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ABSTRACT: Dendrimer nanocarriers are unique hyper-branched
polymers with biomolecule-like properties, representing a promis-
ing prospect as a nucleic acid delivery system. The design of
effective dendrimer-based gene carriers requires considering
several parameters, such as carrier morphology, size, molecular
weight, surface chemistry, and flexibility/rigidity. In detail, the
rational design of the dendrimer surface chemistry has been
ascertained to play a crucial role on the efficiency of interaction
with nucleic acids. Within this framework, advances in the field of
organic chemistry have allowed us to design dendrimers with even
small difference in the chemical structure of their surface terminals.
In this study, we have selected two different cationic phosphorus
dendrimers of generation 3 functionalized, respectively, with
pyrrolidinium (DP) and morpholinium (DM) surface groups, which have demonstrated promising potential for short interfering
RNA (siRNA) delivery. Despite DP and DM differing only for one atom in their chemical structure, in vitro and in vivo experiments
have highlighted several differences between them in terms of siRNA complexation properties. In this context, we have employed
coarse-grained molecular dynamics simulation techniques to shed light on the supramolecular characteristics of dendrimer−siRNA
complexation, the so-called dendriplex formations. Our data provide important information on self-assembly dynamics driven by
surface chemistry and competition mechanisms.

■ INTRODUCTION

RNA-based drugs, including short interfering RNA (siRNA)
molecules,1 are particularly promising examples of a modern
medicine doctrine approach,2 conceived to minimize side
effects. Despite encouraging results shown using siRNA-
mediated treatments,3,4 cellular uptake still represents the
major issue in the development of effective siRNA therapies.
The poor internalization of siRNAs across cell membranes is due
to their high molecular weight and negative charge.5 To
efficiently achieve intracellular delivery, siRNAs are usually
complexed with cationic molecules which generate complexes
with a size ranging from tens to a few hundreds of nanometers.6

Several polymeric and lipid nanocarriers have been developed in
the literature, including chitosan, cationic lipids, polyethylenei-
mine, and dendrimers.7−14 In the field of siRNA delivery,
cationic phosphorous dendrimers15−18 have proven to be
excellent drug carriers for gene-silencing treatments after in
vitro and in vivo experiments.4,6,19−21 In a previous study,22 we
focused the attention on two different cationic phosphorus
dendrimers of generation 3 for siRNA delivery.6 Those
dendrimers were functionalized, respectively, with pyrrolidi-
nium (DP) and morpholinium (DM) surface groups.6,22

Several differences between DP and DM have been
highlighted in terms of interaction properties with siRNA
molecules by both in vitro experiments and molecular modeling.
In detail, in vitro experiments indicated DP to have a multivalent
character because it efficiently binds more than one siRNA
molecule because of its ability to maximize the entropic
contribution to the complexation free energy (CFE).22 In
addition, DP has also a lower enthalpy contribution to the CFE
because of the lower recruitment of its charged terminals, which
intrinsically maximizes the ability to complex with more than
one siRNA.22 Contrariwise, DM has higher enthalpy contribu-
tion to the CFE because it involves a higher number of its
charged terminals, which de facto disadvantages the complex-
ation withmultiple siRNAs.22 All aforementioned characteristics
in fact strongly influence the stoichiometric number of DP and
DM, resulting in a different supramolecular binding behavior.
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Although atomistic modeling provided a clear picture of how
functionalization may drive dendrimer ability to bind siRNA, a
complete exploration of dendrimer−siRNA aggregation phe-
nomena is still missing. In particular, to deeply explore the
overall dendrimer−siRNA complexation dynamics, molecular
systems consisting of more than one siRNA and/or one
dendrimer should be simulated. All-atom (AA) molecular
dynamics (MD) simulations have limited ability to approach
large systems such as supramolecular assemblies and micro-
second dynamics of those assemblies. An interesting approach to
overcome the abovementioned limitations is the so-called
coarse-grained (CG) modeling, which allows to investigate the
conformational behavior of supramolecular assemblies and
dynamics of microseconds with a reasonable computational
effort.23Within this context, MARTINICG force field has found
a broad range of applications because it combines speed and
versatility while maintaining chemical specificity.24−26 MARTI-
NI forcefield has been already applied to model PAMAM27,28 or
poly(L-lysine) dendrimers29 and their interaction with the
cellular membrane.30−33

