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Abstract

Influenza A viruses cause seasonal epidemics and occasional pandemics in the human

population. While the worldwide circulation of seasonal influenza is at least partly under-

stood, the exact migration patterns between countries, states or cities are not well studied.

Here, we use the Sankoff algorithm for parsimonious phylogeographic reconstruction

together with effective distances based on a worldwide air transportation network. By first

simulating geographic spread and then phylogenetic trees and genetic sequences, we con-

firmed that reconstructions with effective distances inferred phylogeographic spread more

accurately than reconstructions with geographic distances and Bayesian reconstructions

with BEAST that do not use any distance information, and led to comparable results to the

Bayesian reconstruction using distance information via a generalized linear model. Our

method extends Bayesian methods that estimate rates from the data by using fine-grained

locations like airports and inferring intermediate locations not observed among sampled iso-

lates. When applied to sequence data of the pandemic H1N1 influenza A virus in 2009, our

approach correctly inferred the origin and proposed airports mainly involved in the spread of

the virus. In case of a novel outbreak, this approach allows to rapidly analyze sequence data

and infer origin and spread routes to improve disease surveillance and control.

Author summary

Influenza A viruses infect up to 5 million people in recurring epidemics every year. Fur-

ther, viruses of zoonotic origin constantly pose a pandemic risk. Understanding the geo-

graphical spread of these viruses, including the origin and the main spread routes between

cities, states or countries, could help to monitor or contain novel outbreaks. Based on

genetic sequences and sampling locations, the geographic spread can be reconstructed

along a phylogenetic tree. Our approach uses a parsimonious reconstruction with air

transportation data and was verified using a simulation of the 2009 H1N1 influenza A

pandemic. Applied to real sequence data of the outbreak, our analysis gave detailed

insights into spread patterns of influenza A viruses, highlighting the origin as well as air-

ports mainly involved in the spread.
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Introduction

Influenza A viruses continue to impose high mortality and morbidity worldwide [1]. In addi-

tion to seasonal epidemics every winter, pandemics can occur when an antigenically novel

virus, usually of zoonotic origin, establishes human-to-human transmission. The latest pan-

demic occurred in 2009, when a novel H1N1 influenza A virus emerged in March and quickly

spread around the globe, with 177,000 confirmed infections in over 170 countries until early

August [2]. While it is known that viral spread is mainly influenced by air travel [3] and sea-

sonal epidemics are seeded from East and Southeast Asia [4], the exact migration patterns are

not fully understood. Especially the inference of transition patterns on a fine-grained scale, e.g.

between single countries, states or cities, remains a challenge.

If sequence data together with sampling locations are available, the origin and spread of

viruses can be reconstructed using phylogeography. Given a phylogeny as well as locations for

the leaf nodes of the tree, phylogeography infers locations for internal nodes of the tree. This

approach reconstructs the source of the outbreak as well as spread routes. Current state-of-

the-art methods for phylogeography are based on Bayesian inference. Discrete Bayesian phylo-

geography [5] followed efforts to use parsimonious methods for the reconstruction by mini-

mizing the number of changes between states [6]. Bayesian methods improved this approach

by incorporating uncertainty and branch lengths, giving posterior probabilities to evaluate the

quality of the reconstruction and allowing the extension to a generalized linear model (GLM)

to test potential predictors of viral spread [3]. Therefore, Bayesian phylogeography is now

commonly used to study viral pathogens like influenza [4], HIV [7] and Ebola [8]. However,

these methods have several drawbacks that have not yet been addressed. First, due to the large

number of parameters that are estimated in Bayesian phylogeographic studies, the analysis is

slow for larger datasets and the number of distinct states is limited. Instead, locations are often

aggregated into larger regions such as continents [3,4], although more fine-grained locations

such as countries, states or sometimes even cities are available for a lot of sequences. Second,

since discrete Bayesian methods generally estimate rates of movements from the data, these

methods will only infer locations which are observed, excluding possible intermediate states

which have not been sampled [5,9,10]. Continuous phylogeography, based on inferring geo-

graphic coordinates using Brownian diffusion models, are an alternative which allow to infer

intermediate locations [9]. While this is a good model for local diffusion of rapidly evolving

viruses, it is less applicable for viruses that travel both locally and over large distances in a very

short time, e.g. by air travel in the case of influenza A viruses.

