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Photo-activatable carbon monoxide (CO)-releasing molecules (photoCORMs), have recently provided help
to identify the salutary effects of CO in human pathophysiology. Among them notable is the ability of CO
to sensitize chemotherapeutic-resistant cancer cells. Findings from our group have shown CO to mitigate
drug resistance in certain cancer cells by the inhibition of cystathionine β-synthase (CBS), a key regulator of
redox homeostasis in the cell. Diminution of the antioxidant capacity of cancer cells leads to sensitization
to reactive oxygen species-producing drugs like doxorubicin and paclitaxel upon cotreatment with CO as
well as in mitigating the drug effects of cisplatin. We hypothesize that the development of CO delivery
techniques for coadministration with existing cancer treatment regimens may ultimately improve clinical
outcomes in cancer therapy.
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Carbon monoxide (CO), an endogenously produced gaseous molecule, has been recognized as a gasotransmitter,
that elicits biological responses in mammalian pathophysiology [1,2]. Along with nitric oxide and hydrogen sulfide
(H2S), gasotransmitters have recently been shown to play roles in a wide array of chemistry in biological systems.
Unlike nitric oxide, a radical species, and H2S, a weak acid and reducing agent, CO is relatively inert. This weak
Lewis base interacts with transition metal centers in low oxidation states. In human cells and tissues, CO reacts
almost exclusively with 5-coordinate ferrous heme cofactors [3].
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Historically CO is noted for its generation from incomplete hydrocarbon combustion and toxicity arising from
its binding to hemoglobin, the oxygen carrier in mammals. However, endogenous production of CO as a product
of heme catabolism has been known for over 70 years. This reaction is catalyzed by microsomal heme oxygenase
(HO), an enzyme that exists in two isoforms namely, HO-1 (inducible) and HO-2 (constitutive) [4]. Catabolism
of free heme is vital for maintaining cellular health and mitigating the toxic effects of heme-catalyzed oxidation
reactions. Indeed, loss-of-function mutations in HO-1 are lethal. In the human body, micromolar amounts of
CO are generated collectively by HO-1 and HO-2. Nearly all tissues are capable of HO-1 induction, though its
expression in Kupffer cells and anti-inflammatory/M2-polarized macrophages suggest a role for CO in modulating
immune response and inflammation. Constitutive HO-2 produces CO in the liver, testes, endothelial cells and the
brain where it is reputed to play important roles in maintaining vascular tone.

Research during the past three decades has explored the potential of low doses (10–100 ppm) of CO as
a therapeutic in a wide array of injury and disease models including wound healing, colitis, sepsis, cerebral malaria,
diabetes, balloon angioplasty-induced stenosis, ileus/bowel immotility and organ transplantation [5,6]. The observed
salutary effects of CO in these disease/injury models may be partially explained by the ability of CO to modulate
intracellular levels of reactive oxygen species (ROS) in target cells, attenuate macrophage activation by cytokine
and endotoxin, inhibit endothelial cell apoptosis and prevent T-cell proliferation [6]. In addition, CO has been
shown to be effective in attenuating and resolving chronic inflammation, a process implicated in many diseases
including cancer [7]. Upregulated and chronic inflammation is implicated as a key factor in the initiation and
progression, metastatic spread and the development of therapeutic resistance in cancer [8]. In light of observations
of the protective and anti-inflammatory effects of HO-1/2 and CO, recent efforts have been made to explore the
possible therapeutic application of CO in cancer models.