In the present study, we carried out CG-MD simulations to
provide further crucial information onDP andDM self-assembly
phenomena and interaction propensity to siRNA. Our data
confirmed how even small changes of the dendrimer surface
chemistry may strongly affect the dendrimer interaction
mechanism with siRNA, providing a view on how those small
chemical changes on the dendrimer surface affect at higher scales
the dendriplex superassembly stability. The outcome of this
research provides (i) a characterization of DP and DM
dendriplexes6,17 and (ii) information to rationally design/
optimize the dendrimer surface for tailoring dendrimer−siRNA
drug-delivery systems.

■ RESULTS

In this section, we will show the results regarding the dendrimers
self-assembly properties, stoichiometric coefficients, and com-
petition mechanisms.

T1. Dendrimer Self-Aggregation Mechanisms. Recent
in vitro experiments from our previous work22 highlighted a DP
tendency to self-assemble. Here, we have carried out CG
simulations to investigate molecular mechanisms describing this
behavior (section Methods, category T1). Figure 1A shows the
percentage of self-assembled dendrimers. The probability of DP
dendrimer to aggregate (70%) was found much higher if
compared to DM (30%). Moreover, buried surface (BS)
estimation was carried out to evaluate the interacting surface
of complexed dendrimers. Figure 1B indicates a quite similar
total BS (DP = 9.55 ± 0.98 nm2, DM = 8.80 ± 1.15 nm2) for
both DM and DP. As expected, DP−DP complexes were
characterized by a slightly higher hydrophobic BS (DP = 9.02 ±
0.97 nm2, DM = 7.03 ± 0.99 nm2) and a lower hydrophilic
contact area (DP = 0.53 ± 0.18 nm2, DM = 1.77 ± 0.38 nm2)
with respect to DM−DM complexes. The greater tendency
shown by DP to interact by hydrophobic contacts is likely driven
by apolar terminals on the outer surface. The increased buried
hydrophobic area of DP promotes the self-assembly phenom-
ena, in agreement with experimental data.
In addition to the previously BS analysis, dendrimer solvent

accessible surface area (SASA) has been also computed in order
to clarify the percentage of the dendrimer surface involved in the
self-assembly process. Table 1 shows the SASA analysis and the
BS/SASA ratio for both the dendrimer type, dividing results in
three main categories: total, hydrophobic, and hydrophilic.
Accordingly to the Figure 1B bar diagram, the BS/SASA ratio is
in perfect correlation with the interaction surface of the
dendrimer assembly. Despite DP has lower total SASA, it
involves a higher interaction surface, resulting in a higher
percentage of the BS/SASA ratio.

T2. siRNA−Dendrimer Binding Stoichiometry. In vitro
experiments and AA simulations suggested DP−siRNA
stoichiometry higher than 2, whereas DM−siRNA stoichiom-
etry lower than 1, which definitively crown the DP dendrimer as
the most efficient nanocarrier. In this work, an extensive CG-
MD investigation was carried out to deeply elucidate molecular
reasons behind this feature (set up described in section

Figure 1. Percentage of simulation frames in which dendrimers are found complexed (DP−DP or DM−DM) or free in solution (A). The last 50 ns of
all replicas for each dendrimer type were considered as an ensemble trajectory. DP has demonstrated a greater self-aggregation behavior, as it occurs in
70% of the frames; in contrast, DM has exhibited lower attitude to self-aggregate, which occurs in only 30% of the frames. Picture (B) shows the BS
between homologous DMs and DPs. In this chart, the hydrophobic variation between the 2DP and 2DM systems is emphasized, which may be the
driving force of DP tighter self-assembly.