Here, we propose a new parsimony-based approach for phylogeographic reconstruction

and apply it to study the 2009 outbreak of the pandemic H1N1 (pH1N1) influenza A virus. To

use prior knowledge about the mode of travel, we directly include air transportation data via

effective distances, which are defined by the number of people travelling from one location to

another [11]. The phylogeographic reconstruction then uses the Sankoff algorithm [12] to find

internal locations, minimizing the distances along the tree. This approach inherently over-

comes the shortcomings of discrete Bayesian methods as in [3,5] and allows both the use of

fine-grained locations and the inference of intermediate locations.

We evaluated this approach using simulated data and our recently described distance mea-

sure to compare phylogeographic spread among different tree topologies [13]. We showed that

effective distances calculated on air passenger flows yield more accurate reconstructions than

geographic distances and Bayesian reconstructions with BEAST using the classical approach

without any distance information [14], while being comparable to the Bayesian reconstruction

using a GLM which includes both geographical and effective distances [3]. We then used this

method to study the early spread of the pH1N1 influenza A virus. Our method correctly
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inferred Mexico as an origin. Further, we proposed a list of airports that were mainly involved

in the initial spread of the virus and seeded a large number of infections in new locations. In

the case of future pandemics, this method allows to quickly analyze viral sequence data to iden-

tify the origin and major spread routes, which could help to implement surveillance and con-

trol measures to contain the spread of the disease.

Results

Phylogeographic reconstruction using simulated data

The early spread of the pH1N1 influenza A virus was simulated using GLEAMviz [15], which

has been widely used to simulate this outbreak [16,17] and has been shown to accurately pre-

dict influenza activity in various countries [18]. Based on the simulated transitions between

locations during the first weeks of the pandemic, we then used FAVITES [19] to simulate the

isolate sampling and sequencing, the tree as well as the sequences evolving along the phylogeny

50 times in total. The resulting simulated datasets included on average 97 sequences sampled

from 76 unique locations in 23 countries. To confirm that the simulated sequences and the

corresponding tree were an accurate representation of the pH1N1 virus, we compared them to

real HA sequences of the outbreak that were sampled until the end of April 2009. We calcu-

lated pairwise distances between the sequences using a Jukes-Cantor model for both real and

simulated sequences (S1A Fig) and further inferred phylogenetic trees to compare branch

length distributions (S1B Fig). With both the genetic distances between sequences as well as

branch lengths showing a similar distribution, we conclude that the simulation was an accurate

representation of the pH1N1 influenza A virus in terms of sequence diversity and tree resolu-

tion, which is essential to achieve a comparable accuracy for phylogeographic reconstructions.

Most sampling locations in the simulated data were in Mexico and the US, but the virus

already spread to Canada, Europe, Asia and Oceania as well (Fig 1A). New infections were

Fig 1. Simulated and reconstructed phylogeographic spread. Viral spread in North and Central America, shown by transitions between locations for the underlying

ground truth of the simulation (panel A) and phylogeny, and the inferred spread and phylogeny in panel B, which was reconstructed based on sequences simulated

along the phylogeny in A. For the phylogeographic reconstruction, effective distances were used. Transitions between locations are colored by their origin. In the

simulation, the outbreak was set in Veracruz (yellow), which was mainly involved in the spread, together with Cancún (green). Transitions from Mexico City are shown

in orange, all others in dark blue. In the reconstruction, the origin was placed in Zacatecas (light blue). From there, the virus mainly spread via Mexico City (orange),

Cancún (green) and Chicago (pink). All other transitions are shown in dark blue. The actual origin in Veracruz was not inferred and no sequences were sampled here,

which is why this location is missing in the map. While the origin and main spread routes differ, the locations are geographically close, leading to a Fréchet tree distance

of 39,591.53. The spread was visualized using Spread3 [21].

https://doi.org/10.1371/journal.pcbi.1007101.g001
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mainly seeded from Mexico, especially from Veracruz, the origin of the outbreak, and Cancún,

the second largest airport of the country. Transitions were given via origin and destination, as

output by the GLEAMviz simulation, but were not necessarily the direct route of travel. While

Veracruz only has direct flights to a small number of locations, transitions to the US and

Europe were possible via connecting flights, e.g. via Mexico City, the main connection from

Veracruz. Overall, the simulated locations agreed with the spread of the pandemic until the

end of April 2009, where the majority of cases was reported for Mexico and the US, and the

first cases occurred on other continents as well [20].

For each simulated dataset, we used the tree inferred on the simulated sequences as well as

their sampling locations for a phylogeographic reconstruction with the Sankoff algorithm (Fig

2). We tested both geographic, effective and equal distances. Using equal distances corre-

sponds to a reconstruction with the Fitch algorithm, minimizing the number of changes along

the tree, and might be used when no other distance information is available. Further, the phy-

logeographic reconstruction was done using the simulated tree topology to assess the level of

variation introduced by the tree inference and the robustness of our method in case of inaccu-

rate topologies.