CO in cancer therapy
Work from our group and others have provided evidence for the therapeutic potential of exogenous CO in
cancer cell models in recent years [9–15]. However, the delivery of CO to malignant targets require novel delivery
approaches using either CO gas or CO-releasing molecules (CORMs) [16,17]. Although some progress along this line
has been achieved in recent years [5,9,11,18], therapeutic application of CO in a clinical setting is still in its infancy.
Fortunately, the CORMs have provided crucial help in exploring, among others, the physiological processes that
lead tumorigenic initiation, progression and ultimate management of cancer. The pathology of cancer often poses
challenges arising from therapeutic drug resistance and the role of CO in mitigating such processes could be quite
interesting. In this context, CO has been shown to sensitize cells to chemotherapeutics in cancer models [15]. If
incorporation of CO into existing chemotherapeutic regimens could indeed improve drug efficacy, health outcomes
may improve significantly. This hypothesis has prompted us to undertake research efforts to explore the effects of
CO coadministration with conventional chemotherapeutics on human cancer models.

Antioxidant capacity in chemoresistant cancer
Drug resistance remains as the main impediment to the management of cancer [19,20]. Accumulating evidence
suggests that the unique metabolic profile found in cancer cells is integral for imparting a drug resistant phenotype.
Hallmarks of cancer cellular biology such as altered glucose metabolism, peroxisome activity, mitochondrial dys-
function and enhanced growth/signaling pathway activity alter the redox balance in cancer cells, generating higher
levels of ROS and inducing chronic oxidative stress [21].

While high oxidative stress is acutely cytotoxic, the low and chronic oxidative stress within cancer cells hormet-
ically enhances antioxidant metabolic pathways and production of antioxidants. Total cellular antioxidants are
qualitatively referred to as the total antioxidant capacity of the cell, the ability of the cell to cope with oxidative
stress. There is substantial evidence of the protumorigenic role for antioxidants, including the master regulator of
anti-oxidative responses nuclear factor (erythroid-derived 2)-like 2 (Nrf2), antioxidant enzymes and cellular an-
tioxidants such as nicotinamide adenine dinucleotide phosphate (NADPH), cysteine and glutathione (GSH) [22].
Cancer cells maintaining an elevated antioxidant capacity acquire resistance to future, acute stressors, including that
induced by chemotherapeutic agents [19]. Many chemotherapeutics (e.g., vinca alkaloids, taxanes, anthracyclines
and platinum-based drugs) and nonchemical therapies (e.g., radiation) directly generate excessive ROS in cancer
cells, inducing apoptosis by interfering with processes including cell-cycle progression and DNA stability [23]. In
most cases, the antineoplastic drug effects are indirectly mediated by ROS which eventually bring about the apop-
totic death of the cancer cell. Furthermore, thiol-containing antioxidants and peptides, GSH and metallothionein,
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are known to bind and inactivate chemotherapeutics [24]. As a consequence, selective suppression of the antioxidant
capacity of cancer cells by inhibiting antioxidant pathways could mitigate the incidence and intensity of therapeutic
resistance and associated poor prognosis.

The chemosensitizing effects of CO observed in prostate cancer cells by Otterbein and coworkers, indicate that
one mechanism by which CO exerts its salutary effect(s) is through ‘metabolic exhaustion’ a depletion of intracellular
ATP combined with increased mitochondrial oxygen consumption and decreased glycolytic activity [15], which in
turn has been recently reported to decrease drug efflux by ATP-binding cassette transporters [25]. Kaczara et al.
have provided evidence that this occurs via uncoupling of mitochondrial respiration [26], though the nature of
mitochondrial uncoupling by CO is unclear and somewhat controversial. Mechanisms involving direct/indirect
interactions of CO with ion channels have also been proposed [27], though CO exerting its salutary effect(s) by
‘metabolic exhaustion’ most possibly occurs by binding to enzymes involved in energy metabolism [28,29]. CO has
several demonstrated direct biological targets [3], though consensus over those that are therapeutically relevant is
lacking. The elevated levels of ROS in cancer cells strongly suggest that interaction of CO with enzymes involved
in maintaining their antioxidant capacity could be another important target of CO leading to drug sensitization.
Therefore, we have focused on cystathionine β-synthase (CBS) as a potential target of CO in moderating the overall
redox environment in cancer cells and alleviating drug resistance.

