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Abstract

It has been established in recent years that the gut microbiome plays a role in health and dis-

ease, potentially via alterations in metabolites that influence host physiology. Although

sleep disruption and gut dysbiosis have been associated with many of the same diseases,

studies investigating the gut microbiome in the context of sleep disruption have yielded

inconsistent results, and have not assessed the fecal metabolome. We exposed mice to five

days of sleep disruption followed by four days of ad libitum recovery sleep, and assessed

the fecal microbiome and fecal metabolome at multiple timepoints using 16S rRNA gene

amplicons and untargeted LC-MS/MS mass spectrometry. We found global shifts in both

the microbiome and metabolome in the sleep-disrupted group on the second day of recov-

ery sleep, when most sleep parameters had recovered to baseline levels. We observed an

increase in the Firmicutes:Bacteroidetes ratio, along with decreases in the genus Lactoba-

cillus, phylum Actinobacteria, and genus Bifidobacterium in sleep-disrupted mice compared

to control mice. The latter two taxa remained low at the fourth day post-sleep disruption. We

also identified multiple classes of fecal metabolites that were differentially abundant in

sleep-disrupted mice, some of which are physiologically relevant and commonly influenced

by the microbiome. This included bile acids, and inference of microbial functional gene con-

tent suggested reduced levels of the microbial bile salt hydrolase gene in sleep-disrupted

mice. Overall, this study adds to the evidence base linking disrupted sleep to the gut micro-

biome and expands it to the fecal metabolome, identifying sleep disruption-sensitive
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bacterial taxa and classes of metabolites that may serve as therapeutic targets to improve

health after poor sleep.

Introduction

Inadequate sleep can lead to metabolic[1], immunologic[2, 3], and cognitive deficits[4]. Many

of the pathological states that arise from sleep disruption also occur in conjunction with gut

dysbiosis, defined as a disruption of the community structure of the gut microbiome. This

includes metabolic disease[5–7] and cognitive impairment[8, 9] as well as other proinflamma-

tory and neuro-behavioral disorders such as multiple sclerosis[10], depression[11], anxiety[9,

12], and posttraumatic stress disorder[13]. This has led to the hypothesis that there is a rela-

tionship between inadequate sleep and the gut microbiome. Only a small number of studies

have tested this hypothesis, using heterogeneous sleep disruption protocols (e.g., acute sleep

restriction[14, 15], chronic sleep fragmentation[16]), in humans[14, 17], mice[15, 16], and rats

[17], and have yielded mixed results[17]. More research is therefore required to explore the

relationship between sleep, the gut microbiome, and potential mediators of microbe-host

interactions.

Despite the mounting evidence that supports an important role for the gut microbiome in

normal physiology, the mechanisms by which commensal microorganisms influence the host

are still unclear. Proposed mechanisms include direct interactions with the enteric nervous

system[18], interactions with toll-like receptors in the intestinal epithelium[19], regulation of

the immune system[20], and signaling of microbially-modified metabolites including those

originating from food sources and host bile acids[21–26]. These metabolites serve as a func-

tional measure of microbial activity, and the fecal metabolome closely reflects the composition

of the fecal microbiome[27]. Therefore, to understand the impacts of the microbiome on the

host, it is crucial to study not only the microbes, but also to examine the molecules that they

produce and that are present in their microenvironment. However, there have been no studies

to date examining the effects of sleep disruption on the fecal metabolome using untargeted

metabolomics.

We thus investigated the impact of a sub-chronic, five-day sleep disruption protocol on the

fecal microbiome and fecal metabolome in mice. Assessment of the fecal microbiome using

16S rRNA gene amplicons and of the fecal metabolome using untargeted LC-MS/MS mass

spectrometry revealed a global shift in both the microbiome and metabolome after sleep dis-

ruption, and aspects of these changes persisted through the fourth day after returning to ad
libitum sleep. Furthermore, microbial differential abundance testing and utilization of Global

Natural Products Social Molecular Networking[28] (GNPS) allowed us to identify specific taxa

of bacteria and families of metabolites that change in response to five days of sleep disruption,

many of which have known physiological relevance. These findings support the hypothesis

that gut dysbiosis, and changes in the fecal metabolome, after sleep disruption may contribute

to some of the health problems long known to be associated with inadequate sleep and that

these changes may be present even after the sleep-wake state is normalized.

Materials and methods

Animals

Seven-week old male C57BL/6N mice (Experiment 1, N = 7; Experiment 2, N = 20; Charles

River Laboratories, USA) were used in these experiments. Mice were group-housed upon
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arrival for one week until surgery (Experiment 1) or until being placed into individual sleep

disruption chambers (Experiment 2). Mice were maintained on a 12:12 L:D cycle at room tem-

perature (23˚C ± 2˚C) with food and water available ad libitum throughout the experiment.

The light source was two 14 W fluorescent tubes (soft white, 3000 K), resulting in an average

light intensity of ~500 lux inside the cylindrical sleep disruption cage. Zeitgeber Time (ZT) is

defined as the number of hours after the onset of the light period (light onset = ZT0). All mice

were housed and handled according to the Federal Animal Welfare guidelines, and all studies

were approved in advance by the Institutional Animal Care and Use Committee at Northwest-

ern University (Assurance Number: A3283-01; Protocol Number IS00001718).

Sleep disruption protocol

The same sleep disruption protocol was used in Experiment 1 and Experiment 2. Prior to the

sleep disruption protocol, all mice were transferred from their home cages into individual

sleep disruption cylindrical cages. Cages had corncob bedding and food/water available ad libi-
tum. Mice were allowed to acclimate to the chambers for 7 days before beginning the sleep dis-

ruption protocol. Sleep disruption was achieved using a commercially available system

integrated into the chambers (Pinnacle Technology, Lawrence, KS, USA), which simulates the

gentle handling technique via a rotating metal bar (22 cm in length) attached to a post at the

center of the cage. For the sleep disruption period, the bar’s rotation speed was set at seven

rotations per minute with reversals of rotation direction (i.e., clockwise vs. counterclockwise)

set to occur at semi-random intervals of 10 ± 10 seconds. The bar was programmed to rotate

for 20 hours per day (ZT6-ZT2), and was stationary from ZT2-ZT6, for 5 days. Experimenters

visually inspected mice at regular intervals during the sleep disruption windows to ensure that

the bar mechanism was functioning properly and that the sleep-disrupted mice were awake.

Control animals were placed in identical cages with bars that remained stationary throughout

the experiment. At ZT2 of the fifth sleep disruption day, the motorized bars were stopped, and

mice were allowed to sleep ad libitum for the remainder of the experiment.

Sleep recording and analysis

One week after arrival, mice for Experiment 1 were implanted with electroencephalographic/

electromyographic (EEG/EMG) sleep recording devices (Pinnacle Technologies, Lawrence, KS,

USA). Surgical procedures were performed using a mouse stereotaxic apparatus with standard

aseptic techniques in a ventilated, specially-equipped surgical suite. Anesthesia was induced by

IP injection of cocktail of ketamine HCl (98 mg/kg; Vedco Inc, St. Joseph, MO, USA) and xyla-

zine (10 mg/kg; Akorn Inc, Lake Forest, IL, USA) before surgical implantation of a headmount,

which consisted of a plastic 6-pin connector connected to four EEG electrodes and two EMG

electrodes. Four stainless steel screws serving as anchors for the EEG leads and grounds were

screwed into the skull with one screw located 1 mm anterior to bregma and 2 mm lateral to the

central suture, and the other at 1 mm anterior to lambda and 2.5 mm lateral to the central

suture. The exposed ends of two stainless steel Teflon-coated wires (0.002 in. in diameter) serv-

ing as EMG leads were then inserted into the nuchal muscles using a pair of forceps. The head-

mount was then sealed by dental acrylic and a single suture at the front and back of the implant

was given to close the skin. Subcutaneous injection of analgesic meloxicam (2 mg/kg; Norbrook

Laboratories, Newry, Northern Ireland) was given to the animals immediately after the surgery

while the animals were still under anesthesia and once more on the following day.