An example of a reconstructed spread is shown next to the simulated spread in Fig 1B. In

this reconstruction, the inferred origin was Zacatecas, a city north of Mexico City. From there,

the virus spread to various locations including Mexico City and Cancún, which seeded a large

number of infections in new locations. In the north of the USA, the virus further spread mainly

via Chicago. In the simulated spread, locations like Mexico City and Chicago only play a

minor role, but they could be unobserved intermediate locations due to connecting flights in

the GLEAMviz simulation, where transitions are only reported via origin and destination.

However, while the exact reconstructed paths differed from the simulated spread, most of the

inferred internal locations in Mexico were geographically close. To quantify these geographic

differences between spread paths, reconstructed phylogeographies were compared to the

known spread on the simulated tree by calculating discrete Fréchet tree distances [13] using

geographic distances between locations (Fig 3A). This method compares the paths of locations

from the root to each leaf node, calculates discrete Fréchet distances [22] between them and

corrects the distance for each node by the number of paths.

For both the inferred and the simulated trees, the reconstruction using effective distances

resulted in a lower distance compared to the reconstruction using geographic and equal dis-

tances (P-values of paired t-test: 7.6×10−10 and 1.4×10−10 for the comparison to geographic dis-

tances (for inferred and reconstructed trees, respectively), and 7.1×10−5 and 0.0004 for the

comparison to equal distances). However, both reconstructions with effective distances

showed a small number of outliers with distances as high as in the analysis with geographic dis-

tances. In comparison, the reconstructions with equal distances showed extremely high varia-

tion compared to the other distance measures. When using geographic distances, the

phylogeographic reconstruction using the inferred tree resulted in higher distances compared

to the analysis on the simulated tree (P-value of paired t-test: 3.7×10−9), indicating that errors

introduced by the tree inference influenced the results. When using effective and equal dis-

tances, no significant difference was observed between reconstructions using the inferred and

simulated tree (P-value of paired t-test: 0.1197 for effective distances, 0.0622 for equal dis-

tances). However, using the simulated tree resulted into a lower variance.

While the Fréchet tree distance measures distances between the entire spread routes, we

further had a closer look at the inferred root locations. Since root locations indicate the possi-

ble origin of an outbreak, these are of particular interest. Veracruz, the correct root location in

our simulation, wasn’t inferred except in a few cases—once using geographic distances on the

inferred tree, once using effective distances on the simulated tree, as well as once and five

Phylogeographic reconstruction using air transportation data
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times using equal distances with the inferred and simulated tree, respectively. However, the

correct country of origin was inferred in the majority of cases when using effective distances.

Interestingly, although no significant differences were observed when comparing the Fréchet

tree distances, the reconstruction with the inferred tree topology inferred the country of origin

less accurately (in 72% of the cases, compared to 98% on the simulated tree topology). When

geographic distances were used, Mexico was only inferred as the origin in 24% of the simula-

tions when using inferred topologies, and 34% when using simulated ones. Instead, the origin

was placed in the US for most of the cases (74% and 62%, respectively). For reconstructions

using equal distances, Mexico is inferred in 42% and 40% of the simulations, and the US in

Fig 2. Phylogeographic reconstruction with the Sankoff algorithm using asymmetric, effective distances. Exemplary phylogeographic reconstruction using the

Sankoff algorithm on the tree and the cost matrix shown in panel A. The cost matrix c is asymmetric and represents effective distances. For each internal node, the

Sankoff algorithm calculates the minimal cost S(i) in the subtree, given the node is assigned location i (shown as the arrays in A, calculated via S(i) = minj[cij+Sl(j)]
+mink[cik+Sr(k)], where l and r denote the two descendant subtrees, and their costs, Sl(j) and Sr(k), respectively. For the root (shown in red), location A results in the

minimal cost and is assigned to that node (marked in green). Backtracking from the root to assign all other locations is shown in panel B. Given that a parent node has

been assigned state j, the child node will be assigned the state i that minimizes cji+S(i). The result of the backtracking is indicated by arrows labeled with the costs and the

states marked in green. The reconstructed spread along the tree is shown on a map in panel C.

https://doi.org/10.1371/journal.pcbi.1007101.g002
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30% and 40% (inferred and simulated topologies, respectively). In the other simulations, the

root is placed in different countries across South America and Europe, causing large deviations

from the actual spread.