CBS
CBS, a heme-containing enzyme, catalyzes the first step of the transsulfuration pathway: the condensation of
homocysteine with either serine or cysteine to generate cystathionine (CTH) and water or H2S, respectively
(Figure 1) [30]. CTH is further catabolized into cysteine, catalyzed by CTH γ-lyase, the second enzyme of the
transsulfuration pathway. In tissues where demand for GSH is high, including the liver and pancreas, CBS and
the transsulfuration pathway provide a significant source of cysteine for GSH biosynthesis [31]. Alternatively,
homocysteine can be diverted from the transsulfuration pathway and be recycled into methionine, catalyzed by the
enzyme methionine synthase, a cobalamin-containing enzyme. Interestingly, methionine synthase, unlike CBS, is
prone to oxidative inactivation, suggesting a prominent role for CBS in regulating methylation and transsulfuration
in the cell, especially under oxidative conditions [32].
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Figure 2. Structure of the cation of the photoCORM
used in our study: [Mn(CO)3(phen)(PTA)]CF3SO3.

GSH levels have been shown to be elevated in tumor tissues from patients with head and neck, lung, breast and
ovarian cancers compared with corresponding nonmalignant tissues [22]. GSH and other antioxidants have been
shown to play a key role in protecting cancer cells from a wide range of anticancer therapies, with elevated levels
predictive of drug resistance and therapeutic failure. Inhibition of CBS in cancer cells exhibiting overexpression
could reduce GSH levels, perturbing the balance between the generation and quenching of ROS, inducing oxidative
stress and abating the drug resistant phenotype.

Inhibition of CBS by CO
CBS is unique in that it is the only pyridoxal phosphate-dependent enzyme that also contains a prosthetic heme,
which renders CBS sensitive to CO. CO has a high affinity for ferrous heme in CBS [30]. The binding of CO to
CBS is kinetically slow, 0.0166 s-1, as CO binds via displacement of Cys52 from the iron center. The displaced
thiolate on Cys52 is stabilized by Arg266, the likely mechanism by which CO inactivates CBS. Physiological levels
of CO are sufficient to inhibit CBS activity, Ki = 3 μM.

Is CBS a therapeutically relevant target of CO in cancer cells?
Substantial evidence supports the therapeutic relevance of CBS as a cancer-specific target. Previous studies have
utilized RNA interference and pharmacological inhibitors to reveal the oncogenic and cytoprotective effects of
CBS in ovarian, colon and breast cancers [32]. Recently, our group has found that CO, delivered from biologically
compatible, photo-activatable CO-releasing molecules (photoCORMs) can induce apoptotic death in human
breast and colon cancer cells [9–13]. This finding prompted us to the second phase of the project where we sought to
find out the target(s) of CO in cancer cells that leads to apoptosis and whether CO binding to such targets could
sensitize them to conventional chemotherapeutics. Because diminution of the antioxidant capacity could lead to
drug sensitization, we hypothesized that CBS is one of the main effectors of CO-mediated sensitization of cancer
cells to chemotherapeutics. We therefore selected human breast and ovarian cancer cells, two disease models where
CBS is overexpressed and correlate with tumor grade, to study the drug sensitizing effects of CO.

Effects of CO in human breast cancer cells
The pathology atlas of human cancer transcriptome [33] revealed that despite absence in normal breast cells, CBS
is expressed in transformed breast cancer cells to a moderate extent. This fact allowed us to study the effects of
CO on CBS in a cancer cell model. The photoCORM used in our study was [Mn(CO)3(phen)(PTA)]CF3SO3, a
water-soluble CORM that releases CO upon exposure to visible light (Figure 2) [10]. This CO donor allowed us to
deliver CO to biological targets under the control of visible light, when desired.

