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Abstract

In this paper we summarize the state of the science of measurements of dry deposition of reactive
nitrogen (Nr) compounds in North America, beginning with current understanding of the
importance of dry deposition at the U.S. continental scale followed by a review of
micrometeorological flux measurement methods. We then summarize measurements of Nr air-
surface exchange in natural ecosystems of North America focusing on the U.S. and Canada.
Drawing on thissynthesis, we identify research needed to address the incompleteness of dry
deposition budgets, more fully characterize temporal and geographical variability of fluxes, and
better understand air-surface exchange processes.

Our review points to several data and knowledge gaps that must be addressed to advance air-
surface exchange modeling for North American ecosystems. For example, recent studies of
particulate (NO3™) and gaseous (NOy, HONO, peroxy nitrates) oxidized N fluxes challenge the
fundamental framework of unidirectional flux from the atmosphere to the surface employed in
most deposition models. Measurements in forest ecosystems document the importance of in-
canopy chemical processes in regulating the net flux between the atmosphere and biosphere,
which can result in net loss from the canopy. These results emphasize the need for studies to
quantify within- and near-canopy sources and sinks of the full suite of components of the Nr
chemical system under study (e.g., NOy or HNO3-NH3-NH4NO3). With respect to specific
ecosystems and geographical locations, additional flux measurements are needed particularly in
agricultural regions (NHs), coastal zones (NO3™ and organic N), and arid ecosystems and along
urban to rural gradients (NO,). Measurements that investigate non-stomatal exchange processes
(e.g., surface wetness) and the biogeochemical drivers of bidirectional exchange (e.g., NH3) are
considered high priority. Establishment of long-term sites for process level measurements of
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reactive chemical fluxes should be viewed as a high priority long-term endeavor of the
atmospheric chemistry and ecological communities.

Introduction

Atmospheric deposition is an important component of the nitrogen cascade (Galloway et al.,
2003) that can contribute to eutrophication and acidification, reduced biodiversity, decreased
resilience to climate variability and other effects in terrestrial and aquatic ecosystems (U.S.
EPA, 2008). Deposition of reactive nitrogen (Nr) in excess of the ecosystem critical load
(Nilsson and Grennfelt, 1988) can therefore negatively impact the services that ecosystems
provide, such as clean water, climate regulation, food, recreational opportunities, and
cultural and spiritual value (Compton et al., 2011; Cooter et al., 2013; Munns et al., 2016). A
fundamental aspect of characterizing ecosystem risk from Nr over-enrichment is
quantification of the amount of Nr entering the ecosystem via wet and dry deposition. Total
(wet + dry) budgets of Nr deposition are needed to quantify critical load exceedances (Clark
et al., 2018) and to relate air concentrations to deposition rates to assess the secondary U.S.
National Ambient Air Quality Standards (NAAQS, U.S. EPA, 2012), which protect public
welfare (e.g., soils, water, vegetation).

North American monitoring networks that are used for deposition assessments include sites
at which wet deposition is measured directly and sites where atmospheric concentrations of
gases and particulate matter (PM) are monitored. The key networks measuring wet
deposition and precipitation chemistry in North America are the National Atmospheric
Deposition Program (NADP)/National Trends Network (NTN) and the Canadian Air and
Precipitation Monitoring Network (CAPMoN). The NADP/NTN network (http://
nadp.slh.wisc.edu/NTN/) spans the continental U.S. (CONUS), extending into Canada,
Puerto Rico, Mexico, and Alaska, and currently operates 257 sites at which precipitation
chemistry and wet deposition are measured on a weekly basis. CAPMoN (http://
data.ec.gc.ca/data/air/monitor/networks-and-studies/canadian-air-and-precipitation-
monitoring-network-capmon/) currently operates 30 sites at which precipitation chemistry
and wet deposition are measured on a daily basis. With respect to wet deposition of Nr, NTN
and CAPMoN provide measurements of ammonium (NH,4*) and nitrate (NO3™). The Clean
Aiir Status and Trends Network (CASTNET) (https://www.epa.gov/castnet) and CAPMoN
monitor gas and particulate air concentrations of nitric acid (HNO3), NH,*aerosol, and
NO3™ aerosol, on weekly and daily schedules, respectively. CASTNET currently operates 95
rural sites across the CONUS while CAPMoN operates 18 ambient monitoring sites across
Canada. Additionally, the NADP Ammonia Monitoring Network (AMoN) provides bi-
weekly measurements of ammonia (NH3) air concentrations at approximately 100 sites in
the U.S. and Canada, approximately 70 of which are collocated with CASTNET and
CAPMOoN. Other ambient monitoring networks that measure Nr compounds include the
Interagency Monitoring of Protected Visual Environments (IMPROVE, http://
vista.cira.colostate.edu/Improve/), several networks that collectively feed data into the U.S.
Environmental Protection Agency Air Quality System (AQS, https://www.epa.gov/ags;
https://www.epa.gov/amtic/amtic-ambient-air-monitoring-networks) and the Canadian
National Air Pollution Surveillance Program (NAPS; https://www.canada.ca/en/
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environment-climate-change/services/air-pollution/monitoring-networks-data/national-air-
pollution-program.html).

While wet deposition is well characterized by NADP and CAPMoN, the magnitude and
patterns of dry deposition are less understood due to a lack of observations. Ambient
monitoring networks provide important information on the spatial patterns and trends in air
concentrations of inorganic Nr, to which the patterns of dry deposition are related. However,
these networks do not provide measurements of dry deposition. Rather, the measured air
concentrations are used to estimate dry deposition using inferential modeling approaches
(Clarke et al., 1997; Sickles and Shadwick, 2015; Zhang et al., 2009; Li et al., 2016) or by
applying deposition velocities output from chemical transport models (CTMs) (Bowker et
al., 2011; Schwede and Lear, 2014). These networks also do not provide information on
organic forms of N (ON), which contribute significantly to total Nr deposition (Jickells et
al., 2013). Enhanced monitoring of additional N species (nitric oxide (NO), nitrogen dioxide
(NOy), total oxides of nitrogen (NOy), peroxyacetyl nitrate (PAN), other ON) is, however,
periodically conducted at select sites within CASTNET and CAPMoN for deposition and
atmospheric chemistry assessments (Zhang et al., 2009).

Most direct measurements (i.e., using micrometeorological flux methods) of air-surface
exchange (i.e., dry deposition and bidirectional exchange) span periods of a few weeks to
months, failing to capture the range of atmospheric, biogeochemical, and phenological
conditions that drive annual scale fluxes. Such measurements are typically conducted to
characterize exchange processes rather than to develop annual speciated dry deposition
budgets. Inferential models or CTMs are therefore commonly used to estimate the dry
component (Fenn et al., 2010; Schwede and Lear, 2014; Nanus et al., 2017; McDonnell et
al., 2018; U.S. EPA, 2019) of total deposition for North American ecosystem assessments.
Though estimates vary depending on the time period of the model simulation and the
particular model that is used, dry deposition of Nr generally contributes 50% or more of
CTM derived total N deposition budgets across the CONUS (Zhang et al., 2012a; Dennis et
al., 2013; Zhang et al., 2018). While the importance of dry deposition is well established,
dry deposition models used at the field scale and employed in CTMs can exhibit large
uncertainty. Assessments in Europe (Flechard et al., 2011) and the U.S. (Schwede et al.,
2011; Lietal., 2016; Wu et al., 2011, 2012) show that fluxes of Nr species from commonly
used models can differ substantially, up to a factor of 3 or more, even when using the same
meteorological inputs and surface parameters. Variability among models reflects differences
in parameterizations of atmospheric and surface resistances and continued lack of
understanding of the underlying processes driving net canopy-atmosphere exchange.

