27 + ¢;, with ¢; =0 and the others constant. Ermentrout [14] proved that
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such a phase-locked solution is stable if gjxH'(¢x — ¢;) > 0 for all j, k. Note that this is a sufficient,
but not necessary condition.

We consider a simple ring of nearest-neighbour coupled oscillators and show how the even
terms can play a role in both the existence and stability. Consider equation (1.6) with w; =1, and
gik=1fork=j—1,j+1 and 0 otherwise (with N + 1 identified with 1 and 0 identified with N).
We will assume T =2x with no loss in generality. A phase-locked solution corresponding to a
travelling wave, is ¢; = 27 (j — 1)m/N along with

2nrm 2nn
=0, =1+H(Z2)+u(-Z").
m= (N)+ ( M)

Note that if H is an odd periodic function, then §2;;, =1 is independent of m. The relationship
between m and $2,, is called the dispersion relationship and shows how the network frequency
depends on the ‘wave’ number, m/N. The linear stability of the wave is easy to determine since
the resulting matrix is circulant. Thus, we find that the real part of the eigenvalues are

e ) o (5 o) )

In other words, for stability, one needs H'(27rm/N) + H'(—27xm/N)) > 0.

2. Adjoint method (non-smooth systems)

The calculation of the adjoint method for non-smooth systems is not as straightforward
as integrating equation (1.2). While non-smooth systems may admit stable limit cycle
solutions, potential discontinuities at switching boundaries render equation (1.2) ineffective.
Several researchers manage to work around this limitation, determining quantities such as
synchronization and phase locking in networks of piecewise linear oscillators.

In 2001, Coombes used a chemically coupled network of piecewise linear planar relaxation
oscillators and explored the synchronization properties of the network as a function of fast
and slow inhibitory and excitatory synapses [15]. An explicit analysis was possible due to
a separation of time scales, weak coupling, and the theory of averaging. In addition, the
piecewise-linear approach of analysing nodes and networks allows for exact results without
the need for reductions that follow from weak interactions [16]. Coombes et al. [17] explored the
synchronization properties of a linearly coupled network of planar piecewise linear integrate-
and-fire (IF) neurons. To determine stability about the synchronized network state, they
introduced a standard perturbation about the synchronous solution and followed the resulting
dynamics. They were able to compute the adjoint and iPRC of the planar IF model due to its
explicitly solvable nature. Coombes & Thul [18] extended the master stability function to the case
of coupled piecewise linear oscillators in 2016, a result which has been further extended to include
IF models with state and time-dependent interactions [19].

If the vector field is continuous, the adjoint method can be used directly because the iPRC
is continuous across switching boundaries. This property is exploited by Coombes [20] in
calculating the iPRC for gap-junction coupled piecewise linear planar neural models [20]. The
continuity of the iPRC for continuous n-dimensional vector fields is proven in Park et al. [21],
provided that the limit cycle solution transversely crosses switching boundaries with non-zero
velocity.

The saltation matrix is a powerful method for analysing discontinuous dynamical systems.
Existence and mechanisms of chaos as a result of a discontinuous voltage reset has been shown
in a Fitzhugh-Nagumo model by calculating the Lyapunov exponents: a result enabled by the
saltation matrix [22]. Assuming continuous solutions in a discontinuous vector field Park et al.
[21] derived the size of discontinuities in the iPRC from first principles and showed that the
calculation is closely related to the saltation matrix [23]. For hybrid systems with discontinuous
solutions, Coombes et al. [17] derived the iPRC for a piecewise linear IF model by normalizing
on each segment away from discontinuities. This method elegantly reproduces the discontinuous
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iPRC without the need to directly compute the size of the discontinuities. Despite this success,
the authors mention that the notion of isochrons, and therefore coupled oscillator theory, is not
directly addressed. This problem was handled in 2017 by Shirasaka et al. [24], who rigorously
defined isochrons for general hybrid systems, and introduced the phase reduction method for
weakly perturbed hybrid systems using the saltation matrix.

