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mesenchymal stem cells through inhibition of S6 kinase 1 signaling
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ABSTRACT

Background: The biological and pharmacological effects of BST204, a fermented ginseng extract, have
been reported in various disease conditions. However, its molecular action in metabolic disease remains
poorly understood. In this study, we identified the antiadipogenic activity of BST204 resulting from its
inhibition of the S6 kinase 1 (S6K1) signaling pathway.
Methods: The inhibitory effects of BST204 on S6K1 signaling were investigated by immunoblot, nuclear
fractionation, immunoprecipitation analyses. The antiadipogenic effect of BST204 was evaluated by
measuring mRNA levels of adipogenic genes and by chromatin immunoprecipitation and quantitative
real-time polymerase chain reaction analysis.
Results: Treatment with BST204 inhibited activation and nuclear translocation of S6K1, further
decreasing the interaction between S6K1 and histone H2B in 10T1/2 mesenchymal stem cells. Subse-
quently, phosphorylation of H2B at serine 36 (H2BS36p) by S6K1 was reduced by BST204, inducing an
increase in the mRNA expression of Wnt6, Wnt10a, and Wnt10b, which disturbed adipogenic differen-
tiation and promoted myogenic and early osteogenic gene expression. Consistently, BST204 treatment
during adipogenic commitment suppressed the expression of adipogenic marker genes and lipid drop
formation.
Conclusion: Our results indicate that BST204 blocks adipogenesis of mesenchymal stem cells through the
inhibition of S6K1-mediated histone phosphorylation. This study suggests the potential therapeutic
strategy using BST204 to combat obesity and musculoskeletal diseases.
© 2018 The Korean Society of Ginseng. Publishing services by Elsevier B.V. This is an open access article
under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

controls energy balance and glucose homeostasis, which are key
parts of metabolism, suggesting that S6K1 is a potential target to

Ribosomal protein S6 kinase 1 (S6K1), a representative down-
stream substrate of mammalian target of rapamycin (mTOR), in-
duces a number of key catabolic responses, including protein [1],
nucleotide [2,3], and lipid synthesis [4]. In addition to its well-
known roles in cellular biology, several studies focused on the
physiological role of S6K1. S6K1-deficient mice show resistance to
high-fat diet—induced obesity and maintain a lean body shape [5].
This antiobesity phenotype of S6K1-deficient mice originates from
enhanced B-oxidation, elevated insulin sensitivity, and impaired
adipogenesis [5,6]. These results present evidence that S6K1

treat metabolic disorders.

Previously, we further discovered the contributing mechanisms
of S6K1 to the development of obesity [7]. During early adipo-
genesis, activated S6K1 is translocated into the nucleus to interact
with histone H2B and phosphorylates H2B at serine 36 (H2BS36),
suppressing the expression of Wnt6, Wnt10a, and Wnt10b, which
are well-known inhibitors of adipogenesis. This epigenetic role of
S6K1 provides a therapeutic target for developing antiobesity
medicine.
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BST204, a fermented ginseng extract, has recently been inves-
tigated because of its multiple therapeutic effects. Its effect on
resisting inflammation is associated with inhibition of NO pro-
duction and COX2 expression, factors responsible for promoting
inflammation [8,9]. Moreover, its effects on inhibiting cancer cell
proliferation and invasion were also revealed in our previous work.
Treatment with BST204 causes the cell cycle of colon cancer cells to
halt at the G1 phase, with concomitantly increased levels of the
tumor suppressor genes, p53 and p21 [10]. In a more recent study,
BST204 was found to improve cancer-related fatigue. Such
phenotype was hypothesized to be related with reduced levels of
tumor necrosis factor-o, interleukin-6, aspartate transaminase
(AST), alanine aminotransferase (ALT), and creatinine (CRE) [11].
Although these studies have shown the effect of BST204 on cancer
cells and macrophages, its influence on cell fate decision in multi-
potent stem cells has not yet been revealed.