Additional measurements of air-surface exchange and associated measurements of surface
chemical, physical, and biological characteristics are needed to improve site-specific
deposition budgets and air-surface exchange algorithms used in field scale deposition
models and gridded CTMs. Assessment of existing datasets is needed to inform these
measurement needs with respect to chemical species, ecosystems and geographical
locations, and air-surface exchange processes. In this paper, we summarize the state of the
science of measurements of dry deposition of Nr compounds in North America, beginning
with the current understanding of the importance of dry deposition to total deposition at the
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U.S. continental scale, followed by a review of the micrometeorological and analytical
methods used for direct measurements of air-surface exchange. We then summarize the
existing measurements of Nr air-surface exchange measurements in natural ecosystems in
North America, focusing on the U.S. and Canada. Based on this data synthesis, we outline
research needed to address data gaps from the perspective of developing more complete
deposition budgets and improving current understanding of air-surface exchange processes.
We acknowledge that because the scope of this review is constrained to North America, the
large body of Nr flux work performed in Europe and elsewhere, which established the basis
for much of the work in the U.S., is not covered in detail.

State of the science

Deposition budget

To provide context for the discussion of dry deposition in the following sections, the total
and dry components of the deposition budget for 2015 for the CONUS are shown in Figure
1. The budget was developed using version 5.2.1 of the Community Multi-scale Air Quality
Model (CMAQ, www.epa.gov/CMAQ). The depositing species are categorized by wet or
dry deposition and oxidized (labeled with ‘OXN’) versus reduced (labeled with ‘REDN”)
forms of N. Reduced N comprises gaseous NH3 and particulate NH4*. OXN_NOx includes
NO and NO,; OXN_PANT represents total peroxy nitrates (PNs) in the gas phase;
OXN_ORGN represents other gas phase ON species such as isoprene nitrates; OXN_OTHR
represents nitrogen pentoxide (N,Os) and HONO; NO3~ and NH,4* represent particulate
components; TNOj3 represents total gaseous HNO3 + particulate NO3™; and REDN_ToT
represents total gaseous NH3 + particulate NH4*. Relevant to the total budget, it is important
to note that reduced forms of ON are not considered in either the dry or wet components, nor
is the treatment of oxidized ON comprehensive. Thus, from a completeness standpoint the
budget will be biased low with respect to total N deposition. With this caveat, the budgets
shown in Figure 1 reflect the state of the science of deposition modeling as represented by a
widely used regional CTM and, as such, are used here to illustrate the relative importance of
the dry deposited fraction of Nr and the contribution of individual species or groups of
compounds to the dry deposition budget for the U.S.

Nr deposition budgets have been previously developed for the U.S. and Canada using
inferential modeling (Zhang et al., 2009), other versions of CTMs (Dennis et al., 2013;
Zhang et al., 2012a; Zhang et al., 2018), and measurement-model fusion approaches
(Schwede and Lear, 2014). Additionally, inferential approaches are now incorporating
satellite observations to estimate dry deposition of a number of reactive nitrogen species,
including NO, (Cheng et al., 2013; Lu et al., 2013; Nowlan et al., 2014; Jia et al., 2016;
Kharol et al., 2018), total nitrate (HNO3 + NO3™) and NH,* (Jia et al., 2016), NOy, (Geddes
and Martin, 2017), and NH3 (Jia et al., 2016; Kharol et al., 2018).

The CMAQ simulation summarized in Figure 1 shows that dry deposition dominates the Nr
budget at the continental scale, contributing 61% of total deposition compared to 39% from
wet deposition. Oxidized and reduced forms of nitrogen account for 57% and 43% of total N
deposition and 62% and 38% of dry deposition, respectively. The primary forms of dry
deposition are HNO3 (33.7%) and NH3 (32.2%), which together account for approximately
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2/3 of dry N deposition. We note that in this simulation NH3 fluxes are modeled using a
bidirectional flux framework (Pleim et al., 2013; Bash et al., 2013). Deposition of NO3~
aerosol (OXN_NO3"™) contributes 9.3% of dry deposition. OXN_NOx, which due to
atmospheric processing is essentially all NO,, contributes 6.2% of the dry budget, followed
in importance by dry deposition of NH4* aerosol (5.8%). Dry deposition of gas phase
organics (OXN_PANT = 5.6%; OXN_ORG = 5.1%) together account for 10.7% of the dry
budget while OXN_OTHR (N,05 and HONO) contribute 2.0%. The domain-wide mass
balance was not assessed in the CMAQ runs presented above; however, CTM predictions
from earlier studies show that wet + dry deposition generally account for ~ 65% of oxidized
Nr and ~ 75% of reduced Nr emissions, overall, at the U.S. continental scale (Dentener et
al., 2006; Dennis et al., 2013). Acknowledging that the mass balance will be influenced by
relationships between air concentrations and deposition as emissions change over time, these
earlier studies illustrate the importance of deposition in the context of long-range transport.

While the budget presented above reflects the overall pattern at the continental scale, the
contributions of individual species are strongly dependent on location, varying with
proximity to sources, meteorological patterns, and atmospheric chemistry. Furthermore, the
deposition budget contains uncertainty and biases related to model treatment of emissions,
chemistry, deposition and other processes (Walker et al., 2019). Comparing CMAQ V5.2.1
to weekly NADP/NTN wet deposition for 2015 across the CONUS, the model tends to
underestimate NH4* wet deposition (normalized mean bias = —29.9%) while NO3~ wet
deposition is only slightly biased at the continental scale (normalized mean bias = —7.6%).
Model underestimation of wet deposition of NH4* likely reflects uncertainty in NH3
emissions inventories and bidirectional air-surface exchange (Kelly et al., 2014; Butler et al.,
2015; Battye et al., 2016; Zhang et al., 2018). As previously mentioned, incomplete
representation of model organic N chemistry and deposition is an important source of
uncertainty in total wet deposition of Nr. Lack of observations precludes an assessment of
model biases in dry deposition at the continental scale and large differences in dry
deposition models for the more common inorganic Nr species (HNO3, NH3, NO,, NO3™,
NH,4*) have been previously noted (Flechard et al., 2011; Schwede et al., 2011; Li et al.,
2016). While PAN has received some attention (Wu et al., 2012; Wolfe et al., 2011), dry
deposition schemes for organic Nr compounds have been less extensively evaluated (Nguyen
et al., 2015). Parameterizations of non-stomatal deposition processes and NH3 compensation
points are key sources of uncertainty in dry deposition estimates.

Flux measurement methods

Commonly used micrometeorological methods for direct measurement of Nr air-surface
exchange include eddy covariance (EC), gradient methods, and relaxed eddy accumulation
(Baldocchi et al., 1988; Moncrieff et al., 1997; Fowler et al., 2001; Zhang et al., 2010).