(@) Weakly coupled Izhikevich models

We now turn to an explicit example of an application of the saltation matrix, which we use to
generate the corrected iPRC and predict synchrony in weakly pulse-coupled hybrid limit cycle
oscillators. Consider the weakly coupled Izhikevich model [25]

oo i) [0.04v? +5v; + 140 — u; + I ot [ 8(v3—; — 30)
Xi(t) = (m) = ( a(bv; — 1) ) +elo(T7)| ( 0 , 2.1)

where i = 1,2, and whenever v; > 30 mV, v; and u; reset as v; — c and u; — u; + d, respectively. We
choose the coupling function to be the Dirac delta function composed with the voltage variable
and scaled by the speed of the voltage variable just before resetting (|v(T~)|). Note that integrating
the coupling function on the right-hand side of equation (2.1) yields

T
1o(T)| JO S(us_i(t) — 30)di =1,

by standard rules of delta function composition, and therefore numerically integrated solutions
of equation (2.1) receiving weak impulses must increment by order ¢. We use parameters for the
regular spiking (RS) neuron: 2 =0.02, b =0.2, c = —65mV, d =8 and I = 10. The choice of I ensures
the existence of a limit cycle solution.

In order to compute the iPRC, we consider the Izhikevich model in the uncoupled case, where
e =0. This hybrid dynamical system admits a T-periodic hybrid limit cycle y(t) = (v¥ (t), u” L.
The transition function @, which maps solutions X(T)=X" from just before the jump to
X(T + 0) = X just after the jump, is given by

o(X)=(c,u+d)T.
The switching surface only depends on the voltage variable, thus
LX) =v — 30,

where the switching occurs when v =30, i.e. when the neuron spikes. The adjoint equation for
this problem is given by

Z(H=—-ATMOZ@#), te(0,7) (2.2)

and
Z()=CTZ(t+0), t=T. (2.3)
These equations are numerically integrated in backwards time and normalized such that Z(t) -

F(y(t)) =2n/T [24] (where F(X) is the vector field in equation (2.1)). The matrix A = DF|,(; is the
Jacobian matrix evaluated along the limit cycle, and C is the saltation matrix [23,24,26],

C=Do(X ) — [DSX)F~ —F'® <%) , (2.4)
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where X~ = (30, u~)T is the solution just before the jump, and F~ is the vector field just before the
jump

- _ (004307 +5(30) + 140 — u™ +1
- a(30b — u~) ‘

The vector F' is the vector field just after the jump,

. 0.04c¢% +5c 4140 — (u~ +d) + 1
- a(bec — (u™ +d))

For convenience, we write F~ = (F],F; )T and F+ =(F+,F2+ )T, Next, D&(X™) is the Jacobian
matrix of the transition function @ evaluated along the limit cycle solution just before the jump

Do (X") = (8 (1’)

and finally VL(X™) is the gradient of the switching boundary evaluated along the limit cycle just
before the jump

VL(X™) =(1,0).

Plugging in these values into equation (2.4) yields the saltation matrix

F+
F—l_ 0
Cc= !
Ef —F;
2 2 1
=

With the saltation matrix known, we integrate equation (2.2) backwards in time and normalize
the resulting solution at the end of the simulation. The numerically computed adjoint equation
Z, is shown in figure 2a,c (solid black), and is plotted against the direct iPRC estimation (open
blue circles). Panel a shows the discontinuous voltage iPRC (the discontinuity occurs at ¢ =0),
while panel ¢ shows the continuous u iPRC, Z;,. Panels (b,d) show the functions involved in the
phase estimation of the Izhikevich model, which we now explain in detail.

We provide numerical evidence that the classic weak coupling theory applies in the case
of non-smooth systems with discontinuous solutions. We remark that an ad-hoc proof of a
similar case is covered in Park et al. [21], but applies to a system with continuous solutions and
discontinuous vector fields.