One week after implant surgery, mice were moved into cylindrical sleep recording cages

(25 cm in diameter and 20 cm tall, Pinnacle Technologies) within individual acoustically iso-

lated chambers and the headmount was connected to the transmission tether. Cages had
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corncob bedding and food/water available ad libitum. Two days were allowed for acclimation

to the tether before baseline sleep was recorded. Sleep was recorded continuously throughout

the remainder of the experiment. Data were collected using Pinnacle Acquisition software

(Pinnacle Technologies), then scored as non-rapid eye movement sleep (NREM), rapid eye

movement sleep (REM), or Wake in 10 second epochs using machine learning-assisted sleep

scoring software developed in the Turek/Vitaterna laboratory[29]. The initiation of a bout of

NREM, REM, or Wake was defined by the occurrence of two consecutive epochs of NREM,

REM, or Wake (respectively). A bout was terminated when a bout of another state occurred.

Sleep bouts were initiated by two consecutive epochs of a sleep state (NREM or REM) and

were only terminated when a wake bout occurred. The delta power band was defined as 0.5–4

Hz. Relative power was calculated as the raw power (uV^2) in a particular band divided by the

total power in all bands. Power was then reported as a percent of baseline to reduce inter-indi-

vidual variability.

Fecal sample collection

In Experiment 2, fecal samples were collected at 3 different timepoints: 1) after mice were

transferred to sleep disruption cages but before starting sleep disruption (BL); 2) on the second

afternoon (~30 h) after the sleep disruption protocol was ended (R2); and 3) on the fourth

afternoon after the sleep disruption protocol was ended (R4). At each collection, mice were

placed into a clean sleep disruption chamber with fresh bedding and food and monitored

closely until two fresh fecal pellets from each mouse were collected. Only spontaneously voided

pellets were collected, so not every animal produced fecal pellets at every timepoint. Samples

were placed into individual 1.5 mL microfuge tubes, and frozen at -80˚C until microbiome/

metabolome analysis. All fecal pellets were collected between ZT8 and ZT12.

Microbiome analysis

Microbiome data were generally analyzed using the Quantitative Insights Into Microbial Ecol-

ogy 2 (QIIME2, version 2018.2) bioinformatics software package[30, 31]. A total of 56 fecal

samples (BL: n = 10/10 Control/Sleep Disruption; R2: n = 8/8; R4: n = 10/10) were processed for

microbiome analyses. DNA was extracted from fecal samples and the V4 region of the 16S

rRNA gene was amplified using the 515f/806rB primer pair with the barcode on the forward

read[32] and sequenced as previously described[33] using an Illumina MiSeq. Sequence data

were processed using Deblur v1.0.2[34], trimming to 150 nucleotides to create sub-operational-

taxonomic-units (sOTUs). These were then inserted into the Greengenes 13_8[35] 99% refer-

ence tree using SATe-enabled Phylogenetic Placement (SEPP)[36]. SEPP uses a simultaneous

alignment and tree estimation strategy[37] to identify placements for sequence fragments

within an existing phylogeny and alignment. Taxonomy was assigned using an implementation

of the Ribosomal Database Project (RDP) classifier[38] as implemented in QIIME2[30].

The OTU feature table was filtered to remove any features present in three or fewer samples

(out of the 56 original samples), and alpha and beta diversity metrics were performed at a rare-

fied depth of 8431 reads, resulting in the removal of five samples from the dataset (final n for

diversity metrics: Control/Sleep disruption—BL: n = 8/8; R2: n = 8/8; R4: n = 10/9). Beta diver-

sity was assessed using weighted UniFrac distance[39] matrices, which were used to generate

PCoA plots and to perform PERMANOVA in QIIME2. Within-group distance was calculated

from distance matrices by averaging the weighted UniFrac distance from an individual sample

to all other samples in the same group (Control vs Sleep Disruption) at the same timepoint.

Distance from baseline was calculated by averaging the distance from an individual sample at

R2 or R4 to all samples in the same group at the BL timepoint. Alpha diversity metrics were
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calculated using scikit-bio 0.5.1 as implemented by QIIME2. To test for differentially abundant

taxa between control and sleep-disrupted groups, samples with less than 8000 reads were

removed (final n for differential abundance testing: Control/Sleep Disruption—BL: n = 8/8;

R2: n = 8/8; R4: n = 10/9), and DESeq2 (version 1.14.1) was performed on the non-rarefied

dataset at each timepoint and at each taxonomic level using the Bioconductor R package in

RStudio (version 1.0.136, RStudio Inc). This was used in favor of techniques that more ade-

quately account for the compositionality of microbiome datasets[40] such as Analysis of the

Composition of Microbiomes (ANCOM) due to the extremely low sensitivity of ANCOM

when sample size is less than 20 per group[41].

PICRUSt2 analysis of 16S rRNA gene data

We inferred the microbial gene content from the taxa abundance using the software package

Phylogenetic Investigation of Communities by Reconstruction of Unobserved States

(PICRUSt2; https://github.com/picrust/picrust2; v2.1.4-b)[42]. This tool allows assessment of

functional capacity of a microbiome using 16S rRNA sequencing data. We then used DESeq2

to identify genes that were differentially abundant between control and sleep-disrupted groups

(notated with Enzyme Commission numbers).

Metabolomic analysis

A total of 56 fecal samples (BL: n = 10/10 Control/Sleep Disruption; R2: n = 8/8; R4: n = 10/10)

were processed for analysis of the fecal metabolome. Fecal samples were analyzed using an

ultra-high performance liquid chromatography system coupled to a quadrupole-Orbitrap

mass spectrometer (Q Exactive, Thermo Scientific, Waltham, MA, USA). Chromatographic

separation was accomplished using a Kinetex C18 1.7 μm, 100 Å pore size, 2.1 mm (internal

diameter) x 50 mm (length) column (Phenomenx, Torrance, CA, USA). The column was

maintained at 40˚C during chromatographic separation. 5.0 μL of extract was injected per

sample. Mobile phase composition was (A) water with 0.1% formic acid (v/v) and (B) acetoni-

trile with 0.1% formic acid (v/v) with a flow rate of 0.5 mL/min. Chromatographic elution was

performed as follows: 0.00–0.50 min, 5% B; 0.50–4.00 min, 50% B; 4.00–5.00 min, 99% B;

5.00–7.00 min, 99% B; 7.00–7.10 min, 5% B; 7.10–9.00 min, 5% B. Positive mode electrospray

ionization was performed using a heated electrospray ionization source using the following

source parameters: spray voltage, 3500 V; capillary temperature, 268.75˚C; sheath gas flow

rate, 52.50 (arb. units); auxiliary gas flow rate, 13.75 (arb. units); probe heater temperature,

437.50˚C; and S-lens RF level, 50 (arb. units). Mass spectrometry data were collected using

data-dependent acquisition. The MS1 scan range was set to 150–1,500 m/z with a resolution of

17,500 at 200 m/z. MS2 scans of the five most abundant ions in the previous MS1 scan,

acquired in a data-dependent manner, were collected at a resolution of 17,500 at 200 m/z.