Considering the diverse biological effects of BST204 and previ-
ous studies presenting its inhibitory impact on S6K1 signaling [8,9],
we took a closer look at its effect on controlling adipogenesis via the
S6K1-mediated epigenetic regulation. Here, we found that BST204
had remarkable inhibitory effects on the activation of S6K1 and
S6K1-mediated epigenetic regulation of Wnt genes. Furthermore,
treatment with BST204 interrupted adipogenesis of mesenchymal
stem cells (MSCs) by reducing the expression level of adipogenic
genes, while inducing myogenesis. These findings present the
antiadipogenic activity of BST204, which derives from inhibition of
S6K1-mediated histone phosphorylation.

2. Materials and methods
2.1. Preparation of the fermented ginseng extract, BST204

BST204 was provided by the Green Cross WellBeing, Co, Ltd.
(Seongnam, Korea), and it was manufactured according to a
patented technology and earlier study [11]. Briefly, the harvested
ginseng was extracted with ethanol repeatedly followed by incu-
bation with an enzyme containing ginsenoside-f-glucosidase. After
acid hydrolysis of the residue, the reactant was purified with HP20
resin, followed by washing out first with distilled water and finally
with 95% ethanol. The ethanol fractions, containing ginsenoside
Rg3 and Rh2, were concentrated and were designated as BST204. As
a result of HPLC-UV analysis, the ginsenoside content of BST204
was found to be 10.95% of Rg3 and 7.22% of Rh2. The NMR data and
structure of BST204 are shown in the earlier study [12].

2.2. Cell culture and differentiation

C3H10T1/2 (10T1/2) cells, a mouse MSC line, were grown in
Dulbecco’s Modified Eagle’s Medium (DMEM) with 10% fetal bovine
serum (FBS) and 1% penicillin/streptomycin (P/S). Adipogenic dif-
ferentiation was performed as previously described [7]. For
commitment to preadipocytes, 10T1/2 cells were incubated for 4
d in DMEM with 10% FBS, 1% P/S, and 10 ug/ml of bone morpho-
genetic protein 4 (BMP4). For terminal differentiation of pre-
adipocytes into adipocytes, the cells were further incubated in
DMEM with 10% FBS, 1% P/S, 0.5mM 3-isobuyl-1-methylxanthine,
1uM dexamethasone, and 1 pg/ml of insulin, followed by replacing
the medium with DMEM containing 10% FBS, 1% P/S, and 1 pg/ml of
insulin every other day.

2.3. Immunoblotting and immunoprecipitation
For immunoblotting, each sample was subjected to sodium

dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis. Proteins
were transferred to polyvinylidene difluoride membranes using

semidry transfer (Bio-Rad, USA). The membranes were incubated
overnight with the indicated primary antibodies, followed by in-
cubation with horseradish peroxidase—conjugated secondary an-
tibodies for 1 h (Abcam, UK). The signals were detected using
chemiluminescence reagents (iNtRON, Korea). For immunopre-
cipitation, the cells were lysed with IP lysis buffer [HEPES 40mM
(pH 7.4) containing 120mM NaCl, 1mM EDTA, 50mM NaF, 1.5mM
Na3VO4, 10mM B-glycerophosphate, 0.3% CHAPSO, and protease
inhibitors]. The lysates were centrifuged for 20 min at 13000 rpm
and 4°C. Then, the supernatants were incubated with the
appropriate antibodies overnight at 4°C, followed by incubation
with Anti-Rabbit Ig IP beads (TrueBlot; Rockland Immunochemi-
cals, USA) for 1 h at 4°C. The beads were spun down for 1 min at
2000 rpm and washed three times with IP wash buffer (IP lysis
buffer without CHAPSO). The proteins were eluted by boiling for
5 min in Laemmli buffer (Bio-Rad) and subjected to
immunoblotting.