The classic theory of weakly coupled oscillators states that the phase difference ¢ between two
identical weakly coupled oscillators is given by

do
S =elH(-¢) - H@)L
where the interaction function H is defined as
Y (T— T
o) =0 200 6670+ 9) - 30,07 at @)
0

where y(t) is the uncoupled (¢ = 0) T-periodic limit cycle solution. Thus, the integral is non-zero
only when v? (t + ¢) = 30, which occurs only when t =T — ¢, and equation (2.5) reduces to

Zy(—
)= 209, @6)
and the weakly coupled phase dynamics are entirely determined by the voltage iPRC:
g _ elZu(@) - Zo(-9)] o

dr — T
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Figure 2. iPRCs and phase functions. (a) Adjoint voltage iPRC Z, (black) and perturbation estimate of the voltage iPRC (blue
open circles). (b) The interaction function. (c) Adjoint u iPRC Z, (black) and perturbation estimate of the u iPRC (blue open
circles). (d) Right-hand side of the phase dynamics. The synchronous solution is stable, but due to the discontinuity, oscillators
synchronize in finite time. (Online version in colour.)

Equation (2.6) is shown in figure 2b, and the right-hand side of equation (2.7) is shown in figure 2d.
Figure 2d shows that there exist stable fixed points at synchrony (¢ = 0), and anti-phase (¢ =n).
The basin of attraction of the stable anti-phase solution is very small; most initial conditions result
in synchrony. Note the discontinuity at ¢ =0, which comes from the discontinuous voltage iPRC.
Solutions in the basin of attraction for synchrony will become synchronous in finite time.

Example solutions leading to these stable fixed points are shown in figure 3. We show the
results of simulating this phase reduction with various initial phases, and find strong agreement
between theory (solid lines) and numerics (open circles). In both the full model and the phase
reduction, solutions that tend towards synchrony converge in finite time.

3. Higher-order approximations of coupling functions

The investigation of emergent behaviours in coupled populations of oscillators continues
to be an active area of research [27-30]. PRCs and associated phase models (1.3) provide
first-order approximations to phase dynamics resulting from small perturbations; reduction
technique allows for complicated models to be analysed in a more tractible coordinate
system. Such strategies are usually adequate to predict and explain the behaviour of coupled
oscillators when their underlying limit cycles are strongly stable (i.e. with Floquet exponents
that are negative and large in magnitude) and when the forced behaviour is robust to
perturbations. However, in situations where the system is near a bifurcation, higher order
approximations for the phase-reduced dynamics are necessary to predict and explain the resulting
behaviour.
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= theory

0 +~ O  numerics

0 5000 10000 15000 20000
T

Figure 3. Phase difference dynamics of two weakly pulse-coupled Izhikevich models. Solid curves represent solutions from the
theory of weakly coupled oscillators, and open circles represent solutions from the full numerical simulations. Top trace: blue
denotes initial phase difference at a negative quarter period converges to synchrony. Middle trace: green denotes initial phase
difference near anti-phase stays near anti-phase. Bottom trace: orange denotes initial phase difference near a quarter period
converges to synchrony. £ = 0.1. (Online version in colour.)

As a concrete example, consider a dynamical model of two identical synaptically coupled
thalamic neurons taken from [31]:

CVi=—I(V}) — Ina(Vi, b) = Ik(Vi, i) = Ir(Vi, i) + Ip — Lsyn(Vi 51, 52),
. (hoo (Vi) — hi)

' w(Vi)
. (roo(Vi) = 17) (3.1)
A (72)

Ot(l — wi)

and

R T A s B
Here, V; is the transmembrane voltage, /; and r; are gating variables, w; determines the
synaptic current, I =g1.(V; — Er), Ina =gNam3(Vhi(Vi — Ena), Ik =gk (.75(1 — h)*(V; — Ex),
It= nggo(Vi)ri(Vi —E7), and I, =3.75pAnF! are leak, sodium, potassium, low-threshold
calcium and baseline currents, respectively. We take conductances g;, =0.15, gna =3, gk =5
and gt =10mS cm™2, reversal potentials E; = —75, ENa =3, Ex=—-90, and Er=0mV and C=
TpFem™2. Synaptic current Isyn = p(w1 + w2)(V; — Vsyn) where p determines the magnitude
of the coupling, Vsyn =—60mV, o = 3ms!, Vr=-20mV, o7 =0.8mV and g=02ms"1. All
remaining functions are identical to those from [31]. Simulating (3.1) using p = 0.02mScm 2
and p =0.06mScm—2 with initial phases that are nearly identical yields the results shown in
figure 4. For this model, the infinite time behaviour depends on the coupling strength itself. As we
will show, this behaviour cannot be explained with first-order phase reduction techniques alone;
higher-order corrections must be used.