To ensure that these results are independent of the transitions between locations, which

have been simulated only once using GLEAMviz and can vary between different runs, we per-

formed the same analyses on four additional GLEAMviz simulations, with 50 simulations of

the sampling, the tree and the sequences each. While there are some slight variations in the dis-

tributions of Fréchet tree distances across the five GLEAMviz simulations, the overall conclu-

sions remained the same, with the reconstructions using effective distances consistently

showing the smallest Fréchet tree distances (S2 Fig).

Using the same 50 simulations as before, we repeated the analysis using countries instead of

airports as locations. With this resolution, a comparison to the Bayesian reconstruction using

BEAST was possible. As before, discrete Fréchet tree distances were calculated to compare the

reconstruction to the reference data (Fig 3B). The parsimonious reconstruction using coun-

tries was comparable to the reconstruction using airports: using effective distances resulted in

lower Fréchet tree distances than geographic ones (P-values of paired t-test: 1.5×10−9 for

inferred trees, 5.6×10−6 for simulated trees). Notably, when compared to the other distance

measures, using equal distances on the country level resulted in more accurate reconstructions

than on the airport level. However, when using the inferred tree topology, using effective dis-

tances still resulted into significantly lower Fréchet tree distances (P-value of paired t-test:

0.0328). As observed previously, Fréchet tree distances were lower on reconstructions using

Fig 3. Parsimonious reconstructions with effective distances infer the simulated spread more accurately than reconstructions with geographic or equal distances.

Boxplots of discrete Fréchet tree distances comparing simulated phylogeographies to reconstructed phylogeographies, using a total of 50 simulations. Fréchet tree

distances are presented on a log2 scale. In panel A, the reconstructions use airports as locations and were performed on the tree inferred on simulated sequences using

geographic (cyan), effective (orange) and equal (light blue) distances, and on the simulated tree, again using geographic (pink), effective (green) and equal (yellow)

distances. In panel B, the reconstructions use countries, the same way as described above. Additionally, reconstructions were inferred with BEAST with symmetric rates

(dark blue), asymmetric rates (dark green) and a GLM (red).

https://doi.org/10.1371/journal.pcbi.1007101.g003
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the simulated tree topology as with the inferred one when using geographic distances, but not

when using effective ones (P-values of paired t-test: 0.0231 for geographic distances, 0.3483 for

effective ones). On the country level, however, a difference was also observed for equal dis-

tances (P-value: 0.0021) Phylogeographic reconstructions using BEAST with symmetric rates

showed higher distances than the parsimonious reconstruction with effective distances, but

were comparable to the reconstruction with geographic distances (P-values of paired t-test:

0.2668 for the comparison to geographic distances, 3.7×10−5 for the comparison to effective

distances). Using asymmetric rates for the Bayesian reconstruction resulted in similar, but

slightly lower distances. We further used a GLM with both geographic and effective distances

as potential predictors for the Bayesian reconstruction. Geographical distances were not

included in any of the models (Bayes Factor (BF) support< 1 for all 50 datasets), while effec-

tive distances were included with at least moderate support in 33 datasets (BF> 3). The recon-

struction using the GLM approach showed significantly smaller Fréchet tree distances than the

two other Bayesian reconstructions (P-values: 8.1×10−5 and 0.0015 compared to using sym-

metric and asymmetric rates, respectively) as well as the parsimonious reconstruction using

geographic distances (P-value: 4.4×10−6). Compared to the reconstruction using effective and

equal distances, no significant difference was observed (P-values: 0.1693 and 0.3345, respec-

tively). Enforcing effective distances in the GLM by fixing the predictor in the model did not

significantly alter the performance (P-value: 0.0827 for the comparison to the GLM that esti-

mates the predictors, S3 Fig). We further studied the influence of the estimated tree topology

on the Bayesian GLM approaches by fixing the simulated tree topology in the analysis. This

had two effects on the GLM using both geographic and effective distances as potential predic-

tors. First, when fixing the simulated tree, effective distances were included in all 50 datasets,

showing decisive support (BF> 100). As before, geographical distances were not included in

any of the models (BF< 1). Second, the analysis showed significantly lower Fréchet tree dis-

tances compared to the GLM approach when estimating the tree (P-value: 7.710−8) and the

parsimonious approach using effective distances on the simulated tree topology (P-value:

7.0×10−5, S3 Fig). Since the GLM on the simulated tree always included effective distances, fix-

ing effective distances as predictors in the model gave nearly identical results (S3 Fig). These

analyses show that the Bayesian GLM approach is sensitive to errors in the estimated tree

topology. Given the correct topology, this approach outperforms the parsimonious reconstruc-

tion; however, this advantage only holds in theory, as the correct topology is always unknown

in practice.

