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Abstract
Objectives To evaluate an artificial intelligence (AI)–based, automatic coronary artery calcium (CAC) scoring software, using a
semi-automatic software as a reference.
Methods This observational study included 315 consecutive, non-contrast-enhanced calcium scoring computed tomography
(CSCT) scans. A semi-automatic and an automatic software obtained the Agatston score (AS), the volume score (VS), the mass
score (MS), and the number of calcified coronary lesions. Semi-automatic and automatic analysis time were registered, including
a manual double-check of the automatic results. Statistical analyses were Spearman’s rank correlation coefficient (⍴), intra-class
correlation (ICC), Bland Altman plots, weighted kappa analysis (κ), and Wilcoxon signed-rank test.
Results The correlation and agreement for the AS, VS, andMSwere ⍴ = 0.935, 0.932, 0.934 (p < 0.001), and ICC = 0.996, 0.996,
0.991, respectively (p < 0.001). The correlation and agreement for the number of calcified lesions were ⍴ = 0.903 and ICC =
0.977 (p < 0.001), respectively. The Bland Altmanmean difference and 1.96 SD upper and lower limits of agreements for the AS,
VS, and MS were − 8.2 (− 115.1 to 98.2), − 7.4 (− 93.9 to 79.1), and − 3.8 (− 33.6 to 25.9), respectively. Agreement in risk
category assignment was 89.5% and κ = 0.919 (p < 0.001). The median time for the semi-automatic and automatic method was
59 s (IQR 35–100) and 36 s (IQR 29–49), respectively (p < 0.001).
Conclusions There was an excellent correlation and agreement between the automatic software and the semi-automatic software
for three CAC scores and the number of calcified lesions. Risk category classification was accurate but showing an overestima-
tion bias tendency. Also, the automatic method was less time-demanding.
Key Points
• Coronary artery calcium (CAC) scoring is an excellent candidate for artificial intelligence (AI) development in a clinical
setting.

• An AI-based, automatic software obtained CAC scores with excellent correlation and agreement compared with a conventional
method but was less time-consuming.
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Abbreviations
AI Artificial intelligence
AS Agatston score
CAC Coronary artery calcification
CAD Coronary artery disease
CCTA Computed coronary tomography angiography
CSCT Calcium scoring computed tomography
CT Computed tomography
CV Cardiovascular risk
CVD Cardiovascular disease
EBCT Electron beam computed tomography
ICC Intraclass correlation coefficient
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IQR Interquartile range
MDCT Multidetector computed tomography
MS Mass score
SD Standard deviation
VS Volume score

Introduction

Non-contrast-enhanced, ECG-triggered, coronary calcium
scoring computed tomography (CSCT) detects coronary ar-
tery calcifications (CAC) at low radiation doses [1] and is
reliable in predicting future cardiovascular (CV) events for
asymptomatic patients, independent of conventional risk
models [2]. Clinical guidelines in the USA [3, 4] and Europe
[5] recommend CSCT in selected asymptomatic individuals,
typically with an intermediate probability in a pre-test, clinical
CV risk assessment.

The most commonly used CSCT technique for CAD grad-
ing and risk is the Agatston score (AS), other techniques are
the volume score (VS) and the mass score (MS) [6].

The CAC scoring is traditionally performed by experts
using semi-automatic software’s which includes manual iden-
tification and marking of the calcified coronary artery lesions.
Guidelines worldwide endorse the use of CSCT, and the use of
the method is likely to increase. Consequently, there is a need
for more efficient automatic systems. The last few years have
brought improvements in artificial intelligence (AI) radiology
systems. A recent study in CT diagnostics of lung cancer, for
example, demonstrated AI to be on par with or even
outperforming radiologists [7]. In CAC scoring, AI could
have a similar potential to assist or replace the human reader,
thereby reducing clinical workload and increasing efficiency.