Table 1. Dendrimers SASA and the Respective Ratio between BS and SASA Expressed in Percentage

SASA total (nm2) SASA hydrophobic (nm2) SASA hydrophilic (nm2) BS/SASA total (%) BS/SASA hydrophobic (%) BS/SASA hydrophilic (%)

DM 81.26 ± 3.13 52.76 ± 3.23 28.50 ± 1.45 10.83 13.32 6.21
DP 73.57 ± 2.83 60.75 ± 3.04 12.82 ± 0.80 12.98 14.85 4.14
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Methods, category T2). Overall, 15 replicas of 500 ns were
carried out for each system, considering the last 50 ns for all the
following analyses. Figure 2A shows the probability of each
dendrimer to be in contact with 1 and 2 siRNA, respectively.
Results indicated that DP was able to maximize the probability
to bind 2 siRNA molecules (78.6% of the MD frames
Supporting Movie 1), if compared with DM (36.1% of the MD
framesSupporting Movie 2). Figure 2B shows the BS, that is,
the interaction surface, between dendrimer and siRNA in stable
dendriplex assemblies. In these CG-MD simulations, dendriplex
can be composed by 1 dendrimer and 1 siRNA or 1 dendrimer
and 2 siRNA. The BS was always larger in case of DM−siRNA
dendriplex (DM−1 siRNA = 16.89± 4.20 nm2, DM−2 siRNA =
24.46 ± 6.11 nm2; DP−1 siRNA = 8.25 ± 1.18 nm2, DP−2
siRNA = 18.69 ± 4.15 nm2). It is worth noting that BS is 2.27
higher in case of DP binding 2 siRNA (BSDP−2 siRNA/
BSDP−1 siRNA > 2), whereas the BS is only 1.45 higher for DM
binding 2 siRNA (BSDM−2 siRNA/BSDM−1 siRNA < 1.5). This
evidence is again in agreement with a higher stoichiometry of DP
in binding siRNA, as suggested in the recent literature.22

To complete the picture, terminal-siRNA distance analysis
has been performed in order to extract fruitful information on
the interaction behavior of the different DM and DP
characterizing beads. In greater detail, Table 2 shows the

number of Q0, N0, and C1 dendrimer terminal beads present
within three main distance intervals from the siRNAs: “primary
interaction (d ≤ 0.6 nm)” indicates a strong stabilization range
where terminal beads are primary involved in the dendrimer−
siRNA complexation. The “Secondary interaction (0.6 nm < d≤
1.1 nm)” range indicates an interval where the terminal beads are

still involved in interaction with siRNA by van der Waals and
Coulomb forces. “Free terminals (d > 1.1 nm)” indicate that no
interaction is occurring between beads and siRNA beyond this
range. Remarkably, in both cases, where 1 or 2 siRNA are
complexed, DM involves a higher number of Q0 andN0 terminal
beads for complexation purposes, whereas DP utilizes a lower
number of Q0 and C1 terminal beads. Interestingly, the N0 bead
of the DM terminals is employed for primary stabilization tasks
in a better way (DM−1 siRNA N0/Q0 = 0.73, DM−2 siRNA
N0/Q0 = 0.72), rather than the C1 bead of the DP terminals
(DP−1 siRNA C1/Q0 = 0.54, DP−2 siRNA C1/Q0 = 0.47).

T3. Dendrimer Competition Mechanisms. In this
section, we have investigated possible competition phenomena
which may affect the ability of DM and DP to complex in
dendriplex assemblies (set up described in section Methods,
category T3). To address this point, 15 replicas of 500 ns were
carried out for each system, considering the last 50 ns for all the
following analyses.
Figure 3A depicts the probability of the DP and DM

dendrimers to be found in dendriplex or free in solution.
Interestingly, DP dendrimers are found free in solution only with
probability 0.2 among all replicas, whereas DM can be found free
in solution with a higher probability up to 0.4. This implies that
siRNA−DM complexes are in general constituted by 1 siRNA
and 1 dendrimer.
It is worth noting that the higher probability to find DP

dendrimers aggregated in dendriplexes is also driven by DP self-
aggregation properties (already highlighted by in vitro experi-
ments22 and shown in Figure 1). This unique DP property is
crucial for promoting dendriplex stabilization and growth also
through dendrimer−dendrimer contacts. In this sense, the DP
self-aggregation tendency should be interpreted as a complex-
ation promoting feature and not a competition mechanism. To
complete the picture, a contact analysis has been performed in
order to evaluate if the first contact occurs between the two
dendrimers or between the siRNA and the dendrimers. The
distance below which the molecules are considered as stably
complexed is 0.6 nm. In detail, aggregation occurs first between
the two dendrimers in 2 replicas out of total 15 (15.4%) for
2DP−siRNA systems, whereas it occurs in 1 replica out of total
15 (7.2%) for two DM−siRNA systems.
It is worth mentioning that DM−siRNA complexation is

stabilized by a siRNA deformation while wrapping around
dendrimer, as also shown by AA simulation of the previous
literature.22 The abovementioned DM−siRNA complexation