Eddy covariance—The most direct approach is the EC technique (Foken et al., 2012), in
which the vertical flux (£) of mass through a horizontal plane in the atmosphere, such as
above a forest canopy, is quantified as the covariance of the fluctuating components of the
vertical wind velocity (1) and the concentration of the chemical species of interest (¢) as:
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F=w'c 1)

The overbar in equation (1) represents time-averaging, usually 30 minutes, and the primes
represent deviations from the mean as illustrated in equation (2):

/ —

c=c—c¢ )

The primary requirements for standard EC (e.g., ignoring advection and storage) are flat,
homogeneous terrain over a sufficient area surrounding the measurement location, well-
developed turbulence, and chemical and meteorological instruments of sufficient time
response and precision to capture the range of eddy motions driving the air surface
exchange. Time response requirements are typically between 1 and 10 measurements per
second (/2) depending on the surface characteristics and corresponding sensor height.

Gradient methods—Gradient approaches involve measuring the vertical concentration
profile at two or more heights above the exchange surface and applying the measured
vertical concentration gradient to the measured eddy diffusivity for momentum, heat, or
mass (Foken, 2008). The typical calculation (e.g., Thomas et al., 2009; Wolff et al., 2010;
Rumsey and Walker, 2016; Ramsay et al., 2018) for ~of chemical species cusing
concentration measurements at two heights takes the form:

us - k
F.= - - AC

zp—d 2p—d z1—d (©)
=] vl ) vl

where wu~is friction velocity, calculated from the momentum flux measured by EC, yis the
integrated stability function for sensible heat, z; and z,are the measurement heights above
ground between which the concentration gradient (4C) is measured, L is the Monin-
Obukhov length typically calculated from the EC derived sensible heat flux, ks the von
Karman constant (k= 0.41), and d'is the zero plane displacement height. A variant of this
method is the modified Bowen-ratio (MBR) (Meyers et al., 1996) in which the turbulent
diffusivity is assumed to be equivalent to the turbulent diffusivity for heat such that the flux
may be calculated as:

AC

FC=MJTﬁ (4)

mean concentration and air temperature differences between heights z; and z,above the
canopy. The ratio of the heat flux to the temperature gradient is also known as the eddy
diffusivity for heat (K}p). Gradient methods also require flat, homogeneous terrain and well-
developed turbulence. Drawbacks relative to EC include the need to correct profiles for
atmospheric stability (aerodynamic method), increased uncertainty during transition periods
when heat fluxes (or other scalars on which the eddy diffusivity is based) become small
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(MBR method), difficulty in estimating the flux footprint, and the need to correct for effects
of sampling within the roughness sublayer in the case of tall vegetation. The advantage of
gradient methods relative to EC is that they can be employed to measure fluxes of
compounds for which fast sensors are not available. Fluxes are typically determined from
gradients of concentrations integrated over 30 minutes to an hour.

Relaxed eddy accumulation—Relaxed eddy accumulation (REA; Businger and Oncley,
1990) is an alternative technique that allows for measurement of the flux at a single height
but without the time response requirements of EC for concentration measurements.
Measurement of the flux at a single height avoids the need for stability corrections and
uncertainty in flux footprint estimation associated with gradient techniques. The REA
approach employs fast switching based on measurement of the vertical wind speed to sample
air concentrations in upward versus downward moving eddies from which the flux is
determined as:

Fe=fo,(X1T -X]) ®)

Here ¢y and ¢, are the average air concentrations in the up- and down-drafts, respectively, oy,
is the standard deviation of the vertical wind velocity (measured at 10 Hz), and gis an
empirical dimensionless parameter that can be estimated from EC measurements of
temperature and other scalars (Katul et al., 1996). REA systems can employ continuous or
time-integrated measurements of atmospheric concentrations, with averaging periods from
30 minutes to a few hours.

Flux datasets—Published datasets of Nr micrometeorological flux measurements for
natural and semi-natural ecosystems in North America are summarized in Table 1. Data are
categorized by flux measurement method and analytical (i.e., for online measurements) or
sampling method (i.e., for time integrated approaches) is also indicated. Where possible,
fluxes and deposition velocities (V) are reported with negative fluxes indicating deposition.
Our review is limited to studies employing micrometeorological flux measurement
techniques over natural ecosystems and focusses on studies in the U.S. and Canada. Earlier
flux measurements conducted in North America and elsewhere have been previously
summarized by Zhang et al. (2002).

Oxidized inorganic N—In addition to understanding the total deposition budget of Nr and
categorizing the deposition processes to both wet and dry fractions, it is necessary to
understand the composition of Nr deposition in order to identify portions that are subject to
regulatory control. In the U.S., this is limited to the anthropogenic fraction of oxidized
inorganic Nr, which primarily originates from fossil fuel combustion. The oxidized Nr
chemical system is summarized in Figure 2, illustrating the diversity of inorganic and
organic species in both the particle and gas phase that make up the NOy, budget. The flux of
total oxidized Nr can be quantified by measuring the total NOy, flux, which is dominated by
inorganics but may contain a significant organic fraction, both in gaseous and particulate
forms (e.g., organic nitrates). Daytime NOy, fluxes summarized in Table 1 range from ~ -1.5
to -60.0 ng N m=2s71,
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Fluxes of NOy are typically measured by EC using a 3-D sonic anemometer for the
micrometeorological parameters and the thermal conversion of all oxidized Nr to NO on a
heated catalyst followed by detection of NO by chemiluminescence. While this approach is
relatively straightforward compared to other techniques for specific compounds, existing
North American datasets are limited to a few mixed deciduous forest sites (Haliburton
Forest, central Ontario, Geddes et al., 2014; University of Michigan Biological Station
(UMBS), Program for Research on Oxidants: PHotochemistry, Emissions, and Transport
(PROPHET site), northern Michigan, Geddes et al., 2014; Harvard Forest, central
Massachusetts, Munger et al., 1996; Horii et al., 2005) and coniferous forests in central
North Carolina (Turnipseed et al., 2006) and Quebec (Munger et al., 1996). We note that the
work of Munger and colleagues at Harvard Forest represents the only continuous multi-year
long-term dataset of directly measured Nr dry deposition in North America. Because NOy, is
a bulk measurement of multiple species, it is most useful for budget development rather than
process analysis and is most beneficial when conducted over temporal scales that allow for
calculation of seasonal or annual deposition budgets.

As illustrated in Figure 1, HNO3 deposition is the largest contributor to the oxidized Nr dry
deposition budget (33.7%), owing to its higher concentration relative to other compounds
and large deposition velocity (V). Vyfor HNOs is generally thought to be limited only by
atmospheric rather than surface resistances to deposition. For this reason, it is one of the
most studied components of the NO, deposition budget across a range of North American
ecosystems. As detailed in Table 1, fluxes of HNO3 have been quantified using gradient and
REA methods employing a variety of analytical and batch sampling techniques. More
recently, advancements in online chemical ionization mass spectrometry (CIMs, Nguyen et
al., 2015) and spectroscopic methods (Farmer et al., 2006) have allowed the use of EC
techniques. HNOg3 fluxes are on the same order as NOy, with average values reported in the
studies summarized in Table 1 ranging from < 1.0 to —40.0 ng m~2 s™1. The measured (V)
for HNOg is mostly in the range of 1.0 — 10.0 cm s~ (Brook et al., 1999, Table 1). Vyvalues
of 1.0 — 4.0 cm s~1 are generally recommended for modeling, with higher values more
applicable to tall canopies and daytime conditions (Zhang et al., 2003).

