
RESEARCH PAPER

Exploring structure-activity relationship of S-substituted 2-mercaptoquinazolin-
4(3H)-one including 4-ethylbenzenesulfonamides as human carbonic
anhydrase inhibitors

Adel S. El-Azaba , Alaa A.-M. Abdel-Aziza , Hany E. A. Ahmedb,c, Sivia Buad, Alessio Nocentinid,
Nawaf A. AlSaifa, Ahmad J. Obaidullaha, Mohamed M. Hefnawya and Claudiu T. Supurand

aDepartment of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia; bDepartment of Pharmaceutical
Organic Chemistry, Faculty of Pharmacy, Cairo, Egypt; cPharmacognosy and Pharmaceutical Chemistry Department, College of Pharmacy, Taibah
University, Al-Madinah Al-Munawarah, Saudi Arabia; dDepartment of Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche, Universit�a
degli Studi di Firenze, Florence, Italy

ABSTRACT
Inhibitory action of newly synthesised 4-(2-(2-substituted-thio-4-oxoquinazolin-3(4H)-yl)ethyl)benzenesulfo-
namides compounds 2–13 against human carbonic anhydrase (CA, EC 4.2.1.1) (hCA) isoforms I, II, IX, and
XII, was evaluated. hCA I was efficiently inhibited by compounds 2–13 with inhibition constants (KIs) rang-
ing from 57.8–740.2 nM. Compounds 2, 3, 4, and 12 showed inhibitory action against hCA II with KIs
between 6.4 and 14.2 nM. CA IX exhibited significant sensitivity to inhibition by derivatives 2–13 with KI
values ranging from 7.1 to 93.6 nM. Compounds 2, 3, 4, 8, 9, and 12 also exerted potent inhibitory action
against hCA XII (KIs ranging from 3.1 to 20.2 nM). Molecular docking studies for the most potent com-
pounds 2 and 3 were conducted to exhibit the binding mode towards hCA isoforms as a promising step
for SAR analyses which showed similar interaction with co-crystallized ligands. As such, a subset of these
mercaptoquinazolin-4(3H)-one compounds represented interesting leads for developing new efficient and
selective carbonic anhydrase inhibitors (CAIs) for the management of a variety of diseases including glau-
coma, epilepsy, arthritis and cancer.
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1. Introduction

Carbonic anhydrases (CAs; EC 4.2.1.1) constitute the superfamily of
metalloenzymes catalysing the CO2 hydration/dehydration reac-
tion. CAs are classified into eight genetically distinct families,
named a-, b-, c-, d-, f-, g-, �-, and i-CAs1,2. 15 a-class isoenzymes
have been detected in humans (h) and are sorted into four differ-
ent subsets depending on their subcellular localisation: CA I, II, III,
VII, VIII, X, XI, XIII are cytosolic proteins, CA VA and VB are present
in the mitochondrial matrix, CA VI is a secreted enzyme, CA IV is a
glycosylphosphatidylinositol (GPI)-anchored protein and CA IX, XII,
and XIV are trans-membrane isoforms1–3. hCAs are spread in the

human body and are implicated in a plethora of essential physio-
logical processes. As a result, critical pathological conditions might
occur upon their dysregulated expression and/or abnormal activ-
ity2. CA II is the most physiologically relevant isoform and is impli-
cated in disorders such as cerebral oedema, glaucoma (such as CA
XII), and epilepsy. It is conversely off-target like CA I, when target-
ing tumours where CA IX and XII are overexpressed and represent
validated targets to combat the growth of both primary tumours
and metastasis4. Significant similarity exists amongst the active
site’s architecture of hCAs making it difficult to produce inhibitors
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that exhibit net isoform-specificity in action and do not induce
side effects as a consequence of CA inhibition1. Aromatic sulpho-
namides constitute the main subset of CAIs developed to date
and have been clinically used for decades as diuretic, antiglau-
coma, antiobesity, and antiepilepsy medications. The ureidobenze-
nesulfonamide SLC-0111 (Figure 1), a selective CA IX/XII inhibitor,
is currently in Phase II/b clinical trials for the therapy of solid,
metastatic tumours2–6. A wealth of sulphonamide derivatives have
been reported as CAIs5,7–19, COX-2 inhibitors, or antitu-
mor13,15,20–22. The quinazolinone scaffold is also widely used in
medicinal chemistry23–39, such as COX-1/2 inhibitors23,24 and anti-
tumor25–29,37–39. 4–(2-(4-Oxo-2-thioxo-1,4-dihydroquinazolin-3(2H)-
yl)ethyl)benzenesulfonamide (1, Figure 1) showed effective