Figure 2. (A) Complexation occurrences bar diagram for both types of dendrimer with siRNA. DP can interact with 2 siRNAs in 78.6% of the frames,
instead DMmay complex with 2 siRNA in the 35.7% of the frames. (B) Dendrimer−siRNAs BS analysis computed for DM−1 siRNA (green), DM−2
siRNA (orange), DP−1 siRNA (blue), DP−2 siRNA (red).

Table 2. Number of Q0, N0, and C1 Dendrimer Terminal
Beads Present within Three Main Ranges from siRNAs

Bead

primary
interaction
d ≤ 0.6 nm

secondary interaction
0.6 nm < d ≤ 1.1 nm

free
terminals
d > 1.1 nm

DM−1 siRNA Q0 14.6 6.1 27.3
N0 10.6 10.3 27.1

DP−1 siRNA Q0 8.4 4.4 35.2
C1 4.5 9.0 34.5

DM−2 siRNA Q0 10.8 5.7 31.4
N0 7.8 8.7 31.5

DP−2 siRNA Q0 10.0 4.5 33.5
C1 4.7 10.6 32.7
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feature is also detectable in present CG simulations (Figure 3,
Supporting Information S.6). Figure 3B quantifies the siRNA
bending angle “θ” in three cases: 1DEN−siRNA dendriplex,
2DEN−siRNA dendriplex and siRNA alone. Interestingly, the
results show that the siRNA bending angle, both when it
interacts with one and two DPs, is close to the conformation
assumed by siRNA when alone in water. In contrary, siRNA
structure deformation reached lower bending angles both in the
case of complexing with one and two DMs. However, siRNA is
able to wrap around only one between the two bound DM
(Figure 3C, Supporting Information S.6). This aspect suggests
that only one DMwill be stabilized in the complexation, whereas
the other will be more likely able to detach. In this sense, we
highlight a competition mechanism in DM−siRNA complex-
ation, which is not present in DP−siRNA complexation (Figure
3D, Supporting Information S.6). All these evidences suggest
some competition phenomena among dendrimers when an
excess of dendrimers are present in the solutions, as usual in
experimental studies. In detail, considering that the dendrimer−
siRNA molar ratio is always higher than 1,22 the competition
mechanisms can alter certain chemical parameters, including the
stoichiometric coefficients.

■ DISCUSSION

Dendrimers are polymeric hyperbranched nanocarriers charac-
terized by the globular shape with high monodispersity and high
degree of versatility, which have outstanding features for
nanomedicine.34−44 Within this context, polycationic den-
drimers have proven to be an excellent drug delivery carrier
for gene therapy strategies.45,46 In this paper, we have employed
CG MD to investigate complexation dynamics of siRNA with
two different type of polycationic phosphorous dendrimers,
namely, the pyrrolidinium and morpholinium dendrimers. MD