Understanding the dynamical behaviour in directions transverse to the limit cycle (i.e.
the amplitude coordinates) is critical to developing higher-order approximations of the phase
dynamics, and there are many possible options for representing both the phase and amplitude
coordinates. For instance, Kuramoto [1] and Wilson & Ermentrout [32] use hyperplanes to denote
surfaces of constant phase as part of a higher-order asymptotic expansion, Letson & Rubin [33]
and Wedgwood ef al. [34] use a moving orthonormal coordinate frame in the definition of phase-
amplitude coordinates, and Castejon ef al. [35], Wilson & Moehlis [36] and Shirasaka et al. [37]
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Figure 4. Panels (a,b) show steady-state behaviour of (3.1) for identical initial conditions but with two different coupling
strengths. Note that both neurons are identical. As shown in the analysis to follow, the steady state in simulations for p =
0.06 mS cm 2 results from a saddle node bifurcation. This behaviour can neither be explained nor predicted with standard
phase reduction. (Online version in colour.)

define amplitude coordinates based on Floquet theory. The coordinates based on Floquet theory
have been shown to be particularly useful as they result in relatively simple second-order accurate
phase-amplitude-reduced dynamics [38,39]. This strategy will be used in the following analysis
to explain the results from figure 4. This method of phase-amplitude reduction (sometimes called
isostable reduction) is briefly summarized below.

(a) Second-order reduction using isostable coordinates

The following provides a summary of the work from Wilson & Moehlis [36] and Wilson &
Ermentrout [38]. Consider a general equation of the form

x=F(x)+g(t), (3.2)

where x € R" is the state, the dynamics are given by F(x), and g(f) e R =[u() 0 .. 0 1T is a small
perturbation. For the moment, we suppose that u(t) = 0 and suppose (3.2) has a T-periodic orbit
x7 (t). Isochrons [40] can be used to define phase coordinates 6 € [0, 27) for which 6 =w=2m1/T.
We denote I as the 6 = 0 isochron. By definition, T is the return time from I to /5. One can use
I as a Poincaré surface with associated map
P:Iy— Iy
(3.3)
and x> (T, x),

where 7 is the unperturbed flow. The fixed point of this map, xg, corresponds to the intersection
of x¥(t) and the I surface. Linearization about this fixed point yields

(T, x) =xg + J(x — x0), (3.4)

where [, denotes the Jacobian of n(T, x) evaluated at xg. Diagonalization of ], yields eigenvalues
Ax with associated left and right eigenvectors wy and v, respectively, for k=1, ..., n. For every
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non-unity eigenvalue Ay of J, with equal algebraic and geometric multiplicity, an isostable
coordinate v, can be defined as in [36,38]

Vi) = lim [0 (e, 3) = x0) exp(—i )], (35)

where t’r is the jth return time to Iy under the flow and «; =log(Ax)/T is a Floquet exponent. In
definition (3.5), in the limit as time approaches infinity the decay under the flow 1 matches the
growth of exp(—/cktlr) in the direction specified by wy. This limiting behaviour gives the isostable
coordinate ¥ (x), which is defined for all locations in the basin of attraction of the limit cycle.
Because (3.5) is defined according to the infinite time convergence of solutions to the limit cycle,
one can show (as in [36]) that under the flow

Y = KWk (3.6)

for all locations in the basin of attraction of the limit cycle. In general, n — 1 isostable coordinates
can be defined according to (3.5) (one for each non-unity eigenvalue of ] ;). However, for the model
considered in the following analysis, all but one Floquet multiplier is very small in magnitude;
in this case, all other isostable coordinates can be neglected, because they decay rapidly and only
one isostable coordinate is required (which will be denoted by ) to characterize the behaviour
transverse to the limit cycle.

As illustrated in [38], starting with a general equation of the form (3.2), one can instead work
in phase-isostable-reduced coordinates

6 =w + [2(0) + wb(O)] u(t) 67
and U =KW + [i(0) + (@) u(b). '

Here, i(9) is an isostable response curve (analogous to the PRC z(¢) for the phase variable), and
b(0) and c¢(9) provide nonlinear corrections to the perturbed dynamics as the system for locations
far from the limit cycle. Methods similar to the adjoint method described in prior sections have
been developed for computation of the functions b(0), () and c(f) as detailed in [38,39].