The aim of the study presented herein was to compare an
automatic AI-based CSCT post-processing software prototype
to a semi-automatic, conventional software by evaluating the
correlation and agreement of the total AS, VS, MS, and the
number of calcified coronary lesions. Also, comparison for
CV-based risk classification into five commonly used catego-
ries was performed. Finally, time for analysis was evaluated.

Material and methods

Ethics

This study was conducted according to the principles set for-
ward in the declaration of Helsinki and according to Good
Clinical Practice. Permission was obtained from the regional
ethical review board (Dnr 2018/535-32). In accordance with
the ethical regulations for Swedish registries and Swedish leg-
islation, patients were informed about their participation in a

registry, and the right to deny participation or have data re-
moved, which waivers any requirements for written consent.

For the multi-hospital acquired training data, necessary
ethics approval and/or patient consent was obtained when
required.

Study sample

In this observational, cross-sectional study, patients and their
baseline characteristics were retrospectively collected from a
nationwide quality registry, SWEDEHEART [8]. All patients
with a CSCT performed on a particular state-of-the-art CT
scanner between 1 December 2017 and 31 January 2019
(n = 342) at Linköping University Hospital were consecutive-
ly included. The indication was suspected ischemic heart dis-
ease. Exclusion criteria were, as previously suggested [9],
anatomical abnormalities (n = 2), intracoronary stents
(n = 0), metal implants (n = 18), and CSCT scans with severe
motion artifacts or high level of noise determined by visual
inspection (n = 6) (Fig. 1). In addition, one CSCTscan (n = 1)
was excluded due to incomplete scanning of the coronary
arteries. The final main dataset consisted of 315 CSCT scans.

Fig. 1 Flow chart. Inclusions and exclusions
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In total, 13 out of 20 CSCTwith anatomical abnormalities
and metal implants were considered readable for CAC scor-
ing, and represented an independent dataset (n = 13).

CT acquisition parameters and image reconstruction

All CSCT scans were acquired through the use of a Siemens
SOMATOM Force (Siemens Healthineers) MDCT. A pro-
spectively ECG-triggered high-pitch spiral CSCT scan was
performed, with a tube voltage of 120 kV, and automated tube
current modulation (CARE Dose4D, Siemens) with a setting
of 40 quality ref. mAs. Further settings were as follows: gantry
rotation time 0.25 s, pitch 3.2, collimation 192 × 0.6 mm,
matrix size 512 pixels, and temporal resolution 66 ms. The
scan was set to start at 65% of the cardiac cycle.
Reconstructions were made with a routine weighted filtered
back projection (WFBP, Siemens) algorithm using medium
sharp convolution kernel (Qr36), 3.0 mm section thickness,
and increment 1.5 mm. Beta blockers were administered if the
heart rate was > 65 bpm. After CTCS scanning, a CCTAwas
performed in the same session.

AI-based, automatic system overview

The automatic software was trained on multi-vendor, multi-
scanner, and multi-hospital, anonymized data from routine
coronary calcium scoring acquisitions. No training datasets
were used in the current study.

During model training, the locations of the coronaries cre-
ated a territory map in a heart-centric coordinate system. This
map serves to assign prior likelihood of different voxels be-
longing to the coronary arteries.

For each evaluated CSCT scan, a model is used to segment
the heart, to establish a heart-centric coordinate system. The
pre-computed coronary territory weights are mapped to the
local size and shape of the patient’s heart. All voxels > 130
HU are extracted. Around each voxel, an image patch is ex-
tracted to represent the local spatial characteristics, the prior
likelihood from the territory map and the location (x, y, z) of
the voxel in the heart-centric coordinate system. The model
uses these features to make a prediction that this voxel belongs
to the coronaries.

Some work [10–12] already used patient-specific, heart-
centric coordinate systems, but relied on manually placed
markers, or local image coordinates in combination with a
computationally expensive registration to an atlas-based mod-
el [13, 14]. Another work used a heart segmentation but no
further classification besides voxel intensity [15]. As far as we
know, the evaluated new machine learning model that com-
bines the location within this coordinate system, the local
image information around a voxel, and the coronary territory
map is novel.