In previously published work from our group, we employed a set of three human breast cancer cell lines
representing both estrogen/progesterone receptor-positive cell line MCF-7 and triple negative breast cancer cell lines
MDA-MB-468 and Hs 578T to demonstrate the general applicability of our observations [34]. Quite in agreement
with our hypothesis light-triggered CO delivery from 120 μM photoCORM to these cancer cells inhibited CBS
enzyme activity, as measured by decreases in steady state levels of CTH (Figure 3) [34]. Incidentally, CTH and H2S,
enzymatic products of CBS, enzymatic products of CBS, themselves promote endoplasmic reticulum homeostasis
and positively regulate Nrf2 [35–37]. Through this H2S-Nrf2 axis, CBS promotes expression of GSH biosynthesis
enzymes, as well as glucose-6-phosphate dehydrogenase, the rate-limiting enzyme in the pentose phosphate pathway,
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Figure 3. Effect of carbon monoxide on steady state levels of transsulfuration/glutathione biosynthesis
metabolites, as measured by liquid chromatography-mass spectrometry, and NADPH/NADP+ in human breast cancer
cells. CO inhibits CBS mediated production of cystathionine and H2S, downregulating Nrf2. Downregulation of Nrf2,
in turn, attenuates expression of GCL, GS and G6PD, antioxidant genes downstream involved in GSH
biosynthesis/regeneration of GSH from GSSG. Data representative of at least n = 3 individual experiments.
*p< 0.05.
CBS: Cystathionine β-synthase; CO: Carbon monoxide; GS: Glutathione synthase; GSH: Glutathione; GSSG: Glutathione
disulfide; H2S: Hydrogen sulfide; Nrf2: Nuclear factor (erythroid-derived 2)-like 2; GCL: Glutamate-cysteine ligase;
G6PD: Glucose 6-phosphate dehydrogenase.
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Figure 5. Annexin V-FITC/propodium iodide staining and cell viability by trypan blue exclusion, demonstrating
cotreatment with exogenous carbon monoxide sensitizes human breast cancer cell line MCF-7 to conventional
chemotherapeutics, doxorubicin and paclitaxel. Data representative of at least n = 3 individual experiments.
*p< 0.05.
CO: Carbon monoxide.

whose activity promotes production of NADPH (Figure 3), the reducing equivalent required for regeneration of
GSH from glutathione disulfide (GSSG). In our previously published experiments [34], inhibition of CBS by CO
led to a decreased NADPH/NADP+ and GSH/GSSG ratios indicating a reduction in the antioxidant capacity in
all three breast cancer cells (Figure 3).

Also, treatments with the slow H2S-releasing drug (p-methoxyphenyl)morpholino-phosphinodithioic acid (GYY
4137) and CTH were able to restore the elevated antioxidant capacity of cancer cell line MCF-7, showing that
inhibition of CBS by CO was indeed responsible for the observed lowering of NADPH/NADP+ and GSH/GSSG
ratios [34]. To further confirm the role of CBS in these measurements, we checked whether expression of CBS activity
in a CBS-free cell model could increase the NADPH/NADP+ and GSH/GSSG ratios through H2S-mediated
stabilization of Nrf2. In this attempt, we overexpressed CBS in the normal human breast cell line MCF-10A
(normally lacking CBS expression/activity) and observed increased ratios of these redox pairs (Figure 4) [34].
Together these findings published from our group confirm that CBS is an important player in maintaining an
elevated antioxidant capacity in human breast cancer cells [34].