While a number of datasets exist for model evaluation across a range of ecosystems,
additional studies are needed to better understand the potential influences of surface
characteristics and processes on the HNO3 canopy resistance (Pryor and Klemm, 2004).
HNO3 has often been assumed to deposit according to V;ax calculated as 1/(R, + Rp)
where R, is the aerodynamic resistance to turbulent transfer and Ry, is the diffusive
resistance at the leaf boundary layer, resulting in a surface or canopy resistance (R;) of zero
(Hicks et al., 1987; Meyers et al., 1989; Sievering et al., 2001). Accumulation of HNO3
during dry periods (Tarnay et al., 2002) and equilibrium between HNO3 and NO3™ on
foliage surfaces (Nemitz et al., 2004a) are examples of processes that may result in the
presence of a “non-zero” R for HNO3. Additional field studies are needed to characterize
these processes for North American conditions to validate HNO3 R, parameterizations in
current CTMs (e.g., Zhang et al., 2003).

New field studies are also needed to quantify sources of uncertainty in measured canopy
scale fluxes resulting from gas-particle interconversion within the NH4NO3 + HNO3 + NH3

Sci Total Environ. Author manuscript; available in PMC 2021 January 01.



1duosnuel Joyiny vd3 1duosnuep Joyiny vd3

1duosnue Joyiny vd3

Walker et al.

Page 9

system (i.e. flux divergence; Brost et al., 1988). As summarized by Nemitz et al. (2004b)
and references therein, perturbation of the NH4NO3 thermodynamic equilibrium within and
above the canopy affects the vertical gradients NH4NO3 + HNO3 + NH3. NH4NO3
evaporation near the surface, for example, can result in apparent emissions of HNO3 and
NHj3 from the canopy (Huebert et al., 1988; Zhang et al., 1995; Pryor et al., 2001) and
corresponding rates of NO3~ and NH4* deposition that are too large to be explained by
deposition alone (Huebert et al., 1988; Brost et al., 1988; Wyers and Duyzer, 1997; Wolff et
al., 2010; Aan de Brugh et al., 2013). This process can furthermore result in apparent
emission of smaller particles from the canopy (Nemitz et al., 2004a).

At the continental scale, NOy (NO + NO5), which is primarily NO,, may contribute on the
order of 6% of the Nr dry deposition budget (Figure 1), though larger contributions (>10%)
have been estimated at Canadian CAPMOoN sites using a combination of measured air
concentrations and inferential modeling (Zhang et al., 2009). The NOy fraction of the
oxidized inorganic Nr flux has been studied relatively extensively in the context of in-
canopy and near surface chemical processing within the NOy system. Because the chemical
timescale of the cycling of NOy between NO and NO is similar to the turbulence time scale,
their canopy-scale fluxes will reflect a combination of emission from the soil, deposition to
the canopy, and in-situ chemical processing. NO and NO, fluxes are measured by EC using
several approaches. NO fluxes are measured directly by fast chemiluminescence (e.g.,
Geddes et al., 2014) whereby NO,, fluxes may be determined directly by spectroscopic
techniques (Horii et al., 2004; Farmer et al., 2006), or by fast NO chemiluminescence after
conversion of NO» by photolysis (Geddes et al., 2014). In North America, canopy scale NO
and NO> fluxes have been conducted in a few coniferous (Blodgett Forest, Sierra Nevada
Mountains, California, Farmer et al., 2006; Min et al., 2014) and mixed deciduous forests
(Harvard Forest, Massachusetts, Horii et al., 2004; Haliburton Forest, Ontario, Geddes et al.,
2014; and the PROPHET site, Michigan, Geddes et al., 2014). Measurements at these sites
exhibit patterns of upward and downward canopy-scale fluxes of NO and NO,, reflecting the
net result of chemical processing within the canopy air-space and turbulent exchange.
Geddes et al. (2014) noted that the fluxes at different times of day tended to offset, yielding
a total NOy flux near zero, while net upward fluxes of NO and NO, were observed at
Blodgett Forest (Min et al., 2014). Net downward fluxes of NO, consistent with the presence
of a compensation point were observed at Harvard Forest (Horii et al., 2004). NO and NO,
fluxes have also been measured by EC from aircraft over the southeastern U.S. (Wolfe et al.,
2015).

Downward NO, fluxes reported in Table 1 are generally < 5.0 ng N m~2 s~1 except for the
early work of Delany et al. (1986) where much higher concentrations (up to 40 ppb NO,)
were observed. The measured (/) for NO, is mostly in the range of <0.0 - 1.0 cm s72
(Wesely and Hicks, 2000; Zhang et al., 2002; Table 1). For practical reasons, dry deposition
of NO can be neglected in the deposition budget. Typical V/,values of 0.1 — 0.8 cm s~1 for
NO, are recommended for modeling over vegetated canopies and much smaller values over
bare land and water surfaces (Zhang et al., 2003). As an example, Kharol et al. (2018)
calculated the 10t — 90t percentiles of the annual average V,;(NO,) over North America to
be 0.04 — 0.26 cm s~ for 2013 using the dry deposition scheme of Zhang et al. (2003).
Patterns of NO, concentrations and deposition inferred from satellite measurements over
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North America (Nowlan et al., 2014; Kharol et al., 2018) highlight the need for additional
NOy flux measurements in locations such as urban to rural gradients where NO, contributes
a more significant fraction of NOy, than experienced in the more rural locations reflected in
Table 1. The accuracy of modeled NO5 deposition rates is likely more critical in ecosystems
experiencing higher exposure to NO,. Site differences in patterns of NOy air-surface
exchange, and in the relative importance of in-situ chemical processing to the net canopy-
scale flux, reinforce the need for measurements and models that explicitly quantify in-
canopy and near-canopy sources and sinks as well as net-canopy scale exchange.

As shown in Figure 1, CMAQ simulations suggest that HONO and N,O5 (OXN_OTHR)
likely make a relatively small contribution (2%) to the Nr deposition budget at the
continental scale. Theoretically parameterized Vyvalues for HONO and N,Os are as high as
those for HNO3 (Wesely and Hicks 2000; Zhang et al., 2003), however, negative HONO V
are often observed. Of the gas phase oxidized inorganic Nr compounds, HONO has received
less attention than NOy in terms of canopy-scale fluxes in North American natural
ecosystems. As noted in Table 1, only a few published studies were identified, which
describe fluxes measured by REA at the PROPHET deciduous forest site in Michigan
(Zhang et al., 2012b; Zhou et al., 2011) and the Blodgett Forest ponderosa pine site in
California (Ren et al., 2011), both rural low-NOy environments. Net upward fluxes from the
canopy to the atmosphere (i.e., negative V) were observed at both forest sites, with lower
fluxes at Blodgett Forest corresponding to lower concentrations. Viewed in the context of the
deposition budget shown in Figure 1, which reflects a model algorithm in which HONO
fluxes are unidirectional toward the surface, these studies point to the need for a more
detailed treatment of within- and near-canopy chemistry in order to accurately resolve the
net canopy-scale flux of HONO. Additional measurements are also needed in natural
ecosystems experiencing higher atmospheric concentrations of HONO than observed at
these two rural forested sites.

Measurements of N,Os fluxes are more limited. The study by Huff et al. (2011) over a
snow-covered agricultural field is the only published measurements that could be found for a
North American terrestrial ecosystem. Fluxes suggested that N,Osg deposition was likely
limited by turbulent transfer (i.e., similar to HNO3), which is expected given its high
solubility and is in agreement with N,Os fluxes measured above the air-sea interface near
San Diego, California (Kim et al., 2014). Additional measurements of N,Os fluxes are
needed, particularly in coastal ecosystems and downwind of urban areas (Thornton, et al.,
2010).