Data reporting

A standard reference was obtained with a semi-automatic,
previously validated [16], post-processing software
(syngo.via, Siemens Healthineers). All 315 CSCT scans were
double read by two radiologists in at least two sessions (M.S.
and S.S., both with 10 years’ experience of cardiac CT read-
ing) and all interpretation differences were resolved by con-
sensus. To determine the presence of CAC, an attenuation
threshold was set at > 130 HU. Calcified coronary objects
having an area of ⋝ 1 mm2 were included, as originally de-
scribed [17] using default software settings. Every calcified
region of interest wasmanually identified andmarked to attain
the total AS, VS, MS, and the number of calcified coronary
lesions. The time used for the first read was registered.

A total of 62 (20%) CSCT scans from the standard refer-
ence underwent a second opinion evaluation from two addi-
tional readers (A.P., radiologist, 20 years’ experience of car-
diac CT reading, and L.H., cardiac imaging radiographer, 2
years’ experience of cardiac CT research reading). CSCT
scans selected for second opinion were those considered to
potentially shift in risk category due to readers arbitrariness
(n = 32), calcifications close to the coronary ostia (n = 27), or
difficulties to discriminate peripheral calcified coronary le-
sions from noise (n = 3). After consensus was reached, two
changes were made, both with AS difference ≤ 5, and there
was no shift in risk category.

Based on the AS, CSCTscans were assigned into common-
ly used risk groups with cutoff values: CAC 0: No identifiable
plaque, very low CV. CAC 1–10: Minimal plaque burden, low
CV risk. CAC 11–100: Mild atherosclerotic plaque burden,
moderate CV. CAC 101-400: At least moderate atherosclerot-
ic plaque burden, moderately high CV risk. CAC > 400:
Extensive atherosclerotic plaque burden, high CV risk [18].

For inter-reader agreement, a subset of 106 (33.6%) CSCT
scans were randomly selected and assigned to two indepen-
dent radiologists. One radiologist was assigned 71 CSCT
scans (G.N., 1 year experience of cardiac CT reading) and
one radiologist 35 CSCT scans (A.B., 16 years’ experience
of cardiac CT reading), both blinded to previous results.

The automatic software was implemented in MeVisLab on
a regular workstation. All CSCT scans (n = 315) were ana-
lyzed with the automatic software, retrieving the total AS, VS,
MS, and number of calcified coronary lesions. The automatic
system run-time and the time for a manual double-check of the
results were registered. The double-check included a localiza-
tion of all CAC, and to attain an image-based numerical cor-
relation to the automatically derived number of calcified cor-
onary lesion.

No human interaction was needed, except for loading data
into the software. For each CSCT scan, a visual CSCT feed-
back with crosshairs was displayed in three dimensions,
allowing multiplanar reconstructions (Fig. 2).
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The readable CSCT scans (n = 13) with coronary abnor-
malities and metal implants were independently reported, fol-
lowing the same routine. However, another radiologist (G.W.,
16 years’ experience of cardiac CT reading) performed the
semi-automatic double-read, and there was no second
opinion.

Statistics

Continuous data are presented as mean ± standard deviation if
normally distributed, or as median and interquartile range
(IQR) if non-normally distributed. Categorical data are pre-
sented as numbers and percentages. Normality was tested with
Shapiro-Wilk’s test. The correlation and agreement between
the standard reference and the automatic software for the AS,
VS, MS, and the number of lesions were assessed with
Spearman’s rank correlation coefficient (⍴) and intraclass cor-
relation coefficient (ICC), as appropriate for non-parametric
data. Bland Altman plots displayed bias and limits of agree-
ments within 95% confidence interval. Differences in risk
classifications were assessed by weighed kappa analysis (κ)
and accuracy. Inter-observer agreement was demonstrated
with ICC and Spearman’s rank correlation coefficient (⍴).
Difference in time was analyzed with Wilcoxon signed-rank
test. A two-sided p < 0.05 was considered statistically signif-
icant. Randomization for inter-rater agreement was achieved
by Excel (Microsoft Office 365); all other analyses were per-
formed using IBM SPSS v.24 (IBM SPSS).