MS1/MS2 automatic gain control target and maximum ion injection time were set to 5.0 E5

and 100 ms respectively. Higher-energy collision-induced dissociation was performed with a

normalized collision energy stepped from 20, 30, to 40%.

The LC/MS/MS feature table, generated using Optimus[43] peak detection, was normalized

to an internal standard followed by a row sum (total ion count) normalization and filtered to

remove features present in less than two samples. The resulting table contained 1124 metabo-

lites. PCoA plots were then generated using Bray-Curtis distance, and PERMANOVA was per-

formed at each timepoint on the normalized feature table using the Vegan package (version

2.5–5) in RStudio. In order to identify metabolites that were different between sleep-disrupted

and control groups, we used a multiple-method approach that included machine learning and

nonparametric hypothesis testing. In order to first identify the group of metabolites that were
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the key drivers of differences between groups at each timepoint, Variable Selection Using Ran-

dom Forests (VSURF, version 1.0.3)[44, 45] analysis was performed using the VSURF.R pack-

age in RStudio. Briefly, this protocol uses multiple iterations of the random forest supervised

machine learning technique to isolate the most important drivers of separation between two

groups by defining a threshold variable importance. Taking this list of suprathreshold features,

we then performed Wilcoxon Rank Sum tests at each timepoint as a form of a ‘post hoc’ test to

confirm differences between groups.

Features of interest were annotated using GNPS (version 1.3.0) [28], which allows MS1 and

MS2 spectra to be shared between researchers, forming a large database. By matching an

unknown spectrum to one or more in the database, and examining similarity to others within

a molecular network, GNPS can be used to identify purported molecular structures of features

from untargeted metabolomics. A molecular network was created using the online workflow

at GNPS. The data were filtered by removing all MS/MS peaks within +/- 17 Da of the precur-

sor m/z. MS/MS spectra were window-filtered by choosing only the top six peaks in the +/- 50

Da window throughout the spectrum. The data were then clustered with MS-Cluster with a

parent mass tolerance of 0.1 Da and a MS/MS fragment ion tolerance of 0.1 Da to create con-

sensus spectra. Further, consensus spectra that contained less than two spectra were discarded.

A network was then created where edges were filtered to have a cosine score above 0.6 and

more than four matched peaks. Further edges between two nodes were kept in the network if

and only if each of the nodes appeared in each other’s respective top ten most similar nodes.

The spectra in the network were then searched against GNPS’ spectral libraries. The library

spectra were filtered in the same manner as the input data. All matches kept between network

spectra and library spectra were required to have a score above 0.6 and at least four matched

peaks. Results can be found at https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=

6fb1d63a51764c7ea75a4e7256b6936a

Individual features of interest from the feature table were then matched to nodes (clusters)

in the network whose average m/z and RT were within 0.025 and 30 s, respectively, of the fea-

ture of interest. Features that were matched to multiple clusters using the aforementioned cri-

teria were assigned to the cluster with the closest average m/z and RT.

Statistical analysis and software

All graphs depict the mean +/- SEM unless otherwise stated. All PCoA plots were generated

using the EMPeror visualization tool as implemented in QIIME2[46]. Microbiome data pro-

cessing and analysis, including PERMANOVA, were performed in QIIME2 as outlined above.

Wilcoxon Rank-Sum tests, Kruskal-Wallace tests, VSURF, DESeq2 (with Benjamini Hochberg

adjustment), heatmaps, and boxplots/scatterplots were performed or generated in RStudio

(version 1.0.136, RStudio Inc). Two way ANOVA and mixed-effects models with Bonferroni

post hoc testing of sleep, alpha diversity, and beta diversity measures, along with generation of

all other graphs/figures, was performed using GraphPad PRISM (version 8.2.1; GraphPad Inc,

San Diego, CA, USA). Test statistics generated by PERMANOVA, ANOVA, and mixed-effects

models are reported in S1 Table.

Results

The five-day sleep disruption protocol significantly reduces and fragments

sleep

In Experiment 1, we performed a detailed analysis of sleep before, during, and after the sleep

disruption protocol that was used in Experiment 2 (see Methods and Fig 1A). Compared to

Sleep disruption and the fecal microbiome and metabolome in mice

PLOS ONE | https://doi.org/10.1371/journal.pone.0229001 February 20, 2020 6 / 25

https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=6fb1d63a51764c7ea75a4e7256b6936a
https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=6fb1d63a51764c7ea75a4e7256b6936a
https://doi.org/10.1371/journal.pone.0229001


control animals, sleep-disrupted animals had significantly less total sleep, NREM sleep, and

REM sleep per 24 hours during the protocol (Fig 2A–2C, F statistics can be found in S1

Table). While the amount of 24-hour NREM sleep recovered to the level of controls within the

first day of recovery sleep (Fig 2B), there was a significant rebound in the amount of REM

sleep on the first day of recovery sleep (Fig 2C). In order to observe sleep with greater resolu-

tion, we examined the fifth day of the sleep disruption protocol and the beginning of the first

day of recovery sleep using two-hour time bins. It was evident that the majority of this 24-hour

sleep loss occurred during the hours of the light period in which the motorized sleep disrup-

tion bar was moving (ZT0-ZT2 and ZT6-ZT12, Fig 2E–2G). REM sleep was reduced to nearly

zero percent while the motorized bar was moving, and this resulted in strong REM rebounds

during the first two hours of the ad libitum recovery windows (Fig 2G). Sleep disruption also

resulted in more fragmented sleep. During the five days of sleep disruption, there was a signifi-

cantly higher number of state changes in sleep-disrupted mice compared to controls (Fig 2D

and 2H). Furthermore, there was an increase in the number of bouts of sleep and bouts of

NREM in the sleep disruption group, accompanied by a significant decrease in the bout length,

further suggesting fragmentation (S1 Fig). The number of REM bouts per 24 hours was signifi-

cantly decreased on days the motorized bar was on, was significantly increased on the first

recovery day, but no longer significantly different from control by the second recovery day (S1

Fig).

Five days of sleep disruption creates changes in the fecal microbiome that

last at least four days after disruption has ended

In Experiment 2, fecal samples were collected before sleep disruption (BL), at day two post-

sleep disruption (R2), and at day four post-sleep disruption (R4) (see Methods and Fig 1B) to

assess the fecal microbiome and fecal metabolome. Beta diversity, or the difference in diversity

between two or more communities, was assessed at each experimental time point with

weighted UniFrac distance, which takes into account both the abundances and phylogenetic

relatedness of two communities[39, 50]. Principal coordinates analysis (PCoA) revealed no

difference between control and sleep-disrupted groups at baseline, as expected (p = 0.877,

PERMANOVA; Fig 3A), but significant clustering of control mice and sleep-disrupted mice

indicated a global difference in community structure at R2 (p = 0.018, PERMANOVA; Fig 3B)

that was gone by R4 (p = 0.663, PERMANOVA; Fig 3C). The distance from baseline, the aver-

age weighted UniFrac distance between an individual post-sleep disruption and all individuals

Fig 1. Experimental timelines. A) Experiment 1. Adult male C57BL/6N mice (n = 3, Control; n = 4, Sleep Disruption)

received surgical implants of sleep recording devices. After recovery from surgery, mice were subjected to five days of

repeated sleep disruption and two days of ad libitum recovery sleep. Sleep was disrupted for 20 h/day, with an ad
libitum sleep window between ZT2-ZT6. Sleep was recorded throughout the experiment. B) Experiment 2. Non-

instrumented adult male C57BL/6N mice (n = 10/group) were subjected to the same sleep disruption protocol, but

with four days of recovery sleep. Stool samples were collected before sleep disruption, on day 2 post-sleep disruption

and on day 4 post-sleep disruption (arrows). Abbreviations: Dis, Sleep Disruption.

https://doi.org/10.1371/journal.pone.0229001.g001
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within the same group at BL, was increased at R2 and R4 (Fig 3D, Right panel). Furthermore,

sleep disruption significantly increased the dissimilarity between individuals within the sleep-

disrupted group at R2 and R4 (Fig 3D, Left panel). Therefore, five days of repeated sleep dis-

ruption had a “destabilizing” effect in that it not only shifted microbial communities away

from controls, it increased dissimilarity within the group, and this effect lasted at least four

days after return to ad libitum recovery sleep.