(b) Second-order accurate coupling functions

Here, we apply the second-order isostable reduction methodology to explain the behaviour
observed in figure 4. To begin, we rewrite each neuron from (3.1) in the form (3.7), where

0; = o + [2(6;) + ¥;ib(6;)] u;(t)

. (3.8)
Vi =k + [10) + Yic@)]ui(t), i=1,...,2,

and

ui(t) = —Isyn(Vi, w1, w2)
= —p(w1(t) + w2 () (Vi(t) = Vsyn)

=—p(W1(61) + Y19 (61) + w2(62) + ¥20”(62)) (Vi6) + ¥iq” () — Veyn) + O(€%).  (3.9)

In the above equation, g(6) € R" is the eigenfunction associated with the Floquet exponent « for
the uncoupled oscillators, and qV(H) €R and 4”(9) € R are defined as individual components of
q(9) in the coordinates V and g, respectively. As shown in [38,39] as a consequence of Floquet
theory, one can write V()= V(0:(h) + viq" (6:(t)) + O(e*) and w;(t) = w(6;(t)) + ¥ig" (6:(#)) +
O(€?). In the analysis to follow, p, ¥, and ¥ are assumed to be O(¢) terms. Expanding (3.8)
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and only retaining terms to leading-order €2 we have

6 = o + plh1(61,62) + V1h2(61,02) + Vah3(61,602)],

Y =k + plha(61,62) + Yihs(61,02) + Yohe(61,62)],

b2 =+ plh1(62,61) + Y2ha(62,61) + Yr1h3(62,61)]
and Vo =k + plha(62,61) + Y2hs(62,61) + Yrihe(6, 61)],
where h1(61,62) = —z(61)(w(61) + w(62))(V(61) — Vsyn), h2(61,62) = —b(61)(w(61) + w(62))(V(61) —
Vyn) — 2(01)4° (01)(V(01) — Viyn) — 2(01)@(61) + w(62))3" (61),  h3(61,62) = —2(61)4° (02)(V (61) —
Vsyn),  ha(61,62) = —i(01)(w(61) + w(62))(V(61) — Vsyn),  h5(61,62) = —c(61)(w(61) + w(62))(V(61) —
Viyn) — i(61)9°(01)(V(61) — Visyn) — i(61)(@(61) + w(62))q" (61), and he(61,62) = —i(61)g% (62)(V (61) —

Veyn).
By defining new variables ¢; = 6; — wt and substituting into (3.10), we have

(3.10)

b1 =plh1(¢1 +t,¢2 + 1) + Y1ha(d1 + £, ¢ + ) + Yohs(d1 + £ ¢ + 1)],
U =k + plha(gr +t, ¢ + ) + Y1hs(@1 +t,¢2 + ) + Yohe(1 + £, ¢2 + )],
$2 = plhi(da +t,¢1 + ) + Voho(do +t,¢1 + 1) + Yiha(do + £, 1 + 1)]

and Yo =k + plha(da +t,¢1 + 1) + Ynhs(d +t, ¢1 +t) + Vihe(do + £, 1 + 1)].

Recalling that ¥ and y», are assumed to be O(e) terms, equation (3.11) can be written in the
form iy = eQ(y, t). Additionally, each of the ; functions from (3.11) is T-periodic so that averaging
[41,42] can be applied resulting in

(3.11)

@1 =p [Hi(P1 — P2) + Y1 Ho(P1 — P2) + YoH3(P1 — P2)],
U1 =KW1 + p [Hy(P1 — ®2) + W1 Hs(P1 — §2) + WoHe(P1 — P2)],
&) = p [Hi(P2 — 1) + WoHo(Pr — P1) + W1 H3 (P2 — P1)]

and Uy = kW) + p [Hy(P2 — D1) + WoHs(D2 — P1) + W1 He (D2 — P1)],

(3.12)

where H;(X)=(1/T) fg hi(X +t,t)dt. Because fixed points of (3.12) correspond to periodic
solutions of (3.11) with the same stability [41], (3.12) can be used to assess phase locking in (3.8)
(which is in turn used to assess phase locking in (3.1)). Finally, (3.12) can be simplified taking
T = &1 — D) to write

T = p[H1(Y) — Hi(—=7) + ¥1(Ho(Y) — H3(- 7)) + ¥2(H3(Y) — Hao(=7))],
U = kW + p[Ha(T) + W1 H5(Y) + WoHe(T)] (3.13)
and Uy = kW + p[Hy(=7) + Y1 He(—T) + W H5(—7)].