2.4. Subcellular fractionation

Cytoplasmic and nuclear extracts were prepared as previously
described [13]. In brief, cells were suspended in Buffer A (10mM
HEPES containing 1.5mM MgCl;, 10mM KCl, TmM EDTA, 1TmM
dithiothreitol (DTT), 0.5 pg/ml of leupeptin, 1TmM phenyl-
methylsulfonyl fluoride (PMSF), 1uM pepstatin A, and 0.05% NP-40),
and cytoplasmic extracts were separated by centrifugation at
3000 rpm and 4°C for 10 min. The remaining pellet was resus-
pended in Buffer B (20mM HEPES containing 1.5mM MgCly,
420mM KCl, 25% glycerol, 0.2mM EDTA, 1mM DTT, 0.5 pg/ml of
leupeptin, TmM PMSF, and 1uM pepstatin A) and incubated on ice
for 30 min. Finally, nuclear extracts were separated by centrifuga-
tion at 13000 rpm and 4°C for 20 min.

2.5. Quantitative real-time polymerase chain reaction

Total RNA was extracted from cellular samples using easy-BLUE
reagent (iNtRON, Korea). Then 1 pg of total RNA was reverse tran-
scribed into cDNA using a Reverse Transcription Kit (Promega,
USA). Quantitative real-time polymerase chain reaction (qPCR) was
performed using KAPA SYBR FAST qPCR Master Mix (Kapa Bio-
systems, USA) and a CFX96 Touch or Chromo4 real-time PCR de-
tector (Bio-Rad). Relative levels of mRNA were normalized to the
levels of (-actin mRNA for each reaction. The qPCR primer se-
quences used are as follows: $-actin forward, 5-ACGGCCAGGT-
CATCACTATTG-3’; (-actin reverse, 5'-TGGATGCCACAGGATTCCA-3";
Wnt6 forward, 5'-GCGGAGACGATGTGGACTTC-3’; Wnt6 reverse, 5'-
ATGCACGGATATCTCCACGG-3'; Wntl10a forward, 5'-CCACTCC-
GACCTGGTCTACTTTG-3’; Wnt10a reverse, 5-TGCTGCTCTTATTG-
CACAGGC-3'; Wnt10b forward, 5'-GCTGACTGACTCGCCCACCG-3';
Wnt10b reverse, 5'-AAGCACACGGTGTTGGCCGT-3’; PPARy forward,
5-GCATGGTGCCTTCGCTGA-3’; PPARy reverse, 5-TGGCATCTCTG
TGTCAACCATG-3'; Cebpa forward, 5'-CTCCCAGAGGACCAATGAAA-
3’; Cebpa reverse, 5'-AAGTCTTAGCCGGAGGAAGC-3'; Adipsin for-
ward, 5-CATGCTCGGCCCTACATG-3’; Adipsin reverse, 5-CACA-
GAGTCGTCATCCGTCAC-3'; Fabp4 forward, 5-AAGGTGAAGAGCA
TCATAACCCT-3'; Fabp4 reverse, 5'-TCACGCCTTTCATAACACATTCC-
3’; Adipoq forward, 5'-TGTTCCTCTTAATCCTGCCCA-3'; Adipoq
reverse, 5-CCAACCTGCACAAGTTCCCTT-3'; Myf5 forward, 5'-
CCAGCCCCACCTCCAACT-3’; Myf5 reverse, 5-GGGACCAGACAGGGC
TGTTA-3’; MyoD forward, 5'-AGTAGAGAAGTGTGCGTGCT-3’; MyoD
reverse, 5'-ACGACTTCTATGATGATCCG-3’; Pax7 forward, 5'-
GGTGGGGTCTTCATCAATGGTC-3'; Pax7 reverse, 5'-GAACATCCCGG
GGTTCTCTCTC-3'; Collal forward, 5-TCCCAGAACATCACCTATCAC-
3’; Collal reverse, 5'-CTGTTGCCTTCGCCTCTGAG-3'; Ocn forward,
5'-AGGGCAATAAGGTAGTGAA-3’; Ocn reverse, 5-GAGGCTCTGAG
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Fig. 1. BST204 inhibits activation and nuclear translocation of S6K1. (A) Immunoblot analysis of 10T1/2 cells treated with or without BST204 (50 pg/ml) for 24 h. (B) Immunoblot
analysis of cytoplasmic and nuclear extracts from 10T1/2 cells treated with or without BST204 (50 pg/ml) for 24 h. (C) Immunoblot analysis of IgG or Flag immunoprecipitates (IP)
and whole cell lysates (Input) from Flag-S6K1—expressing 10T1/2 cells treated with or without BST204 (50 pg/ml) for 24 h.