NO3™ aerosol is estimated to contribute ~ 9% of the dry N deposition budget at the
continental scale (Figure 1). While the regional patterns and trends of atmospheric
concentrations are relatively well characterized by national monitoring networks (e.g.,
CASTNET, IMPROVE), there exist relatively few published studies in which NO3™ fluxes
and deposition velocities have been directly measured in North America (Table 1). Earlier
measurements (Huebert et al., 1988; Rattray and Sievering, 2001) employed filter packs to
measure fluxes in a gradient mode, while online techniques employing steam aerosol
collection and ion chromatography have been used more recently (Rumsey and Walker,
2016). Gradient studies have been conducted in grassland (Huebert et al., 1985; Rumsey and
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Walker, 2016) and alpine (Rattray and Sievering, 2001) environments. Recent advancement
of online aerosol mass spectrometry has enabled the use of EC techniques for NO3™ flux
measurements at two North American forest sites (Blodgett Forest, Calilfornia, ponderosa
pine, Farmer et al., 2011; 2013; Borden Forest, Ontario, mixed deciduous/coniferous,
Gordon et al., 2011). NO3~ fluxes measured in the studies summarized in Table 1 are
typically < 1.0 ng N m=2s71,

In CTMs, size distributions of fine versus coarse mass fractions of NO3™ need to be
simulated reasonably well in order to estimate its dry deposition using size-resolved or
modal-based dry deposition schemes. Typical V/,;values are in the range 0.1-0.3 cm s~ for
the fine particle fraction and nearly double for coarse particle fraction over vegetated
canopies (Zhang and He, 2014). Thus, Vyof NO3™ should be mostly in the range of 0.1-0.5
cm s~1 over vegetated canopies, noting that it has a substantial coarse fraction especially in
warm seasons, and is likely < 0.1 cm s™1 over smooth surfaces. With the exception of fluxes
measured at the high elevation Niwot Ridge site (Rattray and Sievering, 2001), the V
summarized in Table 1 are generally consistent with this range. Coastal environments, where
deposition of coarse mode NO3™ may contribute more significantly to the Nr deposition
budget than fine mode NO3™ at inland sites, represent an important geographical data gap
where flux measurements are needed. As previously noted, additional observations of NO3~
flux, coincident with HNO3 and NH3 fluxes, are needed to better understand potential
sources of uncertainty in measured canopy-scale fluxes resulting from gas-particle
interconversion within the NH4;NO3 + HNO3 + NHj3 system (i.e. flux divergence). Gordon et
al. (2011) note flux divergence as a possible explanation for the observed NO3~ fluxes from
the canopy to atmosphere in their study at Borden Forest.

Reduced inorganic N—Reduced inorganic N (NHx = gaseous NHs3 and particulate
NH,4™) in the atmosphere primarily originates from agricultural sources of NHs, including
animal manure and fertilized soil (Reis et al., 2009). In contrast to oxidized N emissions,
NH3; emissions are not regulated in the U.S. NH,* aerosol is, however, relevant to the U.S.
primary NAAQS as a component of PMs 5. As illustrated in Figure 1, deposition of gaseous
NHg3 is an important contributor to the continental scale Nr deposition budget (32.2% of dry
N). Furthermore, the relative contribution of reduced forms of N to the atmospheric
inorganic N budget is increasing over time as NOy emissions continue to decline (Li et al.,
2016). Li et al. (2016) show that reduced N now dominates the inorganic Nr deposition
budget in many areas of the U.S., with the contribution of NH3 dry deposition alone varying
regionally from 19% (Northwest) to 63% (Southwest). Thus, knowledge of the role of NH3
and NH4* in Nr deposition budgets is becoming more important for understanding
ecological impacts and for developing approaches to maintain or reduce deposition rates
below critical N loads in North American ecosystems (Pardo et al., 2011; Ellis et al., 2013).

NH3 is unique to other Nr compounds in that it is exchanged bi-directionally between the
atmosphere and biosphere depending on the compensation point and emission potential of
the underlying surface. NH3 may be emitted from or taken up at the leaf surface via stomatal
and cuticular pathways and may emit from or deposit to soil and the overlying litter layer
(see Massad et al., 2010 and Flechard et al., 2013). Bidirectional NH3 air-surface exchange
algorithms used in North American deposition assessments, both at the field scale (Li et al.,
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2016) and within gridded CTMs (Zhang et al., 2010; Pleim et al., 2013; Bash et al., 2013;
Zhu et al., 2015; Whaley et al., 2018), are largely based on parameterizations developed
from European datasets (see Massad et al., 2010 and Flechard et al., 2013). Stomatal and
soil exchange pathways are regulated by NH3 emission potentials that vary by vegetation
and soil type along with other aspects of ecosystem biogeochemistry. Cuticular exchange
processes are affected by surface wetness and the acidity of the exchange surface, which is
influenced by the vegetation itself as well as the chemical composition of material deposited
to the surface (Flechard et al., 1999; Burkhardt et al., 2009; Burkhardt and Hunsch, 2013;
Wentworth et al., 2016). Because these properties are to some extent ecosystem specific and
dependent on atmospheric chemistry, datasets are needed to assess seasonal and annual net
fluxes of NH3 and to validate or revise current parameterizations for North American
conditions.

While NHs fluxes in natural ecosystems generally reflect bidirectional exchange, reported
Vare in the range of 0.1 to ~ 4.0 cm s~ for semi-natural and natural terrestrial ecosystems,
with highest Vyobserved over coniferous forests (weighted average = 2.2 cm s™1) and lower
V,yover deciduous forests (weighted average = 1.1 cm s1) and grassland/heathland
(weighted average = 0.9 cm s~1) (Schrader and Brummer, 2014). Although bi-directional
exchange models are now commonly used in CTMs, big-leaf dry deposition models (i.e.,
V) are still used for generating long-term fluxes over large spatial scales, such as the
application of satellite NH3 observations for deposition assessments (Kharol et al., 2018).
Using the big-leaf deposition scheme of Zhang et al. (2003), Kharol et al. (2018) found 10t
— 90" percentiles of the annual average V;(NH3) of 0.28 — 1.01 cm s~1 over North America
(Kharol et al., 2018). Where reported, average NH3 Vy;summarized in Table 1 range from ~
1.3t0 4.0 cm s71, with higher values observed over grassland in the vicinity of a swine
production facility (Phillips et al., 2004).

Fluxes of NH3 summarized in Table 1 reflect both emission and deposition in natural
ecosystems, ranging in magnitude from <1.0 to >100.0 ng N m~2 s~L, The work of Langford
et al. (1992) summarizes early studies of NH3 fluxes at grassland (Pawnee grasslands,
northeast Colorado) and forest sites (Walker Branch, Oak Ridge, Tennessee) measured using
batch collection techniques in a flux gradient configuration. More recent measurements in
North America have employed a range of gradient approaches using batch collection of NHg
on acid coated filters (alpine tundra, Colorado, Rattray and Sievering, 2001); NH3
conversion to NO by heated catalyst/chemiluminescence in gradient mode (grass, North
Carolina, Phillips et al., 2004) and continuously wetted denuder with online concentration
measurement (Morgan-Monroe State Forest, deciduous, Indiana; Pryor et al., 2001; grass,
North Carolina, Rumsey and Walker, 2016). REA has been used with batch NH3 collection
by denuder (grass, Florida, Myles et al., 2007) and by wet effluent diffusion denuder with
online concentration measurement above a forest (Morgan-Monroe State Forest, Indiana,
deciduous; Hansen et al., 2015). Shaw et al. (1998) report fluxes measured by EC over a
grass field using a tandem mass spectrometer.