has already shown to be a powerful tool to investigate nanoscale
phenomena driving macromolecules properties from the
molecular to supramolecular scale.44,47−51 Here, our in silico
study aims at exploring molecular features driving supra-
molecular complexation in terms of assemble mechanisms and
competition phenomena. In this framework, dendrimers or
dendrons self-assembled supramolecular nanostructures reduce
the difficulty in overcoming the plasmatic membrane, resulting
in an increased cellular uptake of siRNAs.52−54 Particular
importance must be given to the dendriplex size.6,17 More
precisely, the size of dendriplex plays a key role in avoiding
problems such as little effectiveness or excessive toxicity on the
transfected cells.55 In this study, we have selected two different
cationic phosphorus dendrimers of generation 3, functionalized,
respectively, with pyrrolidinium (DP) and morpholinium (DM)
surface groups, which demonstrated a promising potential for
siRNA delivery.6 Our data have demonstrated that DP has an
increased capacity to self-assembly rather than DM. Such
behavior is related with the different dendrimers’ chemical
nature of the terminal beads, which for DM is polar and for DP is
completely apolar. Because systems are immersed in an aqueous
solvent, the behavior of nonpolar particles to aggregate is
increased, and probably it results in our demonstrated tighter
self-assembly showed by DP. Further studies on the size and the
polydispersity index of the DP aggregates could be indicated to
improve the control and the prediction of this sensitive
characteristic, with the aim of avoiding adverse events. Another
important feature to investigate in order to modulate the
dendriplex size and conformation is the dendrimer complex-
ation behavior with siRNA molecules.56 In this context, cationic
dendrimer−siRNA aggregates formation are mainly driven by
electrostatic interactions.57 Therefore, tuning up the peripheral
positive charge density and the terminal chemical structure of

Figure 3. Picture (A) shows the DM and DP aggregation percentage bar diagram with siRNA and the percentage of 1 DM and DP free in solution. DP
dendrimers are found free in solution only with probability 20% among all replicas, whereas DM can be found free in solution with a higher probability
up to 40%. Picture (B) shows the bending angle “θ” bar diagram of 1DEN−siRNA, 2DEN−siRNA e siRNA alone. Pictures (C,D) show, respectively,
2DMs and 2DPs in close complexation with 1 siRNA.
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dendrimers may strongly influence the binding attitude with
siRNAs.58 Recent study has highlighted how even small
difference in dendrimer chemical composition can affect the
enthalpy and entropic contribution of DP and DM, drastically
changing their stoichiometric values.22 It has been already
highlighted how the dendrimer multivalence behavior is
intrinsically connected to the enthalpy contribution and the
entropic penalty in the binding free energy.59−61 In our research,
we have demonstrated that DP has an increased capacity to
complex with 2 siRNAs, while DM has increased attitude to
complex with 1 siRNA. Such a different behavior may indicate
that DP can reorganize in a more efficient way its branches in
order to bind 2 siRNAs. On the other hand, DMmay suffer from
higher conformational change when it complexes with 1 siRNA.
This assumption is supported by the BS analysis (Figure 2B),
which confirms that DM has a greater interaction surface both
when it is complexed with 1 or 2 siRNAs. The higher BS values
exhibited by DM are due to its capability to flex the siRNA
structure, a behavior which is almost totally absent for the DP.22

Because DP has decreased the BS surface and employs a lower
number of terminals for complexation purposes, it has an
increased efficiency in binding siRNA rather than DM.6,22 In
addition, the lower number of terminals employed by DP can be
also useful in detachment of siRNAs once inside the cell, which
can lead to an amplified bioactivity. On the other hand, we have
shown that DP presents self-assembly mechanisms even in the
presence of siRNA double-strained filaments. Considering that
in vitro experiments are executed with an excess of dendrimer
buffer,6,22 we can suggest that DP concentration within the
dendriplex will be probably higher in comparison of DM
concentration within the dendriplex. According to the recent
literature, positively charged nanoparticles and aggregates have
much greater propensity to translocate through cell membranes
than negatively or neutral charged ones.62−64 In addition, the
superficial positive charged molecules have proved to be also
strongly correlated to cellular uptake and cytotoxicity.65−67 The
higher presence of DPs into the dendriplex nanoparticles can
result in a higher capability of masking the siRNA negative
charge, leading in an increased cellular internalization. On the

other hand, tuning properly the dendrimer hydrophobic/
hydrophilic affinity with membranes68,69 can also aid the
efficient translocation of dendriplexes inside the cell.62 In this
framework, DP increased apolar character rather than DM, may
also play a crucial role in the cellular uptake process, because of
the increased hydrophobic affinity with the plasmatic mem-
brane. Taken all together, it is reasonable to assume that DP
increased binding multivalence and self-assembly attitude, with
no significant competition phenomena, lead to higher
dendriplex stabilization and neutralization which ultimately
can improve the cell transfection.