AAGCATAAA-3'; Osx forward, 5'-CCCTTCTCAAGCACCAATGG-3'; and
Osx reverse, 5'-AAGGGTGGGTAGTCATTTGCATA-3'.

2.6. Chromatin immunoprecipitation and qPCR

Chromatin immunoprecipitation was performed as previously
described [14]. In brief, a small portion of the cross-linked, sheared
chromatin solution was reserved as the input DNA, and the
remainder was subjected to immunoprecipitation overnight at 4°C
using the appropriate antibodies. After immunoprecipitation, the
recovered chromatin fragments were subjected to qPCR using
primer pairs specific for the target gene promoter. The primer se-
quences are available on request.

2.7. Oil red o staining

Fully differentiated adipocytes were fixed with 10% formalin for
1 h and washed with 60% isopropanol, followed by the incubation
with oil red o working solution for 1 h. Then the cells were rinsed
with distilled water three times. For the preparation of oil red o
stock solution, 300 mg of oil red o powder was dissolved in 100 ml

of 99% isopropanol. Thirty milliliter of the stock solution was
diluted with 20 ml of distilled water to make oil red o working
solution just before use.

2.8. Statistical analysis

Statistical significance was analyzed using Student t test (two
tailed) and assessed based on the resulting P-value.

3. Results

3.1. BST204 inhibits the activation and nuclear translocation of
S6K1

Previously, it has been reported that treatment with 50 pg/ml of
BST204 inhibits lipopolysaccharide (LPS)-induced activation of
S6K1 in macrophages [8,9]. Therefore, we examined the effects of
BST204 on S6K1 signaling in 10T1/2 MSCs. On treatment with
BST204, phosphorylation of S6K1 at threonine 389 (T389), a marker
of mTOR-dependent activation, was abolished (Fig. 1A). Phosphor-
ylation of ribosomal protein S6, a representative downstream
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Fig. 2. BST204 inhibits Wnt gene suppression by S6K1-mediated H2BS36 phosphorylation. (A) Immunoblot analysis of 10T1/2 cells transfected with wild-type (WT) or phos-
phomimetic (36D) H2B vector and incubated with or without BST204 (50 pg/ml, 24 h). (B) The mRNA levels of the Wnt6, Wnt10a, and Wnt10b genes in 10T1/2 cells transfected with
WT or 36D H2B vector and incubated with or without BST204 (50 pg/ml, 24 h). (C) 10T1/2 cells were treated with or without BST204 (50 pg/ml) for 24 h. ChIP assay was performed
with an S6K1 antibody followed by real-time PCR with primers for the promoter regions of the Wnt6, Wnt10a, and Wnt10b genes. (D) 10T1/2 cells were treated with or without
BST204 (50 pg/ml) for 24 h. ChIP assay was performed with a phosphorylated H2BS36 antibody followed by real-time PCR with primers for the promoter regions of the Wnt6,
Wnt10a, and Wnt10b genes. Data represent mean + SEM for n = 3. *P < 0.05, **P < 0.01, ***P < 0.001.

ChIP, chromatin immunoprecipitation; SEM, standard error of the mean.

substrate of S6K1, was also diminished by BST204 treatment
(Fig. 1A). Given that nuclear translocation of S6K1 is dependent on
mTOR-mediated activation [15,16], we next examined whether
BST204 could regulate the subcellular localization of S6K1. The
subcellular fractionation data showed that the level of cytoplasmic
S6K1 increased on BST204 treatment, while nuclear S6K1
decreased (Fig. 1B). Additionally, phosphorylation of S6 was
reduced in both subcellular locations (Fig. 1B). These data indicate
that BST204 blocks mTOR-dependent activation of S6K1 and
further nuclear import of activated S6K1 from the cytoplasm.