Results

In total, 315 patients were included based on inclusion/
exclusion criteria, 171 (54.3 %) women and 144 (45.7%)

men. Mean age was 58 years (± 11.5 SD). All baseline char-
acteristics are presented in Table 1.

The correlation for the automatic software in relation to the
standard reference with respect to the AS, VS, and MS was
assessed with the Spearman’s rank correlation coefficient
showing ⍴ = 0.935, 0.932, and 0.934 (p < 0.001), respectively
(Fig. 3).

The agreement for the automatic software in relation to the
standard reference with respect to the AS, VS, and MS was
assessed with the ICC, showing 0.996, 0.996, and 0.991, re-
spectively (p < 0.001).

Bland Altman plots mean difference and 1.96 SD upper
and lower limits of agreements were as follows: AS − 8.2
(− 115.1 to 98.2), VS − 7.4 (− 93.9 to 79.1), and MS − 3.8
(− 33.6 to 25.9) (Fig. 4). A few outliers contributed to an
overestimation tendency of CAC scores by the automatic soft-
ware, mostly in the lower ranges.

Table 1 Baseline characteristics

All patients (n) 315

Women (n (%)) 171 (54.3)

Men (n (%)) 144 (45.7)

Age (years) 58 (± 11.5)

Body mass index (kg/m2) 27.3 (± 4.7)

Hypertension (n (%)) 164 (52.1)

Diabetes (n (%)) 26 (8.3)

Hyperlipidemia (n (%)) 86 (27.3)

Non-smokers (n (%)) 165 (52.4)

Smokers (n (%)) 32 (10.2)

Ex-smokers, > 1 month (n (%)) 117 (37.1)

Continuous variables are presented as mean ± standard deviation

Fig. 2 Multiplanar reconstructions of a coronary calcium scoring
computed tomography scan with extensive calcifications in left anterior
descending artery and circumflex artery. Left: Pre-processing images

demonstrating calcified lesions as high attenuation regions. Right: Post-
processing, visual coronary calcium scoring feedback. High attenuation
regions that contributed to the results are displayed in green color
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A confusion matrix for risk category assignment demon-
strated an accuracy of 89.5% and weighed kappa analysis
(κ) = 0.919 (p < 0.001) (Table 2). In total, 33 CSCT scans
were misclassified: 27 were overestimated and six
underestimated. In total, 29 CSCT scans were off by one cat-
egory, 19 of those shifting from AS 0 to AS 1–10. All the 19
CSCT scans shifting from AS 0 to AS 1–10 were due to
erroneous registration of image noise in the heart and/or adja-
cent structures, 13 had an AS difference < 2, and four had an
AS difference between two and eight. Three CSCTscans were
off by two categories, two due to inclusions of aortic root
calcifications, and one due to inclusion of a pericardial calci-
fication. One CSCT scan was off by four categories due to
inclusion of a mitral valve calcification. All underestimated
CSCT scans were off by one category, four had an AS differ-
ence of ≤ 2 and one had an AS difference of 21, the latter not
including a calcification close to the right coronary ostium.

The correlation and agreement for the automatic software
in relation to the standard reference with respect to the number
of calcified coronary lesions were assessed with the
Spearman’s rank correlation coefficient and the ICC showing
⍴ = 0.903 and ICC = 0.977 (both with p < 0.001), respectively.

The correlation and agreement for inter-reader agreement
between the standard reference and the independent readers
with respect to AS were assessed with the Spearman’s rank
correlation coefficient and the ICC, showing ⍴ = 0.968 and
ICC = 1.000 (both with p < 0.001), respectively.