■ CONCLUSIONS
In the present study, we adopted the MARTINI force-filed to
shed light on the different supramolecular behavior of two
cationic phosphorous dendrimers, namely, DM and DP, in
complexing siRNA. We have shown how small surface
modification might lead in significant changing on the
dendrimer−siRNA complexation dynamics. The results indicate
that DP is significantly more efficient in binding 2 siRNAs, while
DM has increased attitude to complex with 1 siRNA. In this
framework, we also highlighted a competition mechanism in
DM−siRNA interaction, which is not present in DP−siRNA
interaction. The outcome of this research provides fruitful
insight in order to deeply understand the mechanisms driving
the supramolecular dendriplex formation. In conclusion, this
multiscale computational work paves the way for a future
investigation of the dendriplex structures formed by the large-
scale interaction of dendrimers and nucleic acids.

■ METHODS
Dendrimers CG Models. Dendrimers CG models, in terms

of coordinates and topology, were generated starting from AA
trajectories of DM and DP by grouping AA coordinates and
mapping them in CG beads as made in several previous
works.24−27,29,51

AA-MD set up and results concerning conformational
stability are reported in our previous work and summarized in
Supporting Information S.1. The AA simulations of single

Figure 4. DP (top picture) and DM (bottom picture) maps applied to the AA structure. Different bead polarity is highlighted with different color:
apolar beads are indicated in gray, nonpolar beads in blue, polar beads in red, and charged beads in green.
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dendrimer in water will be used here as reference for validation
of CG dendrimer models.
CG-AAmaps for DM andDP dendrimers are shown in Figure

4. More details about the AA group division and bead
identification is reported in Supporting Information S.2.
Nonbonded parameters assigned to each CG bead have been
taken from the MARTINI forcefield.24 AA trajectories and AA-
CG maps were used as input for PyCGTOOL70 in order to
generate the dendrimer CG-bonded terms topology.71,72

Dendrimer CG Model Validation. As mentioned above,
the dendrimer CG models were validated by comparing the
dendrimer AA and CG dendrimer conformational dynamics. In
a greater detail, AA-MD and CG-MD simulations have been
performed on the same molecular system (dendrimer in water)
for both DP and DM.
The tuning of bonded parameters was done using the iterative

modified Boltzmann inversion (ImBI) technique (Supporting
Information S.3), to derive potentials of the bonded terms in
order to match the topological parameters of reference atomistic
models. Structural conformation of both CG dendrimer models
was evaluated in comparison with AA trajectories, by measuring
mean and standard deviation of the radius of gyration and root
mean square fluctuations.
The ImBI requires several steps of CG dynamics and a

topology refinement on the basis of a comparison with system
properties obtained at the CG level and the same properties
obtained by AA-MD (target trajectory).48 Concerning the CG
level, each dendrimer (DP and DM) was positioned in the
center of a dodecahedron box filled with normal water beads,
using 0.21 nm as van derWaals distance, and ions (Na+ and Cl−)
at a physiological concentration (0.15M). To prevent unwanted
CG water freezing, 20% of normal P4 water beads were replaced
with special-type BP4 antifreeze water beads.24

Then, each simulation step of the ImBI was performed as
follows. The system (dendrimer in water) was energy-
minimized by 2000 steps of the steepest descent energy
minimization algorithm. A 100 ps position-restrained MD was
performed at 320 K using the v-rescale73 thermostat in theNVT
ensemble. Then, a 5 ns position-restrained MD was performed
at 320 K and 1 atm using Berendsen barostat in the NPT
ensemble.74 Finally, a 100 nsMDwithout position restraints was
performed in the NPT ensemble coupling the system by the
Parrinello−Rahman75 barostat and the v-rescale73 thermostat.
Atom velocities were randomly initialized following a Maxwell−
Boltzmann distribution. Long-ranged electrostatic interactions

were calculated at every step with the reaction-field method,
using a relative dielectric constant value of 15, with a cut-off of
1.1 nm.76 A cut-off of 1.1 nmwas also applied to Lennard−Jones
interactions.76 The LINCS77 algorithm approach allowed an
integration time step of 10 fs.
Validation analysis was performed taking into account the last

20 ns of production run, following two main strategies: (A) suit
the bonded parameters as similar as possible to the atomistic
models and (B) try to optimize the conformational features of
the dendrimers as close as possible to the atomistic
simulations.70,78,79

The detailed validation procedure that has been adopted can
be found in the Supporting Information S.4.