Multiple measures of alpha diversity, the microbial diversity within an individual commu-

nity, were also examined because reductions in alpha diversity have been associated with path-

ological states such as inflammatory bowel syndrome[51], chronic stress[52], and obesity[53].

Faith’s phylogenetic diversity index was not affected by sleep disruption (Fig 3E, Left),

Fig 2. Effect of sleep disruption protocol on sleep measures. A-D) 24-hour totals of total sleep, non-rapid eye movement sleep (NREM), rapid eye

movement sleep (REM), and state shifts. There was a significant decrease in sleep, NREM, and REM during the sleep disruption protocol, and an

increase in state shifts. E-H) Two-hour bins of total sleep, NREM, REM, and state shifts from the fifth day of the sleep disruption protocol through ZT4

of the first day of recovery sleep. Yellow bars under the x axis indicate the lights being on, while black bars indicate the lights being off. Abbreviations:

BL, baseline; S, sleep disruption; R, recovery; ZT, zeitgeber time. n = 3-4/group. �p< 0.05, ��p< 0.01, ���p< 0.001 (Bonferroni post hoc test);

+p< 0.05 (overall effect of sleep disruption over entire time interval, Mixed-effects model); •p<0.05 (overall effect of Time over entire time interval,

Mixed-effects model); #p< 0.05 (Sleep DisruptionxTime interaction over entire time interval, Mixed-effects model).

https://doi.org/10.1371/journal.pone.0229001.g002
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consistent with results in different sleep disruption models[16]. Pielou evenness[54] was also

unaffected by sleep disruption (Fig 3E, Right).

Multiple bacterial taxa are differentially abundant in the sleep-disrupted

group

We tested for differential abundance between control and sleep disruption groups at each tax-

onomic level, at each timepoint. Of the 142 originally identified taxa (includes all levels), 0, 16,

and 6 were significantly different at the BL, R2, and R4 timepoints, respectively (FDR < 0.1,

Fig 4A; S2 Table). The ratio of the two most prevalent phyla in the mammalian gut, the Firmi-
cutes:Bacteroidetes (F:B) ratio, is a blunt measure of community shift. An increase in the F:B

ratio has been seen in obesity[55, 56], stress[57], as well as models of acute[14] and chronic

[16] sleep disruption. We found a significant sleep disruption-induced increase in the F:B ratio

(Fig 4B) that was significant at R2 but not at R4.

The increase in the F:B ratio was due to a significant increase in the relative abundance of

Firmicutes at R2 (Fig 4C). Within the Firmicutes phylum, two major classes changed in differ-

ent directions at R2. Bacilli were significantly decreased in sleep-disrupted mice (Fig 4D),

while Clostridia were significantly increased (Fig 4G). The decrease in the class Bacilli
appeared to mostly be due to significant decreases in the genus Lactobacillus (Fig 4E) and

genus Turicibacter (Fig 4F). Within the Clostridia class, one unknown genus within the Clos-
tridiaceae family was significantly decreased at R2 (Fig 4H), while other taxa within class Clos-
tridia were significantly increased (S2 Table). The low abundance phylum Actinobacteria (Fig

Fig 3. Effect of sleep disruption on microbiome beta and alpha diversity. A-C) Principal coordinates analysis (PCoA) plots using weighted UniFrac

distance. A significant difference between sleep disruption and control groups at day 2 post-sleep disruption was detected using PERMANOVA. D) Average

weighted UniFrac distance from an individual to all individuals within the same group (left) and from an individual post-sleep disruption to each individual

pre-sleep disruption (right) is increased at both day 2 and day 4 post-sleep disruption. E) Faith’s Phylogenetic Diversity (left) and Pielou Evenness (right)

were unchanged throughout the experiment. Abbreviations: BL, baseline; R2, day 2 post-sleep disruption; R4, day 4 post-sleep disruption. n = 8-10/group.
�p< 0.05 (PERMANOVA); ��p< 0.01, ���p< 0.001 (Bonferroni post hoc test); +p< 0.05 (Overall effect of Sleep Disruption, Mixed-effects model);

#p< 0.05 (Sleep Disruption x Time interaction, Mixed-effects model).

https://doi.org/10.1371/journal.pone.0229001.g003
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Fig 4. Effect of sleep disruption on individual microbial taxa. At each timepoint, DESeq2 was performed at each taxonomic level to identify taxa

differentially abundant between sleep disrupted and control groups. A) Summary of significantly different taxa by timepoint. B) The ratio of relative

abundances of the phyla Firmicutes to Bacteroidetes was significantly increased at day 2 post-sleep disruption in sleep-disrupted animals. This increase

was mostly driven by a significant increase in Firmicutes (C). Within the Firmicutes phylum, the class Bacilli (D), genus Lactobacillus (E), and genus

Turicibacter (F) were reduced at day 2 post-sleep disruption. The class Clostridia was increased (G) and an unknown genus within the Clostridiaceae
family (H) was decreased in sleep-disrupted animals at day 2 post-sleep disruption. Both the phylum Actinobacteria (I), and the genus Bifidobacterium
(J) were decreased at day 2 and day 4 post-sleep disruption in the sleep disrupted group. Abbreviations: BL, baseline; R2, day 2 post-sleep disruption;

R4, day 4 post-sleep disruption. n = 8-10/group. Data represent means ± SEM. �p< 0.05 (Wilcoxon Rank-Sum Test); ^FDR< 0.1 (DESeq2).

https://doi.org/10.1371/journal.pone.0229001.g004
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4I) was significantly decreased in the sleep-disrupted group at both R2 and R4. This decrease

was evident in the genus Bifidobacterium within the Actinobacteria phylum. These results par-

allel the beta diversity findings in that the greatest magnitude of shift in the fecal microbiome

was at R2, and while some measures recover, others persist into R4.

Five days of sleep disruption changes the fecal metabolome

Due to the increasing evidence supporting the role microbes play in generating or altering

physiologically active metabolites, we examined the impact of sleep disruption on the fecal

metabolome. Normalized feature tables containing 1124 features were used for PCoA analysis

at each timepoint to assess global changes due to sleep disruption. No separation was observed

at BL (p = 0.881, PERMANOVA; Fig 5A), but a clear separation between sleep-disrupted and

control mice was seen at R2 (p = 0.007, PERMANOVA; Fig 5B). This separation was no longer

present at R4 (p = 0.381, PERMANOVA; Fig 5C). Of the 1124 molecular features assayed, 250

were identified as significantly changing over time, relative to BL, in either the control group,

the sleep-disrupted group, or both (Kruskal-Wallace FDR < 0.1, Fig 5D). Many features (101/

250) significantly changed only in control animals, suggesting sleep disruption prevented a

naturally occurring change. Conversely, 57/250 features significantly changed over time in the

sleep-disrupted mice but not in the non-sleep-disrupted mice. We also compared sleep disrup-

tion to control groups at each timepoint individually to assess the relative amount of differen-

tially abundant features at each stage of the experiment, and the majority of significantly

differentially abundant features (142/204; Wilcoxon Rank-Sum, p< 0.05) were found at R2

(Fig 5E), with 57 of those 142 decreased and 85 of the 142 increased in the sleep-disrupted

group. Only 20/204 (13 decreased, 7 increased in the sleep disruption group) significantly dif-

ferentially abundant features were found at BL, whereas 42/204 (29 decreased, 13 increased in

the sleep disruption group) significantly differentially abundant features were found at R4.