While a number of studies have been conducted in grasslands and to a lesser extent forests,
coastal ecosystems and wetlands represent geographical gaps where NH3 flux measurements
are needed. Additionally, flux measurements are needed within and downwind of
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agricultural areas to better characterize rates of NH3 deposition to natural ecosystems
experiencing elevated NHg concentrations. It is also notable that the only published datasets
for North American forests (Langford et al., 1992; Pryor et al., 2001; and Hansen et al.,
2015) are for mixed-hardwood ecosystems; published studies in coniferous North American
forests could not be identified. From a process standpoint, additional flux datasets are
needed in deciduous and coniferous forest ecosystems targeting a range of atmospheric
concentrations of NHs and atmospheric acidity. Supporting datasets of surface wetness and
biogeochemistry are also critical for interpreting fluxes within the context of surface
emission potentials and cuticle chemistry.

From a technological standpoint, open-path measurement techniques suitable for EC NH3
fluxes are advancing (Sun et al., 2015) and show promise for application to flux
measurements in natural ecosystems. Open-path technology has an obvious advantage in
avoiding inlet NH3 effects which limit the effective response time of fast detectors such as
quantum cascade (QCL), tunable diode laser (TDL), or CIMS systems in a “closed”
configuration (Z&ll et al., 2016; Famulari et al., 2004; Ellis et al., 2010; Sintermann et al.,
2011; Ferrara et al., 2012).

Averaged over the CONUS, NH,4* aerosol makes a smaller contribution (5.8% of dry N) to
the overall Nr deposition budget than NH3 (Figure 1). Fluxes of NH,* aerosol summarized
in Table 1 are typically < =1.0 ng N m™2 s™1, NH,* is mostly in fine particles, thus typical
Vyare similar to those of fine mode NO3™ mentioned above. Where concentrations of NH3
are much lower than NH,4*, contributions of NH3z and NH4* may be similar. This pattern
may be observed in locations distant from NH3 sources, as was found at several rural
Canadian locations (Zhang et al., 2009). As with NO3™, the regional patterns and trends of
atmospheric concentrations of NH,* aerosol are relatively well characterized by national
monitoring networks (e.g., CASTNET, IMPROVE, CAPMoN). However, published direct
flux measurements for North American sites appear to be limited to three studies (Table 1).
Rattray and Sievering (2001) employed batch collection with filter packs in a gradient
configuration to measure fluxes above alpine tundra (Niwot Ridge, Colorado). Rumsey and
Walker (2016) used a steam-jet aerosol collector with online ion-chromatography in gradient
mode to measure fluxes over grass (Chapel Hill, North Carolina). Aerosol mass
spectrometry was used to measure fluxes by EC at a single North American forest site
(Blodgett Forest, California, ponderosa pine, Farmer et al., 2011; 2013). As with NO3™,
additional studies of NH4* deposition are needed to better understand potential sources of
uncertainty in measured canopy scale fluxes resulting from gas-particle interconversion
within the NH4NO3 + HNO3 + NH3 system (i.e. flux divergence).

Organic N—On a global basis, ON may contribute ~ 25% of the total N deposition in
precipitation on average (Jickells et al., 2013). While both measurements (Jickells et al.,
2013; Cape et al., 2011) and recent global modeling (Kanakidou et al., 2016) reflect the
importance of ON to total N deposition, the composition, sources, and deposition processes
for ON remain poorly characterized for all but a relatively few compounds or groups of
compounds. ON comprises a wide range of gaseous and particulate forms whose sources
include soil dust, biomass burning, agricultural, marine, and anthropogenic emissions.
Classes of compounds include primary emissions and secondary reaction products such as
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amines and amino acids, urea, nitrophenols, alkyl amides, N-heterocyclic alkaloids, and
organic nitrates (Jickells et al., 2013; Cape et al., 2011). Dry deposition of ON remains
poorly characterized at the global scale, though technological advances in measurement
techniques suitable for flux measurements have led to an increase in dry deposition studies
in recent years. Here we provide a brief summary of published measurements of dry
deposition and bi-directional air-surface exchange of ON compounds for North American
natural ecosystems.

Oxidized organic N—With respect to air-surface exchange, the oxidized portion of ON in
the atmosphere has been studied in the context of particulate and gas phase organic nitrates.
When volatile organic compounds (VOCs) are present, NOy can react with organic peroxy
radicals (RO,) to form peroxy nitrates (PNs, RO,NO5) and alkyl and multifunctional nitrates
(RONOy) (Figure 2). PNs may account for 10-80% of total NOy in high NOy environments
(Roberts, 1990; Roberts et al., 2004; Cleary et al., 2007; Murphy et al., 2006; Day et al.,
2008), with PAN contributing the majority of the PN budget. PN species exist in the gas
phase and are thermally unstable, with lifetimes ranging from a few hours to weeks
depending on temperature. With respect to air-surface exchange, PNs are the most studied
class of ON compounds in North America. Figure 1 shows that PNs may contribute ~ 6% of
the total Nr dry deposition budget at the continental scale.

As summarized in Table 1, PNs are reported as speciated PAN, peroxypropionyl nitrate
(PPN) and peroxymethacryloyl nitrate (MPAN), where total acyl peroxy nitrates (APN) =
PAN + PPN + MPAN, or as total peroxy nitrates (XPN). With the exception of a single study
employing the gradient method and offline analysis of bag samples (Doskey et al., 2004),
fluxes are typically measured by EC using online CIMS (Turnipseed, 2006) or thermal
dissociation to NO, followed by laser induced fluorescence (TDLIF, Farmer et al., 2008). In
North America, PN fluxes have been measured over grass (lllinois, Doskey et al., 2004);
loblolly pine (Duke Forest, Chapel Hill, North Carolina, Turnipseed et al., 2006); ponderosa
pine (Blodgett Forest, California, Farmer et al., 2006; Wolfe et al., 2009; Min et al., 2012);
and by aircraft over the southeastern U.S. (Wolfe et al., 2015). Both upward and downward
fluxes have been reported, with average fluxes in Table 1 generally < 5.0 ng N m=2s71,

PN fluxes have been studied extensively at the Blodgett Forest and observations spanning
multiple years reflect the complexities of PN air-surface exchange. Farmer et al. (2008)
report a net upward flux of ZPN from the canopy in a 2004 study, driven by production
within the canopy air-space. Wolfe et al. (2009) report net deposition of PAN, PPN, and
MPAN during the 2007 Biosphere Effects on Aerosols and Photochemistry Experiment
(BEARPEX) experiment, with the majority of deposition attributed to stomatal uptake and
vertical gradients in PAN decomposition, leaving a small residual flux attributed to “non-
stomatal” uptake. Min et al. (2012) also report net deposition of APN during
BEARPEX-2009, but much smaller net fluxes of 2PN attributed to in-canopy production
and emission of PN species other than APNs. Differences across years may be attributed to
differences in photochemical conditions and biogenic emissions of PN precursors. Wolfe et
al. (2009) estimated an overall contribution of PN to the N deposition budget at their site of
4-19%. Across PN species, Wolfe et al. (2009) report larger average mid-day deposition
velocities for PPN (1.2 — 1.4 cm s~1) than PAN and MPAN (0.4 — 0.6 cm s™1) while
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Turnipseed et al. (2006) report average mid-day deposition velocities of PPN and MPAN of
1.0 — 1.6 cm s~ 1 and slightly lower values for PAN (0.8 — 1.2 cm s~1). Turnipseed et al.
(2006) also report that approximately half of daytime deposition could be explained by
stomatal uptake and that night-time fluxes tended to be larger when the canopy was wet.
Theoretically parameterized Vyvalues for PAN, PPN and MPAN are slightly smaller than
those of NO,, which are typically in the range of 0.1 — 0.8 cm s™1 as mentioned above
(Zhang et al., 2003).