inhibitory activity against a subset of hCA isoforms with subnano-
molar inhibition constants40. Likewise, a series of 2-((3-benzyl-4-
oxo-3,4-dihydroquinazolin-2-yl)thio)-N-(4-sulfamoylphenethyl)a-
mides (A, Figure 1) showed nanomolar inhibitory action against a
panel of hCAs39. Various quinazolin-4-yl-aminobenzenesulfona-
mide, quinazolin-4-yl-oxy-benzenesulfonamide derivatives (B,
Figure 1) and 3-(6-iodo-4-oxo-2-thioxo-1,4-dihydroquinazolin-
3(2H)-yl)benzenesulfonamide, 3-(2-mercapto-7-fluoro-
4(3H)quinazolinon-3-yl)-benzenesulfonamide (C, Figure 1) were
reported to exert potent inhibitory effect against CA I, II, IX and
XII41,42. As observed from SAR analysis of the reported C deriva-
tives (Figure 1), it is thought to add an ethyl linker between sul-
phonamide part and quinazoline scaffold and alkylation of free SH

Figure 1. Structures of AAZ, SLC-0111, (A–C), and the herein designed quinazoline derivatives (2–13) as CAIs.
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group to increase the lipophilicity as activity parameter in CA
enzyme. Therefore, we report the synthesis of a new series of 4-
(2-(2-(substituted-thio)-4-oxoquinazolin-3(4H)-yl)ethyl)benzenesul-
fonamide compounds (2–13, Figure 1) and evaluated their inhibi-
tory action against four pharmacologically relevant hCA isoforms,
I, II, IX, and XII.

2. Materials and methods

2.1. Chemistry

Melting points were recorded on a Barnstead 9100 electrothermal
melting point apparatus (UK). IR spectra (KBr) were recorded on a
FT-IR Perkin-Elmer spectrometer (Perkin Elmer Inc., Waltham, MA).
Nuclear magnetic resonance (1H and 13C NMR) spectra were
recorded with Bruker 500 or 700MHz spectrometers (Zurich,
Switzerland) using DMSO-d6 as the solvent. Micro-analytical data
(C, H, and N) were obtained using a Perkin-Elmer 240 analyser
(Perkin Elmer Inc., MA) and agreed with the proposed structures
within ±0.4% of the theoretical values. Mass spectra were
recorded on a Varian TQ 320 GC/MS/MS mass spectrometer
(Varian, Palo Alto, CA).

4-(2-(4-Oxo-2-thioxo-1,4-dihydroquinazolin-3(2H)-yl)ethyl)benze-
nesulfonamide compound 1 was prepared by heating anthranilic
acid with 4-(2-isothiocyanatoethyl)benzenesulfonamide in ethanol
in the presence of triethylamine40.

2.1.1. General procedure for synthesis of 4-(2-(2-(substituted-
thio)-4-oxoquinazolin-3(4H)-yl)ethyl)benzenesulfonamides (2–13)
A mixture of 4-(2-(4-oxo-2-thioxo-1,4-dihydroquinazolin-3(2H)-yl)e-
thyl)benzenesulfonamide (1) (1mmol, 361mg), appropriate halide
(1mmol) and potassium carbonate (3mmol, 415mg) in 7ml acet-
one were stirred at room temperature for 8–13 h. The reaction
mixture was filtered and the prepared solid was washed with
water and dried.