Overall, these results indicate that five days of sleep disruption results in a global shift in the

fecal metabolome, both preventing naturally occurring shifts in the abundances of some

metabolites and creating changes in others. While this global shift is present only at R2, some

metabolites remained altered on the 4th day of ad libitum recovery sleep.

A subset of metabolites drive separation between sleep-disrupted and

control groups at day two post-sleep disruption

Variable Selection Using Random Forests (VSURF)[44, 45] was used to identify features that were

important drivers of separation between sleep disruption and control groups at R2. VSURF iden-

tified 98 features that were above the threshold variable importance (suprathreshold) and that suc-

cessfully distinguished the two groups on a heatmap (Fig 6A and 6B; S3 Table).

From here we sought to learn about the possible identities of these features of interest using

GNPS[28]. By matching an unknown spectrum or cluster of spectra to spectra in a large data-

base, and examining their similarity to others within a molecular network, GNPS can be used

to identify molecular classes and annotate purported molecular structures of features from

untargeted metabolomic datasets. This is a level 2 or 3 metabolite identification according to

the 2007 Metabolomics Standards Initiative[58], where level 1 is considered a high confidence

identification. Using GNPS to generate a molecular network for this dataset, the MS2 spectra

of 21/98 suprathreshold R2 features were matched to annotated spectra, including 4 of the top

25 drivers identified by VSURF (Fig 6B). Examining only the top annotated features (Fig 6C),

many features with spectral matches to di- and tripeptides, along with the lysine degradation

product L-saccharopine, were significantly increased in the sleep-disrupted group (Fig 6D–6F;

S2 Fig).
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We also noticed sleep disruption-induced changes in features with spectral matches to bac-

terially modified molecules including bile acids and urobilin. Two suprathreshold features

with spectral matches to the bile acid cholic acid were significantly reduced, and two were sig-

nificantly increased in sleep-disrupted mice at R2 (Fig 6G and 6H). Furthermore, two unan-

notated features with structural similarity to bile acids, as indicated by their presence in the

same molecular networks as primary and secondary bile acids, were also significantly reduced

(S3 Fig), indicating structural similarity to bile acids. Bile acids are commonly modified by

bacteria in the gut lumen by the enzyme encoded by the gene bile salt hydrolase (BSH)[59, 60],

and have diverse signaling properties that involve the immune[61] and nervous systems[25,

Fig 5. Effect of sleep disruption on the fecal metabolome. A,B,C) Principal coordinates analysis (PCoA) plots using

Bray Curtis distance. PERMANOVA detected a significant difference between sleep disruption and control groups day

2 post-sleep disruption, but not BL or at day 4 post-sleep disruption. D) Kruskal-Wallace tests were run within the

control group and within the sleep disruption group to determine metabolites significantly changing over the course of

the experiment (FDR< 0.1). The number of metabolites found to have an effect of time only in the control group (left

number), an effect of time only in the sleep-disrupted group (right number), or in both groups (middle number) is

depicted in the Venn diagram. E) Wilcoxon Rank-Sum tests were performed at each timepoint to quantify the number

of metabolites increased (right, green bars) or decreased (left, pink bars) in the sleep disruption group at each

timepoint (uncorrected p< 0.05). Abbreviations: BL, baseline; R2, day 2 post-sleep disruption; R4, day 4 post-sleep

disruption. n = 8-10/group. ��p< 0.01 (PERMANOVA).

https://doi.org/10.1371/journal.pone.0229001.g005
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Fig 6. Metabolites that drive changes seen at day 2 post-sleep disruption. Variable Selection Using Random Forests (VSURF) was performed at the

second day post-sleep disruption (R2) to identify metabolites that are the most important drivers (above a threshold variable importance) of separation

between sleep-disrupted and control groups. A) Heatmap of the 98 suprathreshold metabolites. B) Variable importance scores of the top 25

suprathreshold metabolites (m/z_RT), along with direction of change (arrows, green/up = increased in sleep disruption group, red/down = decreased in

sleep disruption group). Bold indicates metabolites that were annotated using Global Natural Products Social Molecular Networking (GNPS). C) Top 20

annotated metabolites. Normalized abundance (peak intensity normalized to total ion count) of metabolites with spectral matches to D) Ala-Glu-Lys, E)

Val-Cys-Lys, and F) Asn-Ile were increased at R2 but not at day R4. G,H) One metabolite with a spectral match to cholic acid was increased (G) and

another was decreased (H) at R2. I) Inferred abundance of the microbial bile salt hydrolase gene (EC:3.5.1.24) was also reduced at R2. For (D-H), boxes

indicate median, 25th and 75th quantiles; whiskers indicate 2�IQR from edges of box. For (I), data represent mean ± SEM. Abbreviations: BL, baseline; R2,

day 2 post-sleep disruption; R4, day 4 post-sleep disruption; Dis, Sleep Disruption; VI, variable importance; m/z, mass to charge ratio; RT, retention time

(seconds). n = 8-10/group. +FDR< 0.1, �p< 0.05, ��p< 0.01 (Wilcoxon-Rank Sum test); ^FDR< 0.1 (DESeq2).

https://doi.org/10.1371/journal.pone.0229001.g006
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62]. Thus, we used the software package PICRUSt2 to infer microbial gene content from the

16S rRNA gene data and assess inferred abundance of microbial BSH in our fecal samples. We

found the inferred abundance of BSH (EC:3.5.1.24) was significantly reduced in the sleep-dis-

rupted group at R2 (Fig 6I, S4 Table). These results provide evidence that microbially modi-

fied, physiologically active classes of molecules are impacted by five days of sleep disruption,

and that the microbiome has an altered functional capacity to produce them.

Another class of molecules that was affected by sleep disruption was dietary-derived penta-

cyclic triterpenoids. Triterpenoids are plant-derived molecules, and some have been shown to

have anti-inflammatory properties[63]. We identified a molecular network containing 43 clus-

ters, 12 of which were annotated as pentacyclic triterpenoids or close derivatives (S4 Fig). Of

the 43 clusters in the network, 9 were matched to VSURF suprathreshold features. This

includes seven that were suprathreshold at R2 (S4B–S4H Fig) and two that were suprathres-

hold at R4 (S4I and S4J Fig). A feature with a spectral match to sumaresinolic acid (S4B Fig),

along with unannotated feature 645 (S4G Fig) were significantly reduced at R2. A feature

matching corosolic acid (S4C Fig), along with unannotated features with the ID’s 871, 204,

133 and 273 (S4D–S4F and S4H Fig) were significantly increased at R2.

Another molecular network of interest contained two unannotated ions that only appeared

in sleep-disrupted groups (S5 Fig). These metabolites therefore hold potential to act as mark-

ers for recent sleep disruption, and future additions to the GNPS database may result in level 2

or 3 annotation of clusters in the network.