Similar to studies of NOy and HONO, which show a combination of net emission and
deposition to the canopy across sites and time periods, measurements of PAN fluxes reiterate
the importance of quantifying the role of in-canopy chemistry in net canopy exchange with
the atmosphere, processes which are not captured in the model algorithms employed in most
CTMs including CMAQ. Deciduous forests represent a notable data gap for PN fluxes where
additional measurements are needed.

Alkyl and multifunctional nitrates (ANSs), which can exist in the gas or particle phase, can be
the dominant chemical sink for NOy in high biogenic VOC (BVOC)/low NOy environments
(Browne and Cohen, 2012; Paulot et al., 2012; Browne et al., 2014). Recent aircraft and
ground-based observations combined with Goddard Earth Observing System global CTM
(GEOS-CHEM) simulations show that 25-50% of surface RONO, is contributed by gas-
phase isoprene nitrates, 10% from gas phase monoterpene nitrates, and ~ 10% is in the
particle phase (Fisher et al., 2016). CMAQ simulations suggest that the gas phase portion of
these “other” organic nitrates may contribute ~ 5% of the Nr dry deposition budget (Figure
1, “OXN_ORGN”). While understanding of the importance of ANs to the NO, budget and
the AN chemical system is expanding rapidly, the processes of AN air surface exchange are
poorly known. Only four North American studies could be identified in which air-surface
exchange of ANs was directly measured. In all cases, fluxes were measured by EC using
TD-LIF (Farmer et al., 2006; Min et al., 2012) or CIMS (Wolfe et al., 2015; Nguyen et al.,
2015). Measurements of total AN fluxes (gas + particulate) at Blodgett Forest during 2004
and 2005 showed net downward fluxes to the canopy, with a median Vyof 2.1 cm s™1 (Table
1) indicating the presence of a surface resistance when compared with the maximum V
allowed by turbulence (Farmer et al., 2006). Total AN fluxes were generally <-2.0 ng N m
~2 571 (Farmer et al., 2006; Table 1).

Published measurements of speciated AN fluxes at North American sites are also few (Table
1). EC fluxes of isoprene hydroxy nitrates (ISOPN) have been measured by CIMS (Wolfe et
al., 2015; Nguyen et al., 2015). Wolfe et al. (2015) report an average V/yof 1.1 cm s™1 from
spatially integrated aircraft flux measurements over the “isoprene volcano” region of the
Ozark mountains, which agrees with the ground-based flux measurements (mean Vof 1.5
cm s~1) of Nguyen et al. (2015, Table 1) over a mixed coniferous/deciduous forest in the
southeastern U.S. (Centerville SouthEastern Aerosol Research and CHaracterization
Network (SEARCH) site, Brent, Alabama). Nguyen et al. (2015, Table 1) also report CIMS
EC fluxes of several other multifunctional gas phase organic nitrates, including methacrolein
and methyl vinyl ketone hydroxy nitrates (MACN + MVKN), propanone nitrate (PROPNN),
isoprene nitrooxy hydroperoxide (IPN), and monoterpene nitrooxy hydroperoxide (MTNP).
With the exception of MTNP, average deposition velocities of these compounds are similar
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over the approximately 4-week period of study, ranging from 1.3 to 1.7 cm s™1. The V/,for
MTNP was lower, averaging 0.8 cm s™1. All species deposited more slowly than allowable
by purely turbulent exchange, indicating the presence of a surface resistance. These
measurement-based Vyvalues are either not significantly different from or slightly higher
than the theoretical values (Zhang et al., 2003), keeping in mind that existing dry deposition
schemes could have large uncertainties even for well-studied species (Flechard et al., 2011).
Fluxes of speciated ANs summarized in Table 1 are generally < -1.0 ng N m=2s71,

Reduced forms of organic N—While measurements of rainfall composition suggest that
reduced N compounds may cumulatively make a significant contribution to the atmospheric
ON budget (Neff et al., 2002; Altieri et al., 2012), the processes by which reduced ON
compounds dry deposit are largely unknown. This component of the dry deposition budget is
not represented in the budget shown in Figure 1. Fluxes of hydrogen cyanide (HCN)
measured by Nguyen et al. (2015) are the only published dry deposition data for reduced ON
compounds that could be identified in the literature for North America. HCN is of interest as
a tracer for biomass burning (Rinsland et al., 1999). Nguyen et al. (2015) report a low
average V;= 0.3 cm s71 (flux < -0.5 ng N m=2 s71) over a mixed coniferous/deciduous
forest (Brent, Alabama) during summer, likely resulting from low solubility and reactivity at
the leaf surface. Measurements of air-surface exchange of other gas phase reduced ON
compounds, such as amino acids, aliphatic amines, and N containing nitroso compounds in
North America could not be identified.

Future research

The data and knowledge gaps summarized above motivate research needed to address the
incompleteness of dry deposition budgets, more fully characterize temporal and
geographical variability of fluxes, and better understand air-surface exchange processes to
improve models used for deposition assessments.

Completeness of deposition budgets —

Model deposition budgets used for critical loads assessments do not include the full
contribution of ON forms. Global measurements (Jickells et al., 2013) suggest that omission
of the water soluble ON fraction may result in a low bias of the wet N deposition budget by
25% on average; total contribution of ON to the dry deposition fraction is unknown. In the
near term, PM measurements conducted by CASTNET and CAPMoN could be expanded to
include an analysis of total water-soluble N, which would allow for estimation of bulk ON in
PM after subtraction of the inorganic components (NO3~ and NH,4*). Measurement of bulk
water soluble ON in PM in a routine monitoring mode would represent a large step forward
in understanding the contribution of ON to dry deposition in PM and its spatial and temporal
patterns.

For dry deposition of gas phase reduced ON species, techniques which allow for direct
measurement of the total reduced N flux (Brommer et al., 2013) represent an important first
step in accounting for this component of the dry deposition budget and could be
implemented in the near term. For oxidized ON, application of bulk alkyl and peroxy nitrate
converter methods (Farmer et al., 2006) to chemiluminescence detection for EC fluxes

Sci Total Environ. Author manuscript; available in PMC 2021 January 01.



1duosnuel Joyiny vd3 1duosnuep Joyiny vd3

1duosnue Joyiny vd3

Walker et al.

Page 17

should be explored. Separation of aerosol and gas phase contributions to the total oxidized
ON flux using coincident online aerosol and gas phase mass spectrometry methods should
be a long-term goal. Following advances in measurements of oxidized ON forms (Nguyen et
al., 2015), application of online mass spectrometry techniques to quantify speciated fluxes of
amines and amides (You et al., 2014; Yao et al., 2016) may also be possible in the short
term.