We note (3.13) is an order €2 approximation for the phase and isostable dynamics. If we instead
take only an order € approximation (the usual approach), the resulting phase difference equation
would be .

T =p[Hi1(T) = Hi(=79)],

Wt = kWt + pHy(Y°) (3.14)
and U5 = kW5 + pHa(=T°),
where ¢, ¥f and W; are order e approximations for the phase difference and isostable
coordinates.

(c) Results

Both neurons from (3.1) admit a stable periodic orbit with T =15.33 ms. For this periodic orbit,
the non-unity Floquet multipliers are 0.680, 0.011 and 0.008. Here, the isostable coordinate
corresponds to the direction of slowest decay towards the periodic orbit and the other two
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Figure 5. Panels (a,b) show 7" /p from (3.13) evaluated at the unstable fixed point where 7 =0 and ¥ and ¥,
are determined by p. The coloured lines show the coupling functions as p increases by increments of 0.03. The
black line corresponds to the first-order accurate coupling function H;(Y") — Hy(—7"). While the synchronous solution
(respectively, anti-phase) solutions are always stable (respectively, unstable) bistability emerges through a saddle node
bifurcation as p is increased. This bifurcation cannot be observed in the more well-established O(e) accurate reduction strategy
(3.14). Panel (c) shows H,(T"), which determines the order € accurate behaviour of the isostable coordinates in (3.13). (Online
version in colour.)

directions are neglected because they decay rapidly. After numerically computing, the required
functions z(8), i(9), b(9), and c(6) as well as terms related to the synaptic coupling from (3.9) using
methods described in [39], we compute each /i; and subsequent H; function. In figure 5a,b, the
thick black line shows H1(T") — Hi(—7), the first-order accurate coupling function from (3.14).
Note that the shape of this function has no dependence on the coupling strength, p, and changing
p will not alter stable fixed points of (3.14). Figure 5c shows Hy(¥), which influences the order €
dynamics of the isostable coordinates. Notice that it is strictly positive indicating that increasing p
will shift the isostable coordinate to more positive values. The coloured lines in panels (a,b) show
T /p from (3.13) evaluated at the unstable fixed point [T v w2 =0 v (p) ¥/’ (p)] as p increases
by increments of 0.03. As p increases, both Wlfp (p) and Wéﬁp (p) increase modifying the resulting
coupling function. For all values of p, there is an unstable fixed point at T = 0, but as the coupling
strength increases, stable (and corresponding unstable) fixed points emerge nearby as the result of
a saddle node bifurcation. For this parameter set, this saddle node bifurcation occurs at p = 0.0481
at the locations [T ¥1 ¥, | =[0.43 325 3.15] and [ —0.43 3.15 3.25 ].

The analysis of the reduced equations (3.13) agrees well with the observed behaviour in the
unreduced equations (3.1). For values of p <0.0463, the asynchronous state is the only stable
configuration. For p > 0.0463 an additional stable configuration exists where the neurons fire
approximately 1 ms apart, which corresponds to a phase difference of about 0.4, similar to the
location and coupling strength for which the saddle node bifurcation emerges in the reduced
model (3.13).

4. Conclusion

Weak coupling theory of oscillators has shown itself to be a powerful tool that can be generally
applied to a variety of problems across many areas of science. Here we have shown that extensions
to the theory both to non-smooth systems and to systems where higher-order coupling terms
significantly influence the behaviour remain amenable to analysis and allow one to get sharper
results when applied to full model equations. While our focus has been primarily on models from
theoretical neuroscience, the methods here can be applied to many other fields.
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