2.1.1.1. 4-(2-(2-(Methylthio)-4-oxoquinazolin-3(4H)-yl)ethyl)benze-
nesulfonamide (2). M.P. 255–257 �C, 91% yield; IR (KBr, cm�1) �:
3285, 3237 (NH), 1655 (C¼O), 1345, 1159 (O¼S¼O); 1H NMR
(700MHz, DMSO-d6): d 8.09 (d, 1H, J¼ 7.78Hz), 7.89 (d, 3H,
J¼ 8.17Hz), 7.57 (d, 1H, J¼ 8.14), 7.48 (dd, 3H, J¼ 8.24 & 7.70Hz),
7.35 (s, 2H), 4.27 (t, 2H, J¼ 15.99Hz), 3.07 (t, 2H, J¼ 16.20Hz), 2.65
(s, 3H); 13C NMR (176MHz, DMSO-d6): d 160.89, 157.38, 147.29,
143.07, 142.41, 135.21, 129.65, 126.89, 126.48, 126.43, 126.39,
119.16, 45.42, 33.58, 15.11; MS; m/z (375).

2.1.1.2. 4-(2-(2-(Ethylthio)-4-oxoquinazolin-3(4H)-yl)ethyl)benzene-
sulfonamide (3). M.P. 193–195 �C, 94% yield; 1H NMR (700MHz,
DMSO-d6): d 8.09 (d, 1H, J¼ 7.89Hz), 7.80 (d, 3H, J¼ 8.12Hz), 7.55
(d, 1H, J¼ 8.12Hz), 7.47 (d, 3H, J¼ 8.19Hz), 7.34 (s, 2H), 4.25 (t,
2H, J¼ 15.96Hz), 3.27 (q, 2H, J¼ 7.30Hz), 3.06 (t, 2H, J¼ 15.96Hz),
1.36 (d, 3H, J¼ 7.32Hz); 13C NMR (176MHz, DMSO-d6): d 160.97,
156.68, 147.33, 143.07, 142.41, 135.22, 129.66, 126.87, 126.46,
126.42, 126.38, 119.22, 45.38, 33.58, 26.49, 14.47; MS: m/z 389.

2.1.1.3. 4-(2-(2-((Cyanomethyl)thio)-4-oxoquinazolin-3(4H)-yl)e-
thyl)benzenesulfonamide (4). M.P. 169–170 �C, 90% yield; IR (KBr,
cm�1) �: 3287, 3232 (NH), 2193 (CN), 1700 (C¼O), 1333, 1155
(O¼S¼O); 1H NMR (700MHz, DMSO-d6): d 8.13 (d, 1H, J¼ 7.86Hz),
7.86 (t, 1H, J¼ 7.61Hz), 7.80 (d, 2H, J¼ 7.78Hz), 7.63 (d, 1H,
J¼ 8.11Hz), 7.53 (t, 1H, J¼ 7.51Hz), 7.49 (d, 2H, J¼ 7.82Hz), 7.35
(s, 2H), 4.42 (s, 2H), 4.24 (t, 2H, J¼ 15.93Hz), 3.08 (t, 2H,

J¼ 15.95Hz); 13C NMR (176MHz, DMSO-d6): d 160.76, 154.07,
146.88, 143.14, 142.19, 135.48, 129.69, 127.11, 127.01, 126.62,
126.50, 119.41, 117.91, 45.75, 33.62, 18.20; MS: m/z 400.

2.1.1.4. 4-(2-(2-(Benzylthio)-4-oxoquinazolin-3(4H)-yl)ethyl)benze-
nesulfonamide (5). M.P. 251–252 �C, 95% yield; IR (KBr, cm�1) �:
3289, 3233 (NH), 1686 (C¼O), 1331, 1158 (O¼S¼O); 1H NMR
(500MHz, DMSO-d6): d 9.09 (d, 1H, J¼ 7.40Hz), 7.28 (s, 1H), 7.78
(d, 2H, J¼ 6.80Hz), 7.64 (d, 1H, J¼ 7.50Hz), 7.53 (d, 2H,
J¼ 6.10Hz), 7.48 (d, 1H, J¼ 7.45Hz), 7.44 (d, 2H, J¼ 6.75Hz), 7.35
(s, 4H), 7.28 (d, 1H, J¼ 6.55Hz), 4.57 (s, 2H), 4.25 (s, 2H), 3.04 (s,
2H); 13C NMR (125MHz, DMSO-d6): d 160.93, 156.26, 147.18,
143.06, 142.33, 137.12, 135.28, 129.88, 129.65, 128.95, 127.90,
126.90, 126.52, 126.45, 45.41, 36.06, 33.61; MS: 451.