3.2. BST204 inhibits phosphorylation of H2BS36 by S6K1

In our earlier study, we discovered that nuclear S6K1 directly
interacts with H2B and phosphorylates H2B at serine 36 [7]. To
determine the effects of BST204 on the interaction between S6K1
and H2B, we performed immunoprecipitation assay with a Flag
antibody in 10T1/2 cells expressing Flag-S6K1. Consistent with re-
sults showing the inhibitory effects of BST204 on the nuclear
translocation of S6K1 (Fig. 1B), BST204 treatment disabled S6K1
from binding to H2B (Fig. 1C). Moreover, we observed that phos-
phorylated H2BS36 (H2BS36p) was ablated in both the whole cell

lysates (Fig. 1A) and nuclear fractions (Fig. 1B) of BST204-treated
cells. Thus, these results indicate that BST204 represses S6K1-
mediated phosphorylation of H2BS36 by inhibiting the interac-
tion between nuclear S6K1 and H2B.

3.3. BST204 inhibits the suppression of Wnt genes caused by S6K1-
mediated H2BS36 phosphorylation

Among the Wnt ligands, Wnt6, Wnt10a, and Wnt10b are well
known blockers of adipogenic commitment [17]. Previously, we
discovered that S6K1 negatively regulates the expression of Wnt
genes through phosphorylation of H2BS36, facilitating adipogenic
commitment [7]. Thus, we investigated whether BST204 inhibits
the regulation of Wnt genes by S6K1-mediated H2BS36 phos-
phorylation using the phosphomimetic mutant H2BS36D that
contains a single-site mutation of serine 36 to aspartate. Phos-
phorylation of S6 was also ablated by BST204 in both 10T1/2 cells
expressing wild-type H2B and the phosphomimetic mutant of H2B
(H2BS36D) (Fig. 2A). However, the mRNA levels of Wnt genes were
increased only in wild-type H2B—expressing cells, whereas the
expression of H2B 36D did not alter the mRNA level of Wnt genes
(Fig. 2B). These data show that restricted H2BS36 phosphorylation
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was responsible for the increase of Wnt gene expression on BST204
treatment.

Earlier, we discovered that S6K1 directly binds to the promoter
regions of the Wnt6, Wnt10a, and Wnt10b genes, suppressing
transcription of these genes through H2BS36 phosphorylation [7].
Expectedly, chromatin immunoprecipitation analysis showed that
the recruitment of S6K1 to the promoter regions of Wnt6, Wnt10a,
and Wnt10b genes was abrogated on BST204 treatment (Fig. 2C). In
parallel, we observed that BST204 treatment significantly
decreased the enrichment of H2BS36p at the Wnt gene promoters
(Fig. 2D). These results support that the elevated expression of Wnt
genes by BST204 is due to the inhibition of S6K1-mediated H2B36p
at promoter regions of the genes.

3.4. BST204 inhibits adipogenesis of MSCs

Earlier studies have described that activation of Wnt signaling in
MSCs suppresses commitment to the adipocytic lineage [18,19].
Thus, we next examined the effects of BST204 on adipogenic
commitment by inducing differentiation from 10T1/2 MSCs into

adipocytes through two distinguishable stages (Fig. 3A): (i)
commitment to adipogenic progenitors, which is induced by BMP4
treatment for 4 d and (ii) terminal differentiation into fully differ-
entiated adipocytes, which is induced by an adipogenic medium
[20,21]. First, we confirmed the inhibitory effect of BST204 on S6K1
signaling after treatment of 10T1/2 cells with BMP4 and BST204 for
4 d. BST204 treatment inhibited S6 phosphorylation both in the
presence and absence of BMP4 (Fig. 3B). A previous study showed
that S6K1-mediated reduction of Wnt gene expression during early
adipogenesis drives upregulation of the adipogenic transcription
factors, PPARy and Cebpa [ 7]. Consistently, treatment of 10T1/2 cells
undergoing adipogenic commitment process with BST204 blocked
expression of PPARy and Cebpa (Fig. 3C).