For nearly all datasets and analyses, the root was placed either in Mexico or the US, with

effective distances inferring Mexico more often (70% of the cases using the inferred tree topol-

ogy and 96% on the simulated one) than geographic distances (34% and 62%, respectively)

and equal distances (56% and 84%). Bayesian analyses inferred Mexico as the origin in 46% of

the datasets when using symmetric rates, in 66% when using asymmetric rates, in 68% when

using the GLM while estimating the predictors and in 84% when using the GLM with effective

distances as fixed predictors. When the simulated tree was fixed in the GLM analysis, Mexico

was inferred as the root location in all datasets.

Phylogeographic reconstruction of the early spread of the pandemic H1N1

influenza A virus

To test the parsimonious reconstruction with effective distances on a real dataset, we analyzed

the 378 HA sequences sampled from the beginning of the pH1N1 outbreak until the end of

April 2009. For the phylogeographic reconstruction, locations were assigned to each sequence

based on the sampling locations, as stated in the isolate name. The resolution of these locations

Phylogeographic reconstruction using air transportation data
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varied between cities, states and countries. We assigned the main airport (as defined via the

highest number of passengers) of the respective city, state or country to the sequence. Three

cities did not have an airport and instead we used the geographically closest airport available

in our list of locations. In total, this resulted in a set of 67 unique locations. The phylogeo-

graphic reconstruction using the Sankoff algorithm was performed using effective distances

and is displayed in Fig 4.

Our method inferred Mexico City for the root node of the tree and therefore as the origin

of the outbreak. With that, we successfully reconstructed the correct country of origin. Mexico

City is the main airport of the country and was assigned to all sequences sampled in Mexico

due to the lack of more accurate geographic information. The actual suspected origin in La

Gloria in the state Veracruz is around 300km away from our inferred origin. The lack of more

precise information about the sampling locations likely prevents our method to infer the origin

more closely. However, for some internal nodes our method inferred Cancún, a second loca-

tion in Mexico. This demonstrates that our approach is able to infer intermediate locations

which have not been observed at the tips and might therefore overcome some of the problems

introduced by poor sampling resolution. Cancún is the second largest airport in Mexico and a

Fig 4. Phylogeny for pH1N1 viruses with reconstructed spread. Parsimonious phylogeographic reconstruction using

effective distances on 378 HA sequences from the early stage of the 2009 H1N1 influenza A pandemic. Sequences from

67 different locations were included and represented by the closest airports. The main airports involved in the spread

(IAH (Houston), LAX (Los Angeles), JFK (New York), PHL (Philadelphia), PHX (Phoenix)) are shown in separate

colors, together with Cancun (CUN), which was not observed in the data but was inferred for some internal nodes. All

other locations were summarized per country or continent to allow their visualization. The tree was visualized using

GraPhlAn [23].

https://doi.org/10.1371/journal.pcbi.1007101.g004
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common tourist destination. Therefore, it likely contributed to the global spread of the pH1N1

influenza A virus. People travelling from Cancún around mid April have been the first

reported cases in the UK [24] and are further suspected to be the source of an outbreak at a

school in New York [25]. Our reconstruction finds a link from Cancún to New York as well,

together with links to Wisconsin and Alberta, Canada.

To explore the reconstructed spread in more detail, we counted the number of transitions

to a new location for each observed location. 46 of the 68 locations only occured at terminal

branches without seeding infections to new locations. Instead, there was a small number of air-

ports mainly involved in the spread. The airports with the highest numbers of links to new

locations were New York (31), Phoenix (24), Los Angeles (21), Houston (13), Mexico City (11)

and Philadelphia (11). As expected with effective distances, the method infers large airports,

but not only the largest airports of the region (as measured by the number of passengers) or

the airports with the highest numbers of sequences (S1 Table). For example, Phoenix is the

10th largest airport in North America with 7 sampled sequences, Houston the 11th largest

with 1 sequence, and Philadelphia the 20th largest with 4 sequences. This indicates that the

main airports are not only determined by the numbers of passengers or the number of sam-

ples, but are dependent on the specific outbreak and its origin.