Some changes to fecal metabolites are present at day four post-sleep

disruption

Although no global change was seen on PCoA, we also ran VSURF analysis on the R4 feature

table and identified 64 suprathreshold metabolites that were able to separate the control and

sleep-disrupted groups (S6A and S6B Fig; S3 Table). Seven of these metabolites had MS2 spec-

tra that matched reference spectral libraries in GNPS. Among the annotated features were mole-

cules with spectral matches to hederagenin and wilforlide A (S4I and S4J Fig), which were

significantly reduced compared to controls at R4, and fell into the same molecular network as

multiple metabolites that were suprathreshold at R2. Others that were significantly increased or

decreased at R2 compared to controls did not recover by R4 (e.g. S6D–S6F Fig). This indicates

that, while no global changes were evident by day four of recovery sleep, sleep disruption did

have an impact on some individual metabolites that persisted for at least four days.

Discussion

Repeated sleep disruption is ubiquitous in modern society and has been linked to a multitude

of health problems. Recent lines of scientific inquiry have established an important role for the

gut microbiome in multiple facets of mammalian health and disease, many of which are also

affected by sleep disruption. The present study took a detailed look at the impact of a sub-

chronic, five-day sleep disruption protocol on the fecal microbiome as well as the fecal meta-

bolome in mice, and found that repeated exposure to inadequate sleep had an impact on the

microbiome and metabolome that lasted at least four days after the sleep disruption had

ended. Importantly, sleep disruption reduced levels of beneficial bacterial genera, altered the

metabolic function of the microbiome, and changed fecal levels of bacterially modified metab-

olites such as bile acids. These results can provide insights into possible mechanisms by which

sleep disruption may impact host physiology.

The protocol used in this study resulted in severely disrupted sleep for five days, character-

ized by an decrease in sleep amounts, and an increase in fragmentation. This pattern was fairly
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stable across the five days, indicating that the animals were unable to adapt to the paradigm or

find strategies to improve sleep as the protocol went on. This is a relevant model because

repeated nights of inadequate sleep followed by a few days of recovery sleep is a common

schedule in society today, and short sleep mixed with fragmentation is particularly prominent

among groups with demanding work schedules such as on-call physicians[64] and active duty

military personnel[65]. By the second day of recovery sleep, nearly all sleep parameters had

returned to control levels. Whether the specific characteristics of sleep disruption determine

how the microbiome or metabolome changes is unknown and warrants further investigation.

Previous work has demonstrated chronic (four week) sleep fragmentation (short disruption

every two minutes) in mice alters the gut microbiome[16]. Our results suggest that a sub-

chronic, more severe sleep disruption paradigm also results in significant shifts in the micro-

bial community structure, without large variation in alpha diversity. This sleep disruption pro-

tocol also increased the dissimilarity of the fecal microbiome between animals within the sleep

disruption group (within group distance) at both R2 and R4, indicating a “destabilizing” effect

that persisted long into recovery sleep. The sleep-wake pattern had normalized by R2, suggest-

ing that recovery of the microbiome may be a slower process than sleep homeostatic

mechanisms.

Changes to particular taxa observed in sleep-disrupted mice suggest the dysbiosis induced

by repeated inadequate sleep may have a detrimental physiological impact. Differential abun-

dance analysis of individual taxa revealed multiple bacterial taxa that were increased or

decreased in the sleep-disrupted group compared to controls, including an increase in the Fir-
micutes:Bacteroidetes (F:B) ratio and a decrease in Lactobacillus, Actinobacteria, and Bifidobac-
terium, all of which have established physiological impacts. An increase in the F:B ratio is a

blunt measure of community shift and has been seen in many pathological states including

obesity[55, 56], chronic stress[57], as well as an acute short sleep paradigm in humans[14] and

a chronic sleep fragmentation paradigm in rodents [16]. The phylum Actinobacteria, genus

Bifidobacterium, and genus Lactobacillus were all low in sleep-disrupted mice. Previous studies

in rodents and humans support a positive role for these taxa in stress resilience[13, 66] and

anxiety-like behavior[67–69]. Therefore, an increased F:B ratio, along with reduced Actinobac-
teria, Bifidobacterium, and Lactobacillus indicates a state whereby ability to cope with a proin-

flammatory or anxiety-inducing stimulus may be reduced. Indeed, sleep deprivation results in

altered responsiveness of the hypothalamic-pituitary-adrenal (HPA) axis[70–72], increased

inflammation[73, 74], and potentiated effects of a chemical stressor in a model of colitis in

mice[75], indicating that sleep deprivation may be a factor promoting stress vulnerability. This

is supported by a human study that observed that preexisting complaints of poor sleep

increased the risk of posttraumatic stress disorder (PTSD) and other stress-related psychiatric

disorders following trauma exposure[76].

As one of the principle mechanisms by which a change in the fecal microbiome can impact

host physiology is via change in the molecules they produce, we also examined the fecal meta-

bolome in this study. An untargeted metabolomic approach allows for wide surveillance of the

molecular environment as well as discovery of new molecular classes of interest[77]. Although

untargeted mass spectrometry cannot confirm exact structures of metabolites of interest with-

out secondary targeted standard assays, GNPS[28] allows us to infer the general class of many

interesting features based on spectral matches and molecular networking. Using this approach,

we identified multiple classes of molecules significantly impacted by sleep disruption, includ-

ing bile acids, which are microbially modified and physiologically relevant.

Multiple results from this study suggest microbiome-influenced bile acid metabolism was

impacted by sleep disruption. Primary bile acids are cholesterol derivatives that are synthesized

in the mammalian liver and excreted into the intestinal lumen to aid in lipid emulsification
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and absorption. In the intestine, primary bile acids are dehydroxylated and deconjugated by the

gut microbiome, creating secondary bile acids and greatly enhancing the diversity of the bile

acid pool[78]. Mounting evidence in the past decade has described bile acids as versatile signal-

ing molecules, with receptors throughout the mammalian organism[26, 62, 78]. Some bile acids

can act as anti-inflammatory and immunoregulatory agents in the intestinal tract and the cen-

tral nervous system by activating the bile acid receptors FXR (farnesoid X receptor) and TGR5

(Takeda G protein-coupled receptor 5)[25, 61]. Furthermore, bile acid receptors play a role in

glucose, lipid, and cholesterol metabolism[79, 80]. Two molecules with spectral matches to cho-

lic acid and two unannotated molecules within molecular networks that contained multiple pri-

mary and secondary bile acids were decreased in the sleep-disrupted group at R2.

Importantly, analysis of the inferred gene content also revealed a reduction in the abun-

dance of the microbial bile salt hydrolase (BSH) gene in the microbiomes of sleep-disrupted

mice at R2. BSH catalyzes the critical first step in microbial bile acid metabolism, and multiple

lines of evidence suggest these enzymes may be the “gatekeepers” of host-microbiome cross-

talk[60]. In a previous experiment, feeding Escherichia coli engineered to overexpress Lactoba-
cillus BSH to mice protected them from weight gain, and curbed lipid and cholesterol

metabolism[81]. A reduction in the fecal bile acid pool due to a reduction in microbial BSH,

therefore, could result in a proinflammatory, metabolically dysregulated state in the host.

Indeed, increased inflammatory markers have been observed in a sub-chronic short sleep (10

nights of 4 hours of sleep opportunity per night) model in humans [82], while a similar proto-

col (6 nights of 4 hours of sleep opportunity per night; also in humans) reduced glucose toler-

ance and increased sympathetic nervous system activity [1].