2.1.1.5. 4-(2-(2-((4-Bromobenzyl)thio)-4-oxoquinazolin-3(4H)-yl)e-
thyl)benzenesulfonamide (6). M.P. 225–227 �C, 92% yield; IR (KBr,
cm�1) �: 3291, 3226 (NH), 1645 (C¼O), 1340, 1155 (O¼S¼O); 1H
NMR (500MHz, DMSO-d6): d 8.08 (d, 1H, J¼ 7.26Hz), 7.78 (t, 3H,
J¼ 10. 05 & 7.10Hz), 7.63 (d, 1H, J¼ 7.37Hz), 7.48 (dd, 7H,
J¼ 11.70 & 19.80Hz), 7.36 (s, 2H), 4.52 (s, 2H), 4.23 (s, 2H), 3.04 (s,
2H); 13C NMR (125MHz, DMSO-d6): d 160.91, 156.02, 147.11,
143.07, 142.34, 137.00, 135.28, 132.07, 131.74, 129.67, 126.90,
126.56, 126.46, 120.97, 119.27, 45.48, 35.21, 33.61; MS: m/z 530
and 532.

2.1.1.6. 4-(2-(2-((4-Chlorobenzyl)thio)-4-oxoquinazolin-3(4H)-yl)e-
thyl)benzenesulfonamide (7). M.P. 244–245 �C, 95% yield; IR (KBr,
cm�1) �: 3282, 3224 (NH), 1655 (C¼O), 1333, 1155 (O¼S¼O); 1H
NMR (500MHz, DMSO-d6): d 8.04 (s, 1H), 7.78 (d, 3H, J¼ 6.51Hz),
7.63 (s, 1H), 7.54 (s, 2H), 7.45 (s, 3H), 7.38 (s, 2H), 7.35 (s, 2H), 4.54
(s, 2H), 4.23 (s, 2H), 3.04 (s, 2H); 13C NMR (125MHz, DMSO-d6): d
162.53, 156.04, 147.12, 142.36, 136.56, 135.30, 132.44, 131.71,
129.68, 128.81, 126.89, 126.58, 126.45, 119.26, 116.12, 45.47, 35.15,
33.60; MS; m/z 486 and 487.

2.1.1.7. 4-(2-(2-((4-Cyanobenzyl)thio)-4-oxoquinazolin-3(4H)-yl)e-
thyl)benzenesulfonamide (8). M.P. 265–267 �C, 95% yield; IR (KBr,
cm�1) �: 3280, 3222 (NH), 2189 (CN), 1654 (C¼O), 1334, 1155
(O¼S¼O); 1H NMR (700MHz, DMSO-d6): d 8.08 (dd, 1H, J¼ 7.91 &
1.19Hz), 7.82 (dd, 1H, J¼ 7.00 & 1.40Hz), 7.79 (t, 4H, J¼ 17.70 Hz),
7.73 (d, 2H, J¼ 8.28Hz), 7.62 (d, 1H, J¼ 8.19Hz), 7.48 (d, 1H,
J¼ 7.28Hz), 7.45 (d, 2H, J¼ 8.19Hz), 7.37 (s, 2H), 4.62 (s, 2H), 4.24
(t, 2H, J¼ 15.90 Hz), 3.05 (t, 2H, J¼ 15.87Hz); 13C NMR (176MHz,
CDCl3/DMSO-d6): d 160.90, 155.79, 147.05, 143.83, 143.07, 142.35,
135.31, 132.70, 130.81, 129.70, 126.91, 126.63, 126.46, 126.41,
119.28, 119.23, 110.45, 45.58, 35.31, 33.60; MS: m/z 476.

