Skip to main content
. 2018 Feb 22;5:16–20. doi: 10.1016/j.tipsro.2018.01.002

Table 5.

Predictive performance of models for PMO.

ML regression glmnet svm
No-information-rate 0.67 0.67 0.67
Number of parameters 3 8 30
Correct classification rate 0.82 0.84 0.83
(95% confidence interval) (0.75–0.88) (0.77–0.90) (0.76–0.89)
Kappa agreement rate 0.58 0.60 0.60



Area under curve (AUC) 0.83 0.85 0.85
Sensitivity 0.92 0.97 0.93
Specificity 0.63 0.58 0.63
Pos. predictive value (PPV) 0.83 0.82 0.84
Neg. predictive value (NPV) 0.79 0.89 0.82
Pos. likelihood ratio (LR+) 2.5 2.3 2.5
Neg. likelihood ratio (LR−) 0.13 0.05 0.11