Generation of siRNA CG Model. The parametrization
followed to obtain the siRNA CG model is based on the
MARTINI DNA force-field extension80 adapted in order to
achieve a correct implementation of the RNA properties.78 The
siRNA CG model was created with a soft elastic network which
has allowed the building of correct double-stranded siRNA’s
structure.78 In detail, the soft model has been found in good
agreement with the experimental persistence length and helical
parameters for dsRNA molecules.78 The maximum recom-
mended time-step in order to maintain the simulations stability
is 10 fs.78

CG MD of Dendrimer−Dendrimer and Dendrimer−
siRNA Complexation. CGMD developed in this work can be
divided into three main categories (T1, T2, and T3). For each
category, a different molecular system has been considered.

T1. Investigation of Dendrimer Self-Aggregation Mecha-
nisms. Two homologues, for example, 2DMmolecules (or 2DP
molecules), have been positioned at a minimum distance of 3
nm from each other (Figure 5A). The simulation test aims at
investigating DP and DM self-aggregation tendency.

T2. Investigation of siRNA−Dendrimer Binding Stoichiom-
etry. A system consisting of 2 siRNA and 1 dendrimer (DM or
DP) has been built by positioning each molecule at a minimum
distance of 2 nm from each other. The simulation test aims at
investigating molecular reasons behind a different stoichiometry
shown by DP and DM in binding siRNA (Figure 5B).

T3. Investigation of Dendrimer Competition Mechanisms
in Binding siRNA. A system consisting of 2 dendrimers and 1
siRNA has been built by positioning each molecule at a
minimum distance of 2 nm from each other. The simulation test
aims at investigating if some kind of competition mechanism
may affect the dendrimer ability to bind siRNA (Figure 5C).

Figure 5. Representation of the three simulated systems (T1, T2, T3) for each dendrimer type; (A) two homologues dendrimers in water (T1), (B)
siRNA−dendrimer−siRNA in water (T2), (C) dendrimer−siRNA−dendrimer in water (T3). Water and ions are not shown in the picture.
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All CG simulations have been carried out in CG modeled
explicit water and ions as described below. In all the cases, the
molecular system was positioned in the center of a
dodecahedron box with a minimum periodic images distance
no smaller than 2.0 nm and solvated with nonpolarizable water
beads. After that Na−Cl ions were added at a concentration of
0.15 M, such as human extracellular ions concentration, forming
systems with a total amount of about 45,000 interacting beads.
MARTINI v_2.1-dna forcefield24 was adopted for CG
simulations. To avoid freezing of the solvent beads, 20% of
normal water beads (P4) was replaced with heavy water beads
(BP4).24 Long-ranged electrostatic interactions were calculated
at every step choosing the reaction-field method, using a relative
dielectric constant value of 15, with a cut-off of 1.1 nm.76 A cut-
off of 1.1 nm was also applied to vdW interactions.76

Each system was energy-minimized by 2000 steps of steepest
descent energy minimization algorithm. A 100 ps position-
restrained MD was performed at 320 K using v-rescale73

thermostat in the NVT ensemble. Then was performed a 5 ns
position-restrained MD at 320 K and 1 atm using Berendsen74

barostat in the NPT ensemble, giving the time to equilibrate the
system density. Atom velocities were randomly initialized
following a Maxwell−Boltzmann distribution. Finally, 10 MD
replicas for category T1 and 15 MD replicas for both T2 and T3
were performed for 500 ns each, without position restrains, in
the NPT ensemble using Parrinello−Rahman75 barostat. Each
replica was characterized by different atom velocities at the
beginning of the MD simulation. All the performed analyses
were done considering the last 50 ns of each replica.
GROMACS 2018.381,82 package was used for all MD