2.1.1.8. 4-(2-(2-((4-Fluorobenzyl)thio)-4-oxoquinazolin-3(4H)-yl)e-
thyl)benzenesulfonamide (9). M.P. 267–269 �C, 93% yield; IR (KBr,
cm�1) �: 3285, 3220 (NH), 1663 (C¼O), 1336, 1157 (O¼S¼O); 1H
NMR (500MHz, DMSO-d6): d 8.08 (d, 1H, J¼ 7.32Hz), 7.78 (t, 3H,
J¼ 12.70 & 6.69Hz), 7.64 (d, 1H, J¼ 7.68Hz), 7.57 (s, 2H), 7.44 (t,
3H, J¼ 9.65 & 6.56Hz), 7.35 (s, 2H), 7.16 (d, 2H, J¼ 8.25Hz), 4.55
(s, 2H), 4.23 (s, 2H), 3.04 (s, 2H);13C NMR (125MHz, DMSO-d6): d
160.92, 156.16, 147.15, 143.06, 142.35, 135.28, 133.55, 131.90,
131.83, 129.66, 126.90, 126.54, 126.45, 119.28, 115.76, 115.59,
45.44, 35.16, 33.60; MS: m/z 469.

2.1.1.9. 4-(2-(2-((4-Methylbenzyl)thio)-4-oxoquinazolin-3(4H)-yl)e-
thyl)benzenesulfonamide (10). M.P. 227–228 �C, 92% yield; IR (KBr,
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cm�1) �: 3287, 3221 (NH), 1656 (C¼O), 1334, 1156 (O¼S¼O); 1H
NMR (700MHz, DMSO-d6): d 8.09 (d, 1H, J¼ 7.84Hz), 7.81 (d, 1H,
J¼ 6.79Hz), 7.78 (d, 2H, J¼ 7.98Hz), 7.64 (d, 1H, J¼ 8.12Hz), 7.47
(t, 1H, J¼ 8.11Hz), 7.44 (d, 2H, J¼ 7.91Hz), 7.40 (d, 2H,
J¼ 7.70Hz), 7.35 (s, 2H), 7.14 (d, 2H, J¼ 7.70Hz), 4.52 (s, 2H), 4.23
(t, 2H, J¼ 15.89Hz), 3.03 (t, 2H, J¼ 15.92Hz), 2.27 (s, 3H); 13C NMR
(176MHz, DMSO-d6): d 160.91, 156.02, 147.11, 143.07, 142.34,
137.00, 135.28, 132.07, 131.74, 129.67, 126.90, 126.56, 126.46,
120.97, 119.27, 45.48, 35.21, 33.61; MS: m/z 465.

2.1.1.10. 4-(2-(2-((4-Nitrobenzyl)thio)-4-oxoquinazolin-3(4H)-yl)e-
thyl)benzenesulfonamide (11). M.P. 210–211 �C, 90% yield; IR (KBr,
cm�1) �: 3279, 3226 (NH), 1661 (C¼O), 1326, 1161 (O¼S¼O); 1H
NMR (500MHz, DMSO-d6): d 8.19 (d, 2H, J¼ 6.56Hz), 8.08 (d, 1H,
J¼ 6.10Hz), 7.80 (t, 5H, J¼ 8.30 & 8.26Hz), 7.64b (d, 1H,
J¼ 5.55Hz), 7.46 (s, 3H), 7.36 (s, 2H), 4.68 (s, 2H), 4.25 (s, 2H), 3.05
(s, 2H); 13C NMR (125MHz, DMSO-d6): d 160.90, 155.71, 147.06,
146.06, 143.07, 142.36, 135.31, 131.08, 129.71, 126.89, 126.65,
126.45, 123.86, 119.27, 45.60, 35.02, 33.60; MS: m/z 496.

2.1.1.11. 4-(2-(4-Oxo-2-((2-(piperidin-1-yl)ethyl)thio)quinazolin-
3(4H)-yl)ethyl)benzenesulfonamide (12). M.P. 198–199 �C, 92%
yield; 1H NMR (700MHz, DMSO-d6): d 7.08 (dd, 1H, J¼ 9.18 &
6.64Hz), 7.79 (d, 3H, J¼ 8.22Hz), 7.53 (d, 1H, J¼ 8.05Hz), 7.47 (dd,
3H, J¼ 8.26 & 6.70Hz), 7.36 (s, 2H), 4.26 (t, 2H, J¼ 16.04Hz), 3.41
(t, 2H, J¼ 14.25Hz), 3.07 (t, 2H, J¼ 16.01Hz), 2.65 (s, 2H), 2.51 (t,
2H, J¼ 3.55Hz), 2.48 (d, 2H, J¼ 6.54Hz), 1.50 (d, 4H, J¼ 4.35Hz),
1.38 (s, 2H); 13C NMR (176MHz, DMSO-d6): d 160.95, 156.81,
147.27, 143.08, 142.43, 135.24, 129.65, 126.88, 126.46, 126.38,
126.34, 119.19, 57.48, 54.15, 45.38, 33.59, 31.17, 29.37, 25.93,
24.36; MS: m/z 472.