The correlation and agreement for the automatic software
in relation to the independent readers with respect to AS were
assessed with the Spearman’s rank correlation coefficient and
the ICC, showing ⍴ = 0.909 and ICC = 0.979 (both with
p < 0.001), respectively.

The median time to obtain the semi-automatic reading was
59 s (IQR 35–100), compared with automatic run-time 9 s
(IQR 5–18), and 36 s (IQR 29–49) (p < 0.001) for the auto-
matic run-time plus double-checking the results.

Among the separate 13 CSCT scans having coronary ab-
normalities and metal implants, the correlation and agreement
between the standard reference and the automatic software
with respect to AS were assessed with the Spearman’s rank
correlation coefficient and the ICC, showing ⍴ = 0.939 and
ICC = 0.956 (both with p < 0.001), respectively. Risk category
assignment demonstrated an accuracy of 54% and weighed
kappa analysis (κ) = 0.621 (p = 0.001).

Fig. 3 Scatter plot depicting coronary calcium score correlation between the standard reference and automatic software, expressed as Spearman’s rank
correlation coefficient, rho (⍴). a Agatston score; b Volume score; c Mass score
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Discussion

In this study, assessment of three CAC scores and number of
calcified coronary lesions obtained from an AI-based, auto-
matic post-processing software were evaluated using a semi-
automatic post-processing software as a reference.
Correlation, agreement, and subsequent risk classification
were excellent, and the automatic analysis was less time-
consuming.

The correlation and agreement of the AS, VS, and MS of
the automatic software compared with the standard reference
was excellent. The Bland Altman plot for the AS, VS, andMS
demonstrated narrow limits of agreement, but a small overes-
timation bias in the lower range of CAC scores. The risk group
categorization was accurate, yet 33 (10.5%) CSCT scans were
misclassified, the majority shifting from AS 0 to AS 1–10.
This misclassification bias in the lowest AS score could be a
clinical shortcoming, since AS > 0 is suggested to represent

Fig. 4 Bland Altman analyses depicting difference in coronary calcium
score between automatic software and standard reference, plotted against
mean of the coronary calcium score measurements. Mean difference is in
red; upper and lower limits of agreement with 95% confidence interval

are in green. a Agatston score: mean difference − 8.2 and limits of
agreement − 115 to 98.2. b Volume score: mean difference − 7.2 and
limits of agreement − 93.9 to 79.1. c Mass score: mean difference − 3.8
and limits of agreement − 33.6 to 25.9

Table 2 Confusion matrix

Standard reference Automatic software

Category 0 1–10 11–100 101–400 > 400 Total Same Shift up Shift down

0 119 19 2 0 1 141 119 22 -

1–10 4 34 3 1 0 42 34 4 4

11–100 0 1 55 0 0 56 55 0 1

101–400 0 0 0 43 1 44 43 1 0

> 400 0 0 0 1 31 32 31 0 1

Total 123 54 60 45 33 315

Confusion matrix with distribution of cardiovascular disease (CVD) risk categorization comparing the standard reference with the automatic software.
Accuracy = 89.5% and weighed kappa analysis (κ) = 0.919 (p < 0.001). Columns to the right demonstrate a summary of risk category shifting. No risk
category shifting is indicated in italics
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incipient CAD, and may therefore be a gatekeeper for pre-
scription of medication [19–21]. Notably, this bias in the
low AS score range may be exaggerated due to skewness in
the dataset, since 140 out of 315 CSCTscans (44%) had anAS
0. All CSCT scans off by two or more categories were due to
errors not likely to be made by experts, possibly reflecting AI-
specific challenges. However, these false CAC results are rec-
ognizable in the visual CSCT feedback, therefore unlikely to
be clinically problematic.

There was an excellent correlation and agreement regard-
ing the number of calcified coronary lesions, a feature previ-
ously demonstrated to have a prognostic value [22].