simulations. The visual MD (VMD)83 package was used for
the visual inspection of the simulated systems and for systems
snapshot rendering.
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Amphiphilic Dendrimers: The Role of Generation and Alkyl Chain
Length in SiRNA Interaction. Sci. Rep. 2016, 6, 29436.
(54) Chen, C.; Posocco, P.; Liu, X.; Cheng, Q.; Laurini, E.; Zhou, J.;
Liu, C.; Wang, Y.; Tang, J.; Col, V. D.; Yu, T.; Giorgio, S.; Fermeglia,
M.; Qu, F.; Liang, Z.; Rossi, J. J.; Liu, M.; Rocchi, P.; Pricl, S.; Peng, L.
Mastering Dendrimer Self-Assembly for Efficient SiRNA Delivery:
From Conceptual Design to In Vivo Efficient Gene Silencing. Small
2016, 12, 3667−3676.
(55) Liu, C.; Shao, N.; Wang, Y.; Cheng, Y. Clustering Small
Dendrimers into Nanoaggregates for Efficient DNA and SiRNA
Delivery with Minimal Toxicity. Adv. Healthcare Mater. 2016, 5, 584−
592.
(56) Shakya, A.; Dougherty, C. A.; Xue, Y.; Al-Hashimi, H. M.;
Banaszak Holl, M. M. Rapid Exchange Between Free and Bound States
in RNA−Dendrimer Polyplexes: Implications on the Mechanism of
Delivery and Release. Biomacromolecules 2016, 17, 154−164.
(57) Jensen, L. B.; Mortensen, K.; Pavan, G. M.; Kasimova, M. R.;
Jensen, D. K.; Gadzhyeva, V.; Nielsen, H. M.; Foged, C. Molecular
Characterization of the Interaction between SiRNA and PAMAM G7
Dendrimers by SAXS, ITC, and Molecular Dynamics Simulations.
Biomacromolecules 2010, 11, 3571−3577.
(58) Jensen, L. B.; Pavan, G. M.; Kasimova, M. R.; Rutherford, S.;
Danani, A.; Nielsen, H. M.; Foged, C. Elucidating the Molecular
Mechanism of PAMAM-SiRNA Dendriplex Self-Assembly: Effect of
Dendrimer Charge Density. Int. J. Pharm. 2011, 416, 410−418.
(59) Pavan, G. M.; Albertazzi, L.; Danani, A. Ability to Adapt:
Different Generations of PAMAM Dendrimers Show Different
Behaviors in Binding SiRNA. J. Phys. Chem. B 2010, 114, 2667−2675.
(60) Vasumathi, V.; Maiti, P. K. Complexation of SiRNA with
Dendrimer: A Molecular Modeling Approach. Macromolecules 2010,
43, 8264−8274.
(61) Pavan, G. M.; Danani, A.; Pricl, S.; Smith, D. K. Modeling the
Multivalent Recognition between Dendritic Molecules and DNA:
Understanding How Ligand “Sacrifice” and Screening Can Enhance
Binding. J. Am. Chem. Soc. 2009, 131, 9686−9694.
(62) Fox, L. J.; Richardson, R. M.; Briscoe, W. H. PAMAM
DendrimerCell Membrane Interactions. Adv. Colloid Interface Sci.
2018, 257, 1−18.
(63) Hong, S.; Leroueil, P. R.; Janus, E. K.; Peters, J. L.; Kober, M.-M.;
Islam, M. T.; Orr, B. G.; Baker, J. R.; Banaszak Holl, M. M. Interaction
of Polycationic Polymers with Supported Lipid Bilayers and Cells:
Nanoscale Hole Formation and Enhanced Membrane Permeability.
Bioconjugate Chem. 2006, 17, 728−734.
(64) Gorzkiewicz, M.; Deriu, M. A.; Studzian, M.; Janaszewska, A.;
Grasso, G.; Pułaski, Ł.; Appelhans, D.; Danani, A.; Klajnert-
Maculewicz, B. Fludarabine-Specific Molecular Interactions with
Maltose-Modified Poly (Propyleneimine) Dendrimer Enable Effective
Cell Entry of Active Drug Form: Comparison with Clofarabine.
Biomacromolecules 2019, 20, 1429−1442.
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