2.1.1.12. 4-(2-(2-((3-(1,3-Dioxoisoindolin-2-yl)propyl)thio)-4-oxoqui-
nazolin-3(4H)-yl)ethyl)benzenesulfonamide (13). M.P. 205–207 �C,
91% yield; IR (KBr, cm�1) �: 3277, 3228 (NH), 1701 (C¼O), 1328,
1159 (O¼S¼O); 1H NMR (700MHz, DMSO-d6): d 8.05 (d, 1H,
J¼ 7.84Hz), 7.88–7.83 (m, 4H), 7.79 (d, 2H, J¼ 7.91Hz), 7.68 (p, 1H,
J¼ 8.15, 14.14Hz), 7.54 (d, 2H, J¼ 8.26Hz), 7.42 (p, 1H, J¼ 17.15 &
7.03Hz), 7.36 (s, 2H), 7.20 (d, 1H, J¼ 8.12Hz), 4.21 (t, 2H,
J¼ 15.86Hz), 3.75 (t, 2H, J¼ 6.49Hz), 3.31 (t, 2H, J¼ 7.18Hz), 3.03
(t, 2H, J¼ 16.07Hz), 2.10–2.06 (m, 2H); 13C NMR (176MHz, DMSO-
d6): d 168.52, 160.88, 156.36, 147.11, 143.05, 142.37, 135.05,
134.87, 132.14, 129.62, 127.74, 126.84, 126.47, 126.36, 126.14,
123.51, 119.17, 45.28, 37.00, 33.54, 29.22, 28.21; MS: m/z 547.

2.2. CA inhibition

The hCA I, II, IX, and XII isoenzyme inhibition assay was performed
according to the reported method using SX.18MV-R stopped-flow
instrument (Applied Photophysics, Oxford, UK)43–45. All CA iso-
forms were recombinant isoforms obtained in-house, as reported
earlier46,47.

2.3. Molecular docking method

Molecular docking was carried out according to the previously
reported methods24,28,29,37–39,48–52 using MOE 2008.10 from the
Chemical Computing Group Inc53.

3. Results and discussion

3.1. Chemistry

4-(2-(4-Oxo-2-thioxo-1,4-dihydroquinazolin-3(2H)-yl)ethyl)benzene-
sulfonamide (1) was obtained through the reaction between
anthranilic acid, 4-(2-isothiocyanatoethyl)benzenesulfonamide and
triethylamine in ethanol40,54 (Scheme 1). Its yield was 93%. Stirring
of compound 1 with potassium carbonate in acetone and differ-
ent alkyl-halides or aralkyl-halides produced the corresponding 4-
(2-(2-(substituted-thio)-4-oxoquinazolin-3(4H)-yl)ethyl)benzenesul-
fonamides 2–13 with 90–95% yield. Various spectral analyses were
performed to confirm the structures of compounds 2–13. The for-
mation of target compounds was assessed by the disappearance
of thioamide proton (NH–C¼ S) at 13.03 ppm in 1H NMR and thi-
one moiety (NH–C¼ S) at 175.29 ppm in the 13C NMR spectra,
together with presence of the new thio-substituted moieties (S–R),
that were confirmed by 1H NMR and 13C NMR spectra.