While direct measurements of dry deposition are critically needed, a combination of
measurements and inferential modeling may be a useful first step in complementing current
monitoring networks for missing ON species. For example, some dry algorithms may be
developed for the missing flux fractions by conducting scoping studies in which
concentrations of ON species are measured, along with micrometeorology and canopy
characteristics, over representative seasons and locations (e.g., Zhang et al., 2009; Flechard
et al., 2011) and/or by modeling studies (such as using CMAQ for simulating more N
species). Considering the large uncertainties in estimating fluxes of the monitored N species,
such an approach may be worthwhile for the missing N species in the short-term.

Temporal and geographical variability of fluxes —

With exception of the work of Munger et al. (1996) at Harvard Forest, most air-surface
exchange data sets span periods of a few weeks to months, failing to capture the range of
atmospheric, biogeochemical, and phenological conditions that drive annual scale fluxes.
For this reason, establishment of long-term sites for process level measurements of reactive
chemical fluxes should be viewed as a high priority long-term endeavor of the atmospheric
chemistry and ecological communities. Because the expense of process-level measurements
makes the establishment of a large number of sites unfeasible, use of low-cost approaches
for direct flux measurements, such as the Conditional Time-Averaged Gradient (COTAG)
technique (Famulari et al., 2010), should be considered. Such techniques could potentially
be deployed in a routine monitoring mode within existing infrastructure (e.g., CASTNET,
NADP, Ameriflux) to quantify dry deposition for seasonal and annual deposition budgets at
a relatively large number of sites.

Short term flux measurements also miss potentially important deposition episodes. For
example, large enhancements of Nr compounds have been observed in smoke plumes
(Benedict et al., 2017; Prenni et al., 2014; Geddes et al., 2014). While these observations
demonstrate that smoke plumes represent a significant source of site-specific temporal
variability in atmospheric Nr, there remains a paucity of measurements sufficient to
characterize the importance of biomass burning episodes to annual deposition budgets,
which may be particularly important at remote sites where background Nr deposition is low.
Characterization of Nr deposition associated with smoke plumes is a high priority but likely
a longer-term, opportunistic effort.

With respect to Nr flux measurements in natural ecosystems, low elevation forests and
grasslands have been studied most extensively. However, with the exception of HNOs3,
relatively few geographical locations have been characterized. As a general conclusion, more
flux measurements are needed in forest ecosystems, particularly deciduous forests for
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oxidized N and coniferous forests for NH3. Other geographical and ecosystem specific gaps
are summarized below.

. High elevation and alpine environments are particularly sensitive to Nr inputs
(Bowman et al., 2015). Only two studies (Rattray and Sievering, 2001; Sievering
et al., 2001) in high elevation (>3000 m) and alpine environments could be
identified for North America (excluding the work of Lee et al. (1993) over lava at
Mauna Loa, Hawaii). Such environments are challenging due to non-ideal terrain
and the generally low concentrations observed in these remote areas.

. Urban-to-rural gradients represent areas where deposition of oxidized Nr forms
to natural ecosystems is expected to be large and poorly understood species such
as NO, and HONO may make particularly important contributions. These areas
are not characterized by the studies summarized in Table 1.

. Agricultural regions represent areas where NH3 deposition is highly spatially
variable. With the exception of Phillips et al. (2004), studies summarized here do
not characterize NHs3 fluxes to natural ecosystems at high concentrations typical
of agricultural areas. These may also be areas where reduced ON forms (e.g.,
aliphatic amines) may be particularly important.

. Coastal zones represent areas where coarse NO3™ aerosol and ON compounds
from marine sources may be particularly important components of the dry
deposition budget. Table 1 contains a single study at a coastal site (Myles et al.,
2007).

. Dry deposition is the dominant pathway in arid ecosystems, which cover large
areas of the western U.S., yet direct dry deposition measurements in these areas
are lacking. Additional measurements that elucidate the processes of exchange
with the soil surface are particularly needed in these ecosystems (Fenn et al.,
20090; Padgett et al., 1999; 2001).

Experiments targeting these specific environments should be a long-term objective. We note,
however, that this list is not comprehensive with respect to the need for direct measurements
of deposition to sensitive ecosystems. For example, large areas of boreal forest are subject to
deposition resulting from industrial emissions associated with extraction and processing of
the Canadian oil sands (Proemse et al., 2013; Hsu et al., 2016; Makar et al., 2018).

Air-surface exchange processes —

While data are easily accessible for more routine measurements (e.g., wet deposition, air
concentrations) collected within networks, direct measurements of air-surface exchange of
particles and trace gases (i.e., dry deposition and bidirectional exchange) are typically
conducted in intensive, shorter-term studies. These datasets are therefore often less visible
and accessible to the user community. Establishment of a publicly available metadatabase
for Nr flux measurements would serve the atmospheric science and ecological communities
interested in better understanding the processes and drivers of land-atmosphere exchange of
Nr and development of models to better simulate these processes.
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Our review of existing North American flux datasets points to several data and knowledge
gaps related to air-surface exchange processes that must be addressed in order to advance
model algorithms. Recent studies of particulate and gas phase oxidized N fluxes (Farmer et
al., 2006; Wolfe et al., 2009; Min et al., 2012; Gordon et al., 2011) in North American forest
ecosystems document both emission and deposition at the canopy scale, challenging the
unidirectional (i.e., deposition only) flux models employed in field scale and gridded CTMs.
These studies highlight the importance of in-canopy chemical processes in regulating the net
flux between the atmosphere and biosphere, which can result in net loss from the canopy.
These results point to the need for studies to quantify within- and near-canopy sources and
sinks of the components of the chemical system under study (e.g., NOy or HNO3-NH3-
NH4NO3) such that models can be advanced to incorporate underlying biological, chemical,
and physical processes. This is a high priority and represents a long-term effort.

Measurements to elucidate the role of surface wetness and cuticle chemistry in the “non-
stomatal” canopy resistances for gas phase HNO3z, NH3, and PNs are also seen as a high
priority. Assessment of the volume and chemistry of dew (e.g., Wentworth et al., 2016) and
guttation could be incorporated into flux experiments in the near term. For NHs, flux
measurements should also be accompanied by measurements of soil and vegetation
chemistry in order to constrain the emission potentials responsible for soil and stomatal
compensation points. Such measurements could also be incorporated into flux experiments
in the short term.

From a technological standpoint, further development of open-path techniques for NHz flux
measurements is a short-term, high priority objective. Extension of micrometeorological flux
measurement techniques to complex terrain typical of Nr sensitive high-elevation
environments is also a long-term objective.

Opportunities for collaboration —

This review also highlights the need for closer collaboration between the atmospheric
chemistry and ecological communities with respect to advancement of Nr deposition budgets
in North America. Coordinated multi-agency field studies, leveraging expertise and
resources, can be a cost-effective approach to addressing the most urgent process-oriented
research questions. Historically, large-scale atmospheric measurement campaigns in the U.S.
have been developed and coordinated by the atmospheric chemistry community. While
measurements of Nr and deposition are often components of these studies, the ecological
community should engage with these efforts more directly where possible to advocate for
science objectives that integrate atmospheric chemistry and ecological questions relevant to
Nr deposition.
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Figure 1.
Nr deposition budget for the continental U.S. for 2015 (CMAQ V5.2.1). The top pie is the

total Nr budget. Bottom pie is dry deposition only. The depositing species are categorized by
wet versus dry deposition and oxidized (OXN) versus reduced (REDN) forms of nitrogen.
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Figure 2.
Schematic of the NOy system. Adapted from Seinfeld and Pandis, 1998.
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