Finally, we wanted to check whether CBS inhibition by CO, and the subsequent lowering of the antioxidant
capacity of the cancer cells, sensitizes them toward chemotherapeutics. In such attempt, we pretreated MCF-7 cells
with CO (delivered from the photoCORM) for 30 min followed by addition of doxorubicin. The results from cell
viability assays 48 h post-treatment clearly showed that pretreatment of the cells with CO significantly enhanced
the cytotoxic effects of doxorubicin compared with doxorubicin treatment alone (Figure 5) [34]. Similar results were
obtained with paclitaxel as the chemotherapeutic (Figure 5) [34]. In conclusion, our results from this previous study
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Figure 6. Steady state levels of transsulfuration/glutathione biosynthesis metabolites in cisplatin-resistant ovarian
cancer cell lines compared with respective parent cell lines OVCAR-5 and SKOV-3. Cisplatin-resistant ovarian cancer
cells exhibit elevated levels of transsulfuration pathway metabolites (cystathionine and Cys) and GSH biosynthesis
pathway metabolites (γ-Glu-Cys and GSH). Data representative of at least n = 3 individual experiments.
*p< 0.05.
Cys: Cysteine; Glu: Glutamic acid; GSH: Glutathione.

strongly suggest that CO has the ability to lower the antioxidant capacity of breast cancer cells by inhibition of
CBS, and consequently sensitize the cells to chemotherapeutics such as doxorubicin and paclitaxel [34].

Effects of CO in human ovarian cancer cells
In neoplasms of the ovaries, CBS expression correlates with carcinogenesis and tumor grade; we therefore hypothe-
sized that CO could inhibit CBS in an ovarian cancer model. Recent work published by our group, involving careful
screening of the human ovarian cancer cells OVCAR-5 and SKOV-3 and their cisplatin-resistant variants, revealed
that the expression of the transsulfuration pathway enzymes CBS and cystathionine γ-lyase in the cisplatin-resistant
cell lines are both profoundly higher compared with the parent cell lines [38]. This important finding suggested
a direct role for CBS and the transsulfuration pathway in imparting cisplatin-resistance. One largely elucidated
mechanism of cisplatin resistance is the binding and inactivation of cisplatin by cellular thiols GSH and metalloth-
ionein, both of which are highly dependent on the bioavailability of cysteine (a product of CBS activity) [39]. In
initial measurements the cisplatin-resistant ovarian cancer cells, as expected, exhibited nearly twofold higher steady
state levels of the transsulfuration metabolites (CTH and cysteine), GSH and its biosynthesis metabolite γ-Glu-Cys
(Figure 6), and the expression of metallothionein compared with the cisplatin-sensitive variants [38].

Furthermore, N-acetyl-cysteine, a bioavailable cysteine donor, further increased the levels of both GSH and
metallothionein in these cells [38]. It is important to note that GSH and metallothionein are the two clinically
relevant markers and predictors of cisplatin resistance in ovarian cancer patients [39]. Treatment of the cisplatin-
resistant ovarian cancer cells with CO attenuated all the steady state levels of these CBS-derived products (Figure 7).
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Also, the effect of CO was mimicked by lentiviral-mediated silencing of CBS in these cisplatin-resistant cells,
supporting the hypothesis that CO-derived attenuation of the metabolite levels was mediated by CBS [38].

In addition to the transsulfuration pathway, H2S generated by CBS has been shown to increase the activity
of the cystine–glutamate antiporter xCT which imports, from the extracellular milieu, a significant portion of
cystine into cancer cells that is converted into cysteine. This cysteine is also utilized in the synthesis of GSH and
metallothionein [40]. In our experiment, the cisplatin-resistant ovarian cancer cells exhibited nearly twofold increase
in the uptake of cystine-D4 (compared with the cisplatin-sensitive cells) in cell culture conditions, as indicated
by the intracellular cysteine-D2 concentrations within the cancer cells (Figure 8) [38]. CO treatment of the same
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cells exhibit significantly greater uptake of extracellular
D4-cystine compared with their wild-type
counterparts. Data representative of at least n = 3
individual experiments.
*p< 0.05.
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Figure 9. Relative glutamate–cystine antiporter activity assayed by extracellular D4-cystine uptake, determined by
steady state levels of intracellular D2-cysteine in cisplatin-resistant ovarian cancer cell lines silenced for cystathionine
β-synthase and treated with H2S for 24 h. Silencing CBS expression decreases D4-cystine uptake, which is mitigated by
the donation of extracellular H2S. Data representative of at least n = 3 individual experiments.
*p< 0.05.
CBS: Cystathionine β-synthase; H2S: Hydrogen sulfide.

cells led to a significant drop in the concentration of cysteine-D2 showing that inhibition of CBS by CO (with
concomitant decrease in H2S) downregulates the activity of the xCT antiporter (Figure 3).