3.2. CA inhibitory activity

The CAI activity of newly produced 4-(2-(2-(substituted-thio)-4-
oxoquinazolin-3(4H)-yl)ethyl)benzenesulfonamides 2-13 against
hCA I, II, IV, and IX isoforms was measured by a Stopped-Flow kin-
etic assay48 and compared to acetazolamide (AAZ), a standard sul-
phonamide inhibitor (Table 1, Figure 2). The hCA I was effectively
inhibited by compounds 2–13 with inhibition constant (KI) values
in the range of 57.8–740.2 nM, (AAZ: KI, 250.0 nM). Compounds 2,
3, 4, and 12 showed to be potent hCA II inhibitors, with KI values
between 6.4 and 14.2 nM, which were greater than or nearly iden-
tical to that of AAZ (KI, 12.0 nM). Compounds 7–11 and 13
showed modest hCA II inhibitory activity with KIs ranging between
66.5 and 86.6 nM, whereas compounds 5 and 6 showed a weak
inhibitory activity with KIs values of 115.3 and 173.4 nM, respect-
ively. Compounds 2–13 displayed potent hCA IX inhibitory activity
with KI values ranging from 7.1 to 93.6 nM (AAZ KI, 25.0 nM).
Quinazoline derivatives 2, 3, 4, 8, 9, and 12 possessed potent hCA
XII inhibitory activities with KI values ranging between 3.1–20.2 nM
(AAZ KI, 5.7 nM). On the other hand, compounds 5, 10, and 11
exerted moderate hCA XII inhibitory activities with KI values
between 25.6–38.4 nM, whereas compounds 6, 7, and 13 had
weak hCA XII inhibitory activities with KI values in the range of
57.6–71.4 nM (Table 1, Figure 2).

The following structure-activity relationship (SAR) can be drawn
on the basis of the inhibition data shown in Table 1.

I. SAR analysis for hCA I inhibition indicated that: (1) 2-(ali-
phatic-thio)quinazolin-4(3H)-one like compounds 2–4 (KI val-
ues between 57.8 and 85.5 nM) were more active than the
corresponding 2-(benzylthio)quinazolin-4(3H)-ones (KI values
between 229.4 and 740.2 nM) 5–11, 4–(2-(4-oxo-2-((2-(piperi-
din-1-yl)ethyl)thio)quinazolin-3(4H)-yl)ethyl)benzenesulfona-
mide (12) (KI, 532.2 nM) and 4–(2-(2-((3-(1,3-dioxoisoindolin-2-
yl)propyl)thio)-4-oxoquinazolin-3(4H)-yl)ethyl)benzenesulfona-
mide (13) (KI, 320.5 nM); (2) 2-(benzylthio)quinazolin-
4(3H)-one (5) (KI, 229.4 nM) was more potent than the corre-
sponding 4-substituted-2-(benzylthio)quinazolin-4(3H)-ones
such as compounds 6–11 and 13 (KI values ranging from
256.8 to 740.2 nM); (3) 4-(2-(2-((4-cyanobenzyl)thio)-4-oxoqui-
nazolin-3(4H)-yl)ethyl)benzenesulfonamide (8) (KI, 256.8 nM)
was more effective than other 2-((4-substituted-benzyl)thio)-
quinazolin-4(3H)-ones 6, 7, 9, 10 and 11 (KI values between
370.1 and 740.2 nM); (4) 4-(2-(2-(ethylthio)-4-oxoquinazolin-
3(4H)-yl)ethyl)benzenesulfonamide (2) with KI of 57.8 nM was
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more potent than 4-(2-(4-oxo-2-((2-(piperidin-1-yl)ethyl)thio)-
quinazolin-3(4H)-yl)ethyl)benzenesulfonamide (12) with KI of
532.2 nM; (5) hCA I inhibitory activity (KI, 85.5 nM) of 4-(2-(2-
((cyanomethyl)thio)-4-oxoquinazolin-3(4H)-yl)ethyl)benzene-
sulfonamide (4) was more potent than 4-(2-(2-((4-cyanoben-
zyl)thio)-4-oxoquinazolin-3(4H)-yl)ethyl)benzenesulfonamide
(8) with KI of 256.8 nM; (6) substitution of benzyl group of
compound 5 (KI of 229.4 nM) by propylphthalimide moiety
produced compound 13 with significant decrease of CA I
activity (KI, 320.5 nM).