Discussion

Parsimonious ancestral character state reconstruction has been used for phylogeographic

inference in the past [6]. Instead of using the Fitch algorithm for the reconstruction, therefore

minimizing the number of state transitions, we here used the Sankoff algorithm to minimize

distances between locations along the tree. This allowed us to introduce two innovations com-

pared to the previous parsimony approach with the Fitch algorithm: the inference of unob-

served locations for internal nodes, as well as the direct inclusion of air transportation data via

effective distances, as is commonly done in Bayesian analyses [3]. While effective distances

based on air travel are sensible for influenza A viruses, geographic distances are likely the best

choice for pathogens with a local spread, including the historical spread of diseases or the

spread of animal viruses like rabies. Effective distances can further be defined using local

movements based on commuting data or gravity and radiation models [26,27], which can be

useful to study epidemics in single countries where air travel does not play a major role. As

long as prior knowledge about the mode of transportation is known, it’s simple to adjust the

distance matrix used in the phylogeographic reconstruction with the Sankoff algorithm to a

specific pathogen. Distance matrices could further offer the opportunity to easily incorporate

epidemiological data about the timing of an outbreak by preferring or inhibiting certain

transitions.

To evaluate the phylogeographic reconstruction, we first simulated geographic spread using

GLEAMviz and then the sampling, trees and sequences using FAVITES. It should be noted

that the list of transmissions generated by GLEAMviz didn’t include transitions to locations

that have been previously infected; an assumption which might be adequate for the very begin-

ning of a pandemic but not in later stages. Further, the sampling process was simplified, with

locations randomly chosen for sampling and only a small number of sequences per sampled

location, while real influenza A virus sequences usually show a distinct geographic bias. Since

the sequence diversity and tree resolution were similar to real pH1N1 sequence data and com-

parable locations were observed, we believe the simulation was appropriate for an evaluation

of phylogeographic methods despite these simplifications. To our knowledge, no other refer-

ence dataset with known phylogeographic spread exists as an alternative. In the future, the

simulation could be adjusted to study other scenarios and problems in phylogeography that
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are difficult to address, e.g. the effect of different sampling biases on phylogeographic recon-

structions as well as different strategies to mitigate this bias, for example by using different sub-

sampling schemes.

By comparing the reconstructed spread paths to the simulated ground truth using discrete

Fréchet tree distances, we showed that our method using effective distances inferred the phylo-

geographic spread of pH1N1 more accurately than with geographic distances or equal dis-

tances, which are equivalent to previous parsimony approaches using the Fitch algorithm.

Furthermore, on the country-level our approach was more accurate than the classical BEAST

approach with both symmetric and asymmetric rates and comparable to the GLM diffusion

model. The GLM approach only outperformed the parsimonious analysis when the simulated

tree topology was fixed in the analysis; however, since this topology is generally unknown, this

does not present an advantage in practice. When only considering the root instead of complete

paths, the BEAST analysis with asymmetric rates and the GLM inferred the correct country of

origin as well as the reconstruction with effective distances, and outperformed the reconstruc-

tions using geographic and equal distances. The difference between effective and geographic

distances indicated that it’s essential to choose suitable distances for the parsimonious analysis.

With suitable distances, accurate reconstructions could be achieved that outperformed or were

as good as the Bayesian state-of-the-art approaches.

While the result of the parsimonious reconstruction was comparable to the GLM extension

of the classical Bayesian methods, our approach allowed to study viral spread in more detail.

Instead of summarizing locations into large geographic areas like continents, the phylogeo-

graphic reconstruction was possible on fine-grained locations to the resolution of single cities.

Both the simulated and real data proved that the analysis was feasible with a large set of total

locations (3865 airports in the air transportation network) as well as observed locations; 76

locations on average—including 23 countries—in the simulated data and 67 in the real data.

The reconstruction could be done within minutes, while the Bayesian reconstruction was

time-consuming and ran for several days to reach a sufficient number of steps in the MCMC,

even when using countries instead of airports. In theory, Bayesian reconstructions could be

sped up by fixing some parameters instead of estimating them; e.g. by fixing the tree and by

fixing the rates between locations to inverse distances. However, this is not commonly done in

practice and further did not perform well when we tested this approach to infer airports

instead of countries (S4 Fig). The parsimonious reconstruction using the Sankoff algorithm

further inferred intermediate states not observed in the sample, while discrete Bayesian meth-

ods that estimate the rates from the data will not infer them.

However, the advantages of Bayesian methods to previous parsimonious methods still hold.