The number of studies evaluating automatic CSCT soft-
ware is limited, and comparisons with other studies are diffi-
cult due to differences in study designs, inclusions, image
acquisition, reconstructions, and quantitative evaluation
methods. However, the correlation and agreement for CAC
scoring and risk category classification were overall in line
with previous studies having roughly similar prerequisites
[12–14]. Automatic systems applied on the orCaScore frame-
work have demonstrated excellent result [9, 23], but the
orCaScore dataset has an even distribution amongst risk cate-
gories and is smaller. Also, CAC scoring is mainly applied to
asymptomatic patients, probably more likely to have a CAC
distribution similar to this study.

Substantial efforts were made in creating a strong stan-
dard reference, both with double readings and a subset of
CSCT scans for second opinion. A close to perfect inter-
reader agreement was achieved, which is not unique for
this study [13, 14, 24], but it indicates an adequate reli-
ability. One radiologist assigned CSCT scans for inter-
reader agreement was relatively inexperienced, but the
results were still excellent, possibly indicating that CAC
scoring is not particularly difficult. The fact that CSCT
requires expert interaction, yet is relatively simple, makes
it an excellent candidate for AI development in a clinical
setting. However, an acceptable run-time is an important
prerequisite, being congruent with, or slightly faster than
what has previously been described [23]. While the auto-
matic software is faster, it also takes expert time to con-
firm the results. Therefore, the automatic run-time plus
the reader confirmation time may be a clinically more
appropriate registration, in this study still shorter than
the semi-automatic method. However, the CAC scoring
feedback is not editable. When necessary, the time for
cor rec t ions cou ld the re fo re no t be reg i s t e red .
Considering this study’s risk group classification accura-
cy, > 1/10 of the examinations would have needed a man-
ual correction, inevitably to the cost of additional time.

Interestingly, 48% of the excluded CSCT scans were
still applicable for semi-automatic reading, showing an
excellent correlation and agreement compared with the
automatic software but demonstrating less accurate risk

group categorization. However, this should be analyzed
in larger samples.

No data were missing, but there are limitations to this study.
First, all CSCT scans were conducted at a single center on
only one CT scanner. This could be a shortcoming since the
AS derived from ex vivo human hearts examined on different
CT vendors have variations [25]. Yet, there were no substan-
tial differences in inter-scan variability in an in vivo study with
30 patients [24]. Second, the automatic software is only com-
pared with a semi-automatic software from the same vendor.
However, this semi-automatic software was previously com-
pared with other vendors, demonstrating similar results [16],
thereby supporting external validity. Third, a total of 27 CSCT
scans (8.6 %) were excluded, limiting generalizability. Fourth,
this study is limited to numerical correlation and agreements;
no comparisons were performed for individual CSCT scans.
Possible false positive and false negative high attenuation ob-
jects are thus not evaluated. Fifth, all CSCT scans were ob-
tained from symptomatic patients with no known ischemic
heart disease, while the technique is more commonly applied
on asymptomatic patients. However, the vast majority had low
pre-test probability and a large proportion of no detectable
CAD, therefore probably similar to an asymptomatic popula-
tion. Sixth, time for semi-automatic reading did not include
the double read or the second opinion. Nonetheless, CAC
scoring is usually performed by one single reader. Seventh,
time used for CSCT reading may have inter-reader variations,
and our registrations were derived from only one radiologist.
Eighth, in the automatic time registration double-check, nu-
merical correlations were not applicable if extensive CAC,
due to indistinguishable calcified lesions. Lastly, a larger
dataset could reach statistically stronger results. Still, with
one exception [14], this is the largest known study evaluating
automatic CAC scoring derived from CSCT scans.

Conclusion

There was an excellent correlation and agreement between the
automatic and the reference standard for three CAC scores and
for the number of calcified coronary lesions. Risk category
classification was accurate, but with an overestimation bias ten-
dency, especially when AS was zero. Double-checking the re-
sults should therefore bemandatory. Nonetheless, the automatic
run-time plus a manual double-check of the results were still
less time-consuming than using the reference standard.
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