We also noticed a general increase in the abundance of metabolites with spectral matches to

tripeptides and dipeptides. This could indicate an increase in host mucosal proteolysis or in

microbial proteolysis[83]. Host and microbial proteolytic enzymes play a role in gastrointesti-

nal physiology, including activating signaling pathways (e.g. protease-activated receptors or

PAR’s) controlling inflammation and gut barrier function[83] as well as modulation of dorsal

root ganglion neuron excitability[84]. Furthermore, commensal bacteria have been shown to

create molecules with potent protease inhibitory activity[85], so a shift in microbial commu-

nity structure could have a direct impact on host proteolysis and physiology.

A third class of molecules that was impacted by sleep disruption was pentacyclic triterpe-

noids and close derivatives. The molecular family of dihydroxylated pentacyclic triterpenoids,

judged by spectral matches to sumaresinolic acid and corosolic acid, were decreased and

increased, respectively, at R2, while the dihydroxylated and monohydroxylated spectral fea-

tures, with spectral matches to hederagenin and wilforlide A, were significantly decreased at

R4. Also, four unannotated spectra within the network were significantly increased, and one

was decreased, at R2. Triterpenoids are a class of diverse, plant-derived molecules that have

been traditionally studied for their anti-tumor or anti-inflammatory properties[63, 86, 87].

Shifts in the balance of this molecular network could therefore have impacts on host physiol-

ogy. While it has been shown that administration of triterpenoid molecules can modulate the

microbiome[88], and that certain pentacyclic triterpenoids are metabolized by the micro-

biome[89], it is unclear whether the changes seen in this family of molecules due to sleep dis-

ruption were due to changes in the microbiome. In order to evaluate the biological impacts

and therapeutic potential of the molecules discovered in this study, follow-up studies will need

to be done to verify the structures of the features discovered here as well as to quantify their

concentrations in the gut.

Our results are consistent with a study by Poroyko et al. investigating the gut microbiome

in a mouse model of obstructive sleep apnea[16]. In that study, four weeks of chronic sleep

fragmentation caused global shifts in the fecal microbiome, as well as an increase in the F:B
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ratio, similar to this study. Furthermore, a study of acute sleep loss (four-hour sleep opportu-

nity) in humans also observed an increase in the F:B ratio, but not a global shift in beta diver-

sity[14]. Recently, a study in rats found marked shifts in the fecal microbiome and urinary

metabolites after a seven day severe stress/REM deprivation protocol[90]. Taken with the pres-

ent results, a link between inadequate sleep and the fecal microbiome appears to be present

across species and sleep disruption protocols. Importantly, the present study expands on these

findings to include the fecal metabolome, which has important implications as an effector sys-

tem of microbe-host interactions[21].

It is of note that a study published by Zhang et al.[17] used a similar sleep restriction proto-

col (20h/day sleep disruption using a rotating bar for 7 days) but found no changes in the fecal

microbiome. There are a few potential reasons for this discrepancy. First, the study by Zhang

and colleagues used rats while ours used mice. Second, the rats in both the sleep restriction

and control groups were manipulated every day to collect body weight measurements and

fecal pellets. We chose to leave the animals relatively undisturbed throughout the sleep disrup-

tion protocol. Our automated protocol allowed mice to remain in the same home cage to have

undisturbed sleep opportunity and to have limited contact with human researchers, which can

affect the microbiome[91, 92]. However, this approach did introduce some limitations to the

experiment because it did not allow for constant monitoring of food intake or fecal micro-

biome/metabolome during the sleep disruption period.

Overall, this study characterizes the impact of inadequate sleep on fecal microbiome as well

as the fecal metabolome, a potential effector system in microbe-host interactions. The changes

to microbiome and metabolome were present on the second day of recovery sleep, and some

changes persisted until at least the fourth day of recovery sleep, despite the recovery of most

sleep within two days of the cessation of sleep disruption. This is particularly interesting in

view of the observation that some of the neurobehavioral impairments observed after a week

of short sleep do not recover after a ‘weekend’ of recovery sleep despite reduction of subjective

sleepiness[93, 94]. Our findings also suggest that changes seen in particular bacteria and bacte-

rially-influenced signaling molecules such as bile acids suggest a proinflammatory, metaboli-

cally dysregulated state in the days following a five-day sleep disruption protocol.

Interventions designed to maintain the fecal microbiome and metabolome, or to proactively

offset the negative impacts of dysbiosis, should be investigated to promote resilience to

repeated sleep disruption, a problem that is ubiquitous in modern society.

Supporting information

S1 Fig. Effect of sleep disruption protocol on sleep fragmentation measures and delta

power. A,B) There was a significant increase in the 24-hour totals of total sleep bouts (A) and

non-rapid eye movement sleep (NREM) bouts (B) during the sleep disruption protocol in the

sleep disruption group. C) Rapid eye movement (REM) bouts were decreased during the sleep

disruption protocol, and increased on the first day of recovery in the sleep-disrupted group. D,

E,F) Median sleep bout duration (D) and NREM bout duration (E) were significantly

decreased in the sleep-disrupted group during the protocol, while the median REM bout dura-

tion (F) was unaffected in all days except for on S5. G) There was no change in 24-hour NREM

delta power due to sleep disruption. Abbreviations: BL, baseline; S, sleep disruption; R, recov-

ery; ZT, zeitgeber time. n = 3-4/group. �p< 0.05, ��p< 0.01, ���p< 0.001 (Bonferroni post

hoc test); +p< 0.05 (overall effect of sleep disruption, Mixed-effects model); •p< 0.05 (overall

effect of Time, Mixed-effects model); #p< 0.05 (Sleep DisruptionxTime interaction, Mixed-

effects model).

(PDF)
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S2 Fig. Sleep disruption changes fecal levels of molecules related to protein metabolism. A)

Normalized abundance (peak intensity normalized to total ion count) of a metabolite with a

spectral match to Leu-Lys was increased at day 2 post-sleep disruption. B) Global Natural

Products Social Molecular Networking (GNPS)-generated molecular network containing mul-

tiple annotated (blue) and unannotated (grey) clusters. Numbers next to grey clusters indicate

average parent mass of the spectra in the cluster. Metabolites that were above the threshold

variable importance in Variable Selection Using Random Forests (VSURF) analysis are out-

lined with a black circle. Length of grey lines connecting clusters indicates relative similarity of

the MS2 spectra. Arrowheads point towards clusters with a larger m/z. C) Normalized abun-

dance of a metabolite with a spectral match to L-saccharopine was increased at day 2 post-

sleep disruption (R2). Boxes indicate median, 25th and 75th quantiles; whiskers indicate 2�IQR

from edges of box. Abbreviations: BL, baseline; R2, day 2 post-sleep disruption; R4, day 4 post-

sleep disruption; Dis, Sleep Disruption; VI, variable importance; m/z, mass to charge ratio; RT,

retention time (seconds). n = 8-10/group. �p< 0.05, ��p< 0.01 (Wilcoxon-Rank Sum test).

(PDF)

S3 Fig. Sleep disruption decreases fecal levels of unknown molecules in networks with bile

acids. A,D) Global Natural Products Social Molecular Networking (GNPS)-generated molecu-

lar networks containing multiple annotated (blue) and unannotated (grey) clusters. Numbers

next to grey clusters indicate average parent mass of the spectra in the cluster. Metabolites that

were above the threshold variable importance in Variable Selection Using Random Forests

(VSURF) analysis are outlined with a black circle. Length of grey lines connecting clusters

indicates relative similarity of the MS2 spectra. Arrowheads point towards clusters with a

larger m/z. B) Normalized abundance (peak intensity normalized to total ion count) of an

unannotated metabolite with ID 516 was decreased at day 2 post-sleep disruption (R2). C)

Normalized abundance (peak intensity normalized to total ion count) of an unannotated

metabolite with ID 512 was decreased at R2. Boxes indicate median, 25th and 75th quantiles;

whiskers indicate 2�IQR from edges of box. Abbreviations: BL, baseline; R2, day 2 post-sleep

disruption; R4, day 4 post-sleep disruption; Dis, Sleep Disruption; VI, variable importance; m/
z, mass to charge ratio; RT, retention time (seconds). n = 8-10/group. �p< 0.05, ��p< 0.01

(Wilcoxon-Rank Sum test).