Bayesian methods allow to integrate over uncertainties in the phylogeny and migration pro-

cess, while parsimony methods assume a fixed tree topology that was previously inferred from

the data and usually differs from the true tree topology. Parsimony methods further don’t infer

posterior probabilities, therefore giving no indication about the certainty of the results, and do

not consider branch lengths. When using the Sankoff algorithm, we assume prior knowledge

about the mode of transportation, which might not always be available. Instead, Bayesian

methods include the possibility to infer potential modes of transportation by testing predictors

of spatial spread. In the future, both methods could be used in a complementary way depend-

ing on the data, the desired analysis as well as time and computing resources. To enable others

to apply this approach to new datasets, all software is provided in a Github repository [28] and

distance matrices are available on Zenodo [29].

The application to a dataset of HA sequences of the pH1N1 virus demonstrates how the

parsimonious reconstruction using effective distances can be used in case of new outbreaks, as

long as viral sequences and precise geographic information for the isolates are available. This
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approach offers a powerful tool to rapidly analyze sequence data, find the place of origin and

propose possible spread routes to the resolution of single airports. This information would be

helpful to implement control measures like increased surveillance or restricted travel to con-

tain or slow down the global spread of a new infection.

Methods

Simulation

To create a reference dataset, we simulated the beginning of the pH1N1 influenza pandemic in

2009. We first simulated the geographic spread of the virus and then used these transition pat-

terns to simulate isolate sampling, the phylogenetic tree and nucleotide sequences.

The geographic spread simulation was performed with GLEAMviz version 6.6 [15] using a

stochastic SEIR (Susceptible-Exposed-Infectious-Recovered) model. We considered three

compartments for infectious people: symptomatic (with travel), symptomatic (without travel)

and asymptomatic, in line with previous studies [16,17]. In this model, the world is divided

into 3252 metapopulations interconnected via an airport and commuting network. We set the

origin of the pandemic to Veracruz, Mexico, on February 18th 2009, which was reported as

the source and time of the outbreak [30] and has been used in similar models [17]. The simula-

tion produced proportions of individuals in each SEIR compartment per day for each of the

metapopulations, as well as the seeding location and day of first arrival of the disease for each

newly infected population.

We used the latter as a list of transmissions to simulate the isolate sampling, the tree and the

sequences. For these steps, the simulation software FAVITES was used [19]. To simulate the

beginning of the pandemic, only the first 200 transition events were included, corresponding

to day 85 in the simulation. We chose the number of samples per location via a Poisson distri-

bution with λ = 0.5, therefore simulating an incomplete sampling of locations. The sampling

times were chosen from an uniform distribution. Each sample represented one viral sequence

in the subsequent analysis. Based on the sampling events, a tree was simulated using a coales-

cent model with exponential growth. Branch lengths on this tree corresponded to time as mea-

sured in days. We scaled these branch lengths with a rate of 0.000014, therefore assuming a

rate of evolution of 0.00511 mutations per site per year, which is close to estimates reported for

pH1N1 [31,32]. Given the tree with scaled branch lengths, nucleotide sequences of length 1700

were simulated under a GTR model using seq-gen [33]. This resulted in a set of sequences for

each tip in the tree. These sequences along with their sampling locations were then used for

phylogeographic inference, while the simulated tree (including the locations for the internal

nodes as given by the transition events) was used as a reference dataset.

Data download

Nucleotide sequences of the hemagglutinin (HA) protein of pH1N1 were downloaded from

the GISAID database [34]. All complete sequences from the beginning of the pandemic in

March until end of April were downloaded, resulting in a dataset of 378 sequences.

Phylogenetic reconstruction

For both simulated and real data, nucleotide sequences were aligned using MUSCLE version

3.8.31 with standard parameters [35]. Positions with gaps in more than 80% of the sequences

were removed with TrimAl version 1.2 [36] to ensure a good quality of the alignment. Phyloge-

netic trees were then reconstructed with FastTree version 2.1.7 [37] using the GTR model.

Simulated trees were rooted based on the ancestral sequence used in the simulation process,
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which was subsequently removed from the dataset. The tree based on real data was rooted

using the sequence with the earliest sampling date.

Parsimonious phylogeographic reconstruction

The phylogeographic reconstruction was based on the air transportation network from the

OAG database including 3865 airports, which we used as all possible states in the analysis.