Addition of H2S by the use of the slow H2S-releasing drug GYY 4137 enhanced the cystine-D4 uptake,
an observation that further confirms the role of CBS in positively regulating the activity of the xCT antiporter
(Figure 9) [38].

Finally, we tested the hypothesis that CO does sensitize the cisplatin-resistant ovarian cancer cells and makes
them susceptible to cisplatin. Indeed, when the cisplatin-resistant ovarian cancer cells were cotreated with cisplatin
and CO, we observed a much higher extent of apoptotic cell death of cells compared with cells that were treated
only with cisplatin (Figure 10) [38]. Together, these results published by our group elucidate a distinct role for
CBS in imparting cisplatin resistance and provide preliminary evidence for CO as a novel adjuvant therapeutic for
ovarian cancer [38].

Future perspective
Breast cancer is the leading cancer diagnosed in women and the second leading cause of cancer-related death
in women. It is estimated that one in eight women will be diagnosed with breast cancer in their lifetime and
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Figure 10. Trypan blue exclusion cell viability assay of cisplatin-resistant ovarian cancer cells 24 h post-treatment
with carbon monoxide, cisplatin or coadministration of carbon monoxide and cisplatin. Cells cotreated with CO and
cisplatin exhibit greater cell death compared with cells treated with cisplatin alone. Data representative of at least n =
3 individual experiments.
*p< 0.05.
CO: Carbon monoxide.

over 40,000 women deaths will occur each year due to lack of or poor response to treatment [41]. Incidentally,
chemotherapeutic drug resistance is a major impediment to effective treatment of breast cancer. The cancer cells
often acquire resistance to cisplatin, paclitaxel and doxorubicin, and leads to poor clinical outcomes. Because
elevated levels of ROS and alteration of redox balance are common hallmarks of cancer progression and drug
resistance [42], we focused on CBS, an enzyme intimately involved with redox homeostasis [35]. Although role of
CBS in cancer has been examined to find out the role of H2S in the pathophysiology of cancer [43], we focused on the
interactions of CO with CBS and the utility of this gasotransmitter in cancer therapy. In particular, we are interested
in the role of CBS in promoting an elevated antioxidant capacity and drug resistance. Our results, described above,
strongly suggest that CBS inhibition by CO could be one effective strategy for enhancing the efficacy of drugs such
as doxorubicin and paclitaxel which exert their tumoricidal effect(s) via induction of ROS [44,45].

Clinically cisplatin is the standard of care for the management of human ovarian cancer [46]. Unfortunately,
the majority of patients develop resistance to cisplatin and succumb to the disease. Our results indicate that
modulation of CBS activity in ovarian cancer cells might provide a strategy for mitigating drug-resistance observed
frequently with ovarian cancer patients. While our work focused on the effects of CO-mediated inhibition of CBS
on the transsulfuration pathway, notable work by Suematsu and coworkers has focused on the transmethylation
pathway [47]. In this work, stress-induced CO production in human leukemia cell line U937 suppressed CBS activity,
in contrast to our studies in breast and ovarian cancer models, to promote generation of cellular antioxidants via
decreased phosphofructokinase/fructose bisphosphatase type-3 methylation. This resulted in a shift in glucose
biotransformation toward the pentose phosphate pathway, promoting generation of cellular reductants to impart
resistance to chemotherapeutics [47]. The paradoxical effect(s) of CO-mediated inhibition of CBS in leukemia [47]

versus breast/ovarian cancer tissues [34,38] highlight the context-dependent role of CBS in tumor growth and
progression, a concept strongly emphasized in a recent review on the role of CBS in different human cancers [48]. It
is very apparent that CBS has a functional role in chemotherapeutic resistance and together, these findings suggest
that CO, a relatively unreactive gaseous molecule once thought of as a toxic byproduct of heme catabolism, exerts
profound biological effects in cancer cells. It is quite possible that smart CO delivery to cancer cells could sensitize
them to conventional chemotherapeutics and mitigate the grim statistics of cancer-related death arising from drug
resistance.