(PDF)

S4 Fig. Sleep disruption changes fecal levels of molecules related to pentacyclic triterpe-

noids. A) Global Natural Products Social Molecular Networking (GNPS)-generated molecular

network containing multiple annotated (blue) and unannotated (grey) clusters. Numbers next

to grey clusters indicate average parent mass of the spectra in the cluster. Metabolites that were

above the threshold variable importance in Variable Selection Using Random Forests

(VSURF) analysis are outlined with a black circle. Letters next to the black circles indicate the

panel of the figure corresponding to the cluster. Length of grey lines connecting clusters indi-

cates relative similarity of the MS2 spectra. Arrowheads point towards clusters with a larger m/
z. B,C) Normalized abundance (peak intensity normalized to total ion count) of a metabolite

with a spectral match to sumaresinolic acid (B) was decreased at day 2 post-sleep disruption,

while a spectral match to corosolic acid (C) was increased at R2. D,E,F,H) Unannotated mole-

cules with ID 871 (D), 204 (E), 133 (F), and 273 (H) were increased at R2. G,I,J) Unannotated

molecule ID 645 (G) was decreased at R2. Metabolites matching hederagenin (I), and wilfor-

lide A (J) were decreased at R4. Boxes indicate median, 25th and 75th quantiles; whiskers indi-

cate points within 2�IQR from edges of box. Abbreviations: BL, baseline; R2, day 2 post-sleep

disruption; R4, day 4 post-sleep disruption; Dis, Sleep Disruption; VI, variable importance; m/
z, mass to charge ratio; RT, retention time (seconds). n = 8-10/group. �p< 0.05, ��p< 0.01,
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���p< 0.001 (Wilcoxon-Rank Sum test).

(PDF)

S5 Fig. Two unknown fecal metabolites are present only in sleep-disrupted mice. A) Global

Natural Products Social Molecular Networking (GNPS)-generated molecular network con-

taining multiple unannotated (grey) clusters. Numbers next to grey clusters indicate average

parent mass of the spectra in the cluster. Metabolites that were above the threshold variable

importance in Variable Selection Using Random Forests (VSURF) analysis are outlined with a

black circle. Length of grey lines connecting clusters indicates relative similarity of the MS2

spectra. Arrowheads point towards clusters with a larger m/z. B) Normalized abundance (peak

intensity normalized to total ion count) of an unannotated metabolite with ID 964 was

increased at day 2 post-sleep disruption and at day 4 post-sleep disruption. C) Normalized

abundance (peak intensity normalized to total ion count) of an unannotated metabolite with

ID 965 was increased at day 2 post-sleep disruption but not day 4 post-sleep disruption. Boxes

indicate median, 25th and 75th quantiles; whiskers indicate points within 2�IQR from edges of

box. Abbreviations: BL, baseline; R2, day 2 post-sleep disruption; R4, day 4 post-sleep disrup-

tion; Dis, Sleep Disruption; VI, variable importance; m/z, mass to charge ratio; RT, retention

time (seconds). n = 8-10/group. �p< 0.05, ��p< 0.01 (Wilcoxon-Rank Sum test).

(PDF)

S6 Fig. Metabolites that are changed at day 4 post-sleep disruption. A) Heatmap of the 64

metabolites that were above threshold variable importance in Variable Selection Using Ran-

dom Forests (VSURF) analysis. B) Variable importance (VI) scores of the top 25 suprathres-

hold metabolites (m/z_RT). Bold indicates metabolites that were annotated using Global

Natural Products Social Molecular Networking (GNPS). C) VI scores of annotated metabo-

lites. D) Normalized abundance (peak intensity normalized to total ion count) of an unanno-

tated metabolite with ID 241 was increased in sleep-disrupted relative to control mice at both

day 2 post-sleep disruption (R2) and day 4 post-sleep disruption (R4). E) An unannotated

metabolite with ID 661 was trending towards an increase in sleep-disrupted compared to con-

trol at R2 and was increased at R4. F) An unannotated metabolite with ID 155 was trending

towards a decrease in sleep-disrupted mice compared to control mice at R2 and was decreased

at R4. Boxes indicate median, 25th and 75th quantiles; whiskers indicate 2�IQR from edges of

box. Abbreviations: BL, baseline; R2, day 2 post-sleep disruption; R4, day 4 post-sleep disrup-

tion; VI, variable importance; Dis, sleep disruption; m/z, mass to charge ratio; RT, retention

time (seconds). n = 8-10/group. �p< 0.05, ��p< 0.01 (Wilcoxon-Rank Sum test).

(PDF)

S1 Table. F statistics for PERMANOVA, ANOVA, and mixed-effects models. Test statistics

for analyses done in Fig 2, Fig 3, Fig 5 and S1 Fig are reported, and are organized by

Figure number and panel letter.

(XLSX)

S2 Table. Differentially abundant bacterial taxa post-sleep disruption. DESeq2 was performed

at each taxonomic level to determine taxa differentially abundant between sleep disrupted and

control groups. Taxa significant at an FDR< 0.1 are listed below as the mean relative

abundance ± SEM, along with Benjamini Hochberg-adjusted p values. Fold difference: (Sleep Dis-

ruption-Control)/Control. Abbreviations: Dis, Sleep Disruption; Con, Control. n = 8-10/group.

(DOCX)

S3 Table. VSURF suprathreshold metabolites: Variable Selection Using Random Forests

(VSURF) was performed at day 2 post-sleep disruption (R2) and day 4 post-sleep
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disruption (R4) to identify top drivers of separation between sleep-disrupted and control

groups. Metabolites that were above the VSURF threshold variable importance (‘suprathres-

hold’) from each timepoint are listed above, along with the feature’s ID, m/z ratio, retention

time, annotated name (if any), fold difference in the sleep-disrupted group compared to the

control group, unadjusted Wilcoxon Rank-Sum p value, and Benjamini Hochberg (FDR)-

adjusted p value. Bold indicates adjusted p values that are below the FDR of 0.1. Fold differ-

ence: (Sleep Disruption-Control)/Control. Abbreviations: Dis, sleep disruption; Con, control;

MZ, mass to charge ratio; RT, retention time; N/A, not annotated; Inf, infinity. n = 8-10/

group.

(DOCX)

S4 Table. PICRUSt2 results: PICRUSt2 software was used to infer microbial gene content

from the 16S rRNA gene data, and DESeq2 was performed at pre-sleep disruption (BL),

day 2 post-sleep disruption (R2), and day 4 post-sleep disruption (R4) to test for differen-

tially abundant genes. Results are listed above, with p-values, adjusted p-values, and fold-

change ((Sleep Disruption-Control)/Control) listed for each detected Enzyme Commission

number. Zero genes were significantly differentially abundant (FDR< 0.1) at BL, 176 were dif-

ferentially abundant at R2, and zero were differentially abundant at R4. Abbreviations: Dis,

sleep disruption; Con, control; N/A, not applicable; Inf, infinity. n = 8-10/group.

(XLSX)
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