Geographic distances between airports were calculated based on longitude and latitude using

the R package geosphere [38]. This defined the distances as the shortest paths between loca-

tions, taking into account the ellipsoidal surface of the Earth. Effective distances were calcu-

lated based on the numbers of passengers travelling between airports in the year 2013, as in

[11]. For equal distances, all distances between airports were set to 1. The air transportation

network included airports from 228 countries, which were used as locations for the analysis on

a country level. Geographic distances between countries were calculated as described above

using the coordinates of the centroids. For effective distances, we aggregated the passenger

numbers per country and recalculated the distances. The distance matrices were used as a cost

matrix for the parsimonious reconstruction using the Sankoff algorithm [12]. Distances repre-

sent the cost of traveling from one state to another and the Sankoff algorithm finds the internal

states with the minimal cost, i.e. minimizing the distance the virus travelled along the tree. In

case of equal distances between locations, this is equivalent to the Fitch algorithm which mini-

mizes the number of changes between states. An example of the inference using asymmetric

distances is shown in Fig 2. We used delayed transformation in case of ambiguities. When an

ambiguity occured at the root and therefore couldn’t be resolved with delayed transformation,

we randomly chose one of the possible states. Since effective distances are generally not sym-

metric, the tree was rooted before the reconstruction.

Bayesian phylogeographic reconstruction

The simulated data included a large number of states with relatively few sequences, which is

not suitable for Bayesian phylogeographic reconstruction. Using countries instead of airports

reduced the number of states to make the Bayesian reconstruction feasible. We used BEAST

version 2.4.8 for this analysis [14]. Sampling dates were included into the phylogenetic recon-

struction as measured in days. A HKY nucleotide substitution model was used together with a

strict molecular clock. For the tree prior, a coalescent model with exponential population

growth was chosen. For the phylogeographic reconstruction, analyses were performed sepa-

rately with both symmetric and asymmetric rates. Markov Chain Monte Carlo (MCMC) was

run for 100 million steps with trees sampled every 10,000 steps, resulting in a sample of 10,001

trees.

Further, the phylogeographic reconstruction was performed using a generalized linear

model (GLM) [3], as implemented in BEAST version 1.10.4 [39]. We used both geographic

and effective distances as possible predictors, calculated as described above. Distances were

log-transformed and standardized before the analysis. Bayes Factors were calculated to evalu-

ate the inclusion of the predictors into the model, using a prior probability of 50% that no pre-

dictors are included.

Tracer version 1.7.1 [40] was used to confirm adequate effective sample sizes (ESS), indicat-

ing good estimates of the posterior distributions of the parameters. TreeAnnotator was then

used to summarize the sampled trees into a maximum clade credibility tree using a burn-in of

10%. For the evaluation of the phylogeographic reconstruction, we assigned the location with

the highest posterior probability to each node.
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Supporting information

S1 Fig. Comparison of real and simulated data. A) Comparison of pairwise genetic distances

between sequences for both real HA sequence data and the simulated sequences. B) Compari-

son of branch lengths on trees inferred on both real HA sequence data and simulated

sequences.

(PNG)

S2 Fig. Fréchet tree distances for four additional GLEAMviz simulations. Fréchet tree dis-

tances shown on a log2 scale for all six analyzed parsimonious reconstructions using four addi-

tional simulations (shown in panels A-D) of geographical spread using GLEAMviz. For each

simulation of spread, the sampling, the tree and the sequences were simulated 50 times. Recon-

structions were performed both on the airport (on the left) and the country level (on the

right).

(PNG)

S3 Fig. Fréchet tree distances for reconstructions with BEAST using fixed rates and a fixed

tree topology on the country level. Fréchet tree distances shown on a log2 scale on the coun-

try level, including the additional BEAST analyses using the GLM with effective distances as

fixed predictors and/or the fixed simulated tree.

(PNG)

S4 Fig. Fréchet tree distances for reconstructions with BEAST using fixed rates and a fixed

tree topology on the airport level. Fréchet tree distances shown on a log2 scale for all six ana-

lyzed parsimonious reconstructions on the airport level in comparison to a BEAST reconstruc-

tion with fixed rates and a fixed tree topology. The rates were set to inverse effective distances

while the tree topology was set to the tree inferred using Fasttree, which allowed for short

MCMC runs with 1 million steps and therefore enabled a reconstruction on the airport level

with a larger number of locations.

(PNG)

S1 Table. Main airports involved in the spread of pH1N1. Main airports involved in the

spread of pH1N1, as measured by the number of transitions to new locations. The airports are

New York (JFK), Phoenix (PHX), Los Angeles (LAX), Houston (IAH), Mexico City (MEX)

and Philadelphia (PHL). The size of the airports in North America was determined by the

numbers of passengers in 2013 as given via the OAG database.

(PDF)
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13. Reimering S, Muñoz S, McHardy AC. A Fréchet tree distance measure to compare phylogeographic

spread paths across trees. Sci Rep. 2018; 8: 17000. https://doi.org/10.1038/s41598-018-35421-4

PMID: 30451977
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