Next, we measured the expression levels of fully differentiated
adipocytic marker genes at the end point of adipogenesis from
10T1/2 cells that were incubated with or without BST204 during
commitment (Fig. 4A). In line with the decrease in adipogenic
transcription factors at the progenitor stage seen with BST204
treatment (Fig. 3C), the mRNA levels of the adipocytic marker
genes, Fabp4, Adipsin, and Adipoq, were also markedly reduced
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when cells were incubated with BST204 during adipogenic
commitment (Fig. 4B). Interestingly, even in the cells not exposed to
BMP4 during the commitment, the adipogenic gene expressions
were decreased by BST204 (Figs. 3C, 4B), indicating that BST204
also affects the signaling in spontaneously differentiating cells
without BMP4. Furthermore, when the cells were exposed to
BST204 during commitment, lipid droplets in adipocytes were
much less accumulated than in those cells incubated with only
BMP4, as visualized by oil red o staining (Fig. 4C). Collectively, these
results demonstrate that BST204 treatment during adipogenic
commitment disturbs differentiation of MSCs into adipocytes.

3.5. BST204 promotes myogenesis and osteogenesis of MSCs

MSCs have capacity to differentiate into a variety of cell types,
including myocytes, osteocytes, chondrocytes, and adipocytes
(Fig. 5A). As Wnt signaling contributes to osteogenesis or myo-
genesis while blocking adipogenesis [18,19], we next assessed the
capability of BST204 to control cell fate of MSCs by measuring the
expression levels of myogenic and osteogenic lineage marker
genes. When 10T1/2 cells were treated with BST204 for 24 h, the
protein levels of myogenic marker (MyoD) and osteogenic marker
(RUNX2) were enhanced, as examined by the immunoblotting

assay (Fig. 5B). The mRNA levels of myogenic genes, Myf5, MyoD,
and Pax7, were also significantly increased in response to BST204
treatment (Fig. 5C). However, the mRNA levels of osteogenic genes
were partially increased on BST204 treatment (Fig. 5D).
Collal that is expressed at the early stage of osteogenesis
increased only, whereas the expression of Ocn and Osx, relatively
late-stage marker genes, did not change (Fig. 5D). These data
suggest that BST204 has an impact on the cell fate determination
of multipotent cells, promoting differentiation into other cell lin-
eages than adipocytes.

4. Discussion

Ginsenosides, the major pharmacological component in the
roots of ginseng, are divided into two structural groups: panax-
adiols (Rb1, Rb2, Rc, Rd, Rg3, Rh2, and Rh3) and panaxatriols (Re, Rf,
Rg1, Rg2, and Rh1) [22]. On physical or chemical processes, such as
heating and enzymatic treatment, the contents and properties of
ginseng extract can be altered. For instance, steaming ginseng at
high degrees increases the contents of Rg3, improving the anti-
cancer effects of the extract [23,24]. Fermentation with p-glucosi-
dase also enhances the content of minor ginsenosides including
Rg3, Rh2, F2, and compound K, which are more pharmacologically
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Fig. 5. BST204 promotes myogenic gene expression in mesenchymal stem cells. (A) MSCs have capacity to differentiate into diverse cell types. (B) Immunoblot analysis of 10T1/2
cells treated with or without BST204 (50 pg/ml, 24 h). (C) The mRNA levels of the Myf5, MyoD, and Pax7 genes in 10T1/2 cells treated with or without BST204 (50 pg/ml, 24 h). (D)
The mRNA levels of the Collal, Ocn, and Osx genes in 10T1/2 cells treated with or without BST204 (50 pg/ml, 24 h). Data represent mean + SEM for n = 3. *P < 0.05, **P < 0.01,

P < 0.001.
MSC, mesenchymal stem cell; SEM, standard error of the mean.

active than the major ginsenosides, Rb1, Rb2, Rd, Re, and Rg1 [25—
27]. In the present study, we examined the effects of a fermented
ginseng extract, BST204, which contains abundant Rh2 and Rg3, on
adipogenic lineage determination. Although several studies have
reported the anti-inflammatory and antiproliferative activity of
BST204 [8—11], its effects on adipocytes and metabolism have not
yet been clearly defined. Here, we demonstrated that treatment of
MSCs with BST204 during adipogenic commitment led to a
remarkable decline in the expression of adipogenic transcription
factors, PPARy and Cebpa (Fig. 3). Exposure to BST204 in the

Adipogenic stimulation

commitment stage also impaired the terminal differentiation to-
ward adipocytes, as demonstrated by reduced expression of adi-
pogenic genes and oil drop deposits (Fig. 4).