A close scrutiny of the literature reveals that most antitumor therapeutics are aimed at proteins that drive
cancer proliferation. Blocking of such pathways almost always triggers the evolution of escape routes or alternative
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pathways to meet the continuous demand for proliferation in cancer cells [49]. However little is known about
whether cancer cells are equally efficient in adapting alternative routes when it comes to the inhibition of ‘cancer
maintenance/homeostatic’ functionalities. Redox homeostasis is one such function and the CBS-CO inhibitory
axis essentially perturbs this crucial pathway. Because upregulation of antioxidant capacity in adaptation of intrinsic
oxidative stress in cancer cells often leads to drug resistance, disruption of the homeostatic rather than proliferative
potential of the cancer cells through inhibition of the redox regulatory effects of CBS by CO might be an effective
strategy to eliminate these cells [50]. The results of our studies on CBS inhibition by CO in relation to cancer
pathogenesis and therapeutic resistance, presented here, support another perspective to the therapeutic potential of
CO.

Executive summary

• Carbon monoxide (CO) has recently been identified as a gasotransmitter, a diffusible molecule that plays many
roles in physiological processes.

• Concomitant development of improved CO donor molecules, including photo-activatable CO-releasing molecules
(photoCORMs), has been helpful in identifying the beneficial effects of CO in human pathophysiology.

• Elucidation of these effects has strengthened the potential for CO-based therapeutics. Detailed studies in cell
culture and animal models have also demonstrated promise for the development of CO-based cancer therapies,
notably the ability of CO to sensitize chemotherapeutic-resistant cancer cells.

• Chemoresistance is one of the leading causes of therapeutic failure and poor clinical outcomes in cancer. This
perspective summarizes the findings on the ability of CO to mitigate drug resistance in certain cancer cells
through inhibition of cystathionine β-synthase (CBS), a key regulator of redox homeostasis in the cell.

• In human breast cancer cells, the heme-containing enzyme CBS maintains the antioxidant capacity by
maintaining increased ratios of reduced/oxidized glutathione (GSH/GSSG), reduced/oxidized NADPH
(NADPH/NADP+) compared with normal breast cells lacking CBS. Inhibition of CBS by CO (delivered from a
photoCORM) lowers these antioxidant ratios considerably. Because H2S, a product of CBS activity, positively
regulates Nrf2, inhibition of CBS by CO downregualtes enzymes regulate by Nrf2, including those involved in GSH
biosynthesis and the pentose phosphate pathway. Genetic silencing of CBS mimics the effect of CO treatment in
these same cells. Overexpression of CBS and addition of H2S reverse such diminution of the levels of the
antioxidants. Collectively, diminution of the antioxidant capacity of human breast cancers leads to sensitization
to reactive oxygen species producing drugs like doxorubicin and paclitaxel upon cotreatment with CO.

• In human ovarian malignancy, CBS is overexpressed only in those ovarian cancer cells resistant to cisplatin. CO
treatment of these cells results in reduction of intracellular cysteine, GSH and nuclear metallothionein expression;
features implicated in mitigating the drug effects of cisplatin. Cell viability studies clearly demonstrate
sensitization of human ovarian cancer cells to cisplatin upon cotreatment with CO, indicating the role of CBS in
the emergence of drug resistance in ovarian cancer cells.

• Collectively the results suggest that improved delivery techniques for coadministration of CO with existing cancer
chemotherapeutics could improve clinical outcomes in cancer therapy.
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