Adipogenesis is finely controlled through a complex network of
active and repressive histone marks [28]. Several ginsenosides have
been reported to regulate histone modifications via histone
deacetylases [29—32], histone methyltransferase [33], and kinase
[34]. However, the epigenetic regulation of adipogenesis by ginse-
nosides has not been reported. Earlier, we revealed that nuclear
S6K1 phosphorylates H2B at serine 36 to suppress the expression of

=
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~
Adipogenic Terminal

: commitment differentiation

N
wats ™\ \\Y
Wnt10a )
Wnt10b |

Preadipocyte

Adipocyte

Fig. 6. Molecular model underlying mechanism of action of BST204. During early adipogenesis of mesenchymal stem cells to preadipocytes, S6K1-mediated H2BS36 phosphor-
ylation suppresses the expression of Wnt6, Wnt10a, and Wnt10b, facilitating early adipogenesis. BST204 inhibits S6K1-mediated H2BS36 phosphorylation and suppression of Wnt

genes, finally attributing to prevention of adipogenesis.
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Wnt genes, which are blockers of adipogenesis [7]. In line with our
previous findings, we here observed that BST204 treatment
inhibited the activation and nuclear translocation of S6K1, which
sequentially disturbed the interaction between H2B and S6K1
(Fig.1). Reduced binding to H2B resulted in hypophosphorylation of
H2BS36 both at the global level (Figs. 1A, 1B) and at the local level
on the promoter regions of Wnt genes (Fig. 2D). BST204-mediated
Wnt gene suppression was attributed to impairment of H2BS36
phosphorylation by S6K1, which was assessed by substituting a
phosphomimetic mutant form of H2B (H2BS36D) (Figs. 2A and 2B).
Considering its significant influence on S6K1-mediated histone
phosphorylation and subsequent gene suppression, our findings
suggest BST204 to be a potential epigenetic modulator and provide
a novel molecular mechanism of action underlying its pharmaco-
logical activity.

Another important issue we present here is that BST204 induces
the expression of other cell lineage markers, including myogenic
genes and early-stage osteogenic gene (Fig. 5). Several studies have
identified ginsenosides that facilitate myogenesis or osteogenesis,
including Rg1 [35—38], Re [39], and Rh2 [40]. Additionally, in this
present study, we assessed the effects of BST204 on cell fate con-
version of MSCs into adipogenic, myogenic, and osteogenic line-
ages. In the early stage of cell fate determination, Wnt ligands play a
critical role in promoting myogenic or osteogenic differentiation,
while disturbing adipogenesis [18,19]. Our data show that BST204
treatment to MSCs led to increase in the expression of myogenic
and early osteogenic genes, accompanied by the suppression of
Wnt genes. These data provide better understanding of the way
BST204 modulates plasticity of multipotent cells.

To avoid the side effects and rebound weight gain often asso-
ciated with existing weight loss remedies, there has been much
interest in discovering naturally derived dietary compounds that
display antiobesity effects. As part of this research, numerous
studies have evaluated the impact of ginsenosides, either alone or
in combination with other, on diverse factors involved in obesity
[41]. Hwang et al. reported that both Rh2 and Rg3 impede adipo-
genesis from 3T3-L1 preadipocytes by activating the AMP-acti-
vated protein kinase (AMPK) signaling pathway and suppressing
PPARY signaling [42,43]. In contrast, Rh2 promoted adipogenesis
by activating glucocorticoid receptors in another study [44].
Despite the inconsistency among some in vitro analyses, a majority
of studies in mice and human have indicated that ginseng extract
protects against high-fat diet—mediated body weight gain and
exerts beneficial effects on diverse physiological indicators asso-
ciated with metabolic homeostasis [45—51]. In addition to these
previous works, we currently show the inhibitory efficacy of
BST204 on de novo adipocyte generation through disruption of the
mTOR-S6K1-H2B signaling cascade (Fig. 6). Therefore, our findings
suggest that BST204 is a promising therapeutic option for the
treatment or prevention of obesity and related musculoskeletal
diseases.
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