II. SAR analysis for hCA II inhibition indicated that: (1) 2-(ali-
phatic-thio)quinazolin-4(3H)-one compounds such as com-
pounds 2, 3, 4 and 12 (KI values ranging from 6.4 to
14.2 nM) were more active than the corresponding 2-(ben-
zylthio)quinazolin-4(3H)-ones 5–11 and 4-(2-(2-((3-(1,3-dioxoi-
soindolin-2-yl)propyl)thio)-4-oxoquinazolin-3(4H)-yl)ethyl)ben-
zenesulfonamide (13) with KI values between 66.5 and

173.4 nM; (2) the introduction of electron withdrawing
groups such as 4-Cl, 4-CN, 4-F, 4-NO2 or electron donating
group such as 4-CH3 at the benzyl moiety of compound 5
(KI, 115.3 nM) produced compounds 7–11 with moderate
increase in the CA I activity (KI values ranging between 66.5
and 84.2 nM); (3) 4-(2-(2-(ethylthio)-4-oxoquinazolin-3(4H)-
yl)ethyl)benzenesulfonamide (2) with KI, 11.6 nM was more
potent than 4-(2-(4-oxo-2-((2-(piperidin-1-yl)ethyl)thio)quina-
zolin-3(4H)-yl)ethyl)benzenesulfonamide (12) with KI, 14.2 nM;
(4) For hCA I, inhibitory activity (KI, 13.5 nM) of 4-(2-(2-((cya-
nomethyl)thio)-4-oxoquinazolin-3(4H)-yl)ethyl)benzenesulfona-
mide (4) was more potent than 4-(2-(2-((4-cyanobenzyl)thio)-
4-oxoquinazolin-3(4H)-yl)ethyl)benzenesulfonamide (8) with
KI, 74.1 nM; (5) substitution of benzyl group in compound 5
(KI, 115.3 nM) by propylphthalimide moiety produced com-
pound 13 with significant increase in the CA activity
(KI, 86.6 nM).

Scheme 1. Synthesis of 4–(2–(2-(substituted-thio)-4-oxoquinazolin-3(4H)-yl)ethyl)benzenesulfonamides 2–13.
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III. SAR analysis for hCA IX inhibition indicated that: (1) 2-(ali-
phatic-thio)quinazolin-4(3H)-one such as compounds 2–4 (KI
values ranging between 7.1 and 12.6 nM) were more active
than the corresponding 2-(benzylthio)quinazolin-4(3H)-one
5–11, 4-(2-(4-oxo-2-((2-(piperidin-1-yl)ethyl)thio)quinazolin-
3(4H)-yl)ethyl)benzenesulfonamide (12) and 4-(2-(2-((3-(1,3-
dioxoisoindolin-2-yl)propyl)thio)-4-oxoquinazolin-3(4H)-yl)e-
thyl)benzenesulfonamide (13) (KI values in the range of
19.3–93.6 nM); (2) the introduction of electron withdrawing
groups such as 4-Cl, 4-F, or 4-NO2 at the benzyl moiety in
compound 5 (KI, 50.7 nM) produced compounds 7, 9, and 11
with significant increase in the CA I activity (KI values ranging

between 19.3 and 34.2 nM); (3) 4-(2-(2-(ethylthio)-4-oxoquina-
zolin-3(4H)-yl)ethyl)benzenesulfonamide (2) with KI of 7.1 nM
was more potent than 4-(2-(4-oxo-2-((2-(piperidin-1-yl)e-
thyl)thio)quinazolin-3(4H)-yl)ethyl)benzenesulfonamide (12)
with KI value of 22.2 nM; (4) hCA I inhibitory activity of 4-(2-
(2-((cyanomethyl)thio)-4-oxoquinazolin-3(4H)-yl)ethyl)benze-
nesulfonamide (4) (KI, 12.6 nM) was more potent than 4-(2-(2-
((4-cyanobenzyl)thio)-4-oxoquinazolin-3(4H)-yl)ethyl)benzene-
sulfonamide (8) with KI value of 47.3 nM; (5) substitution of
benzyl group in compound 5 (KI, 50.7 nM) by propylphthali-
mide moiety produced compound 13 with significant
increase in the CA activity (KI, 93.6 nM).

IV. SAR analysis for hCA XII inhibition indicated that: (1) 2-(ali-
phatic-thio)quinazolin-4(3H)-one compounds such as com-
pounds 2-4 (KI values between 3.1 and 8.6 nM) were more
active than the corresponding 2-(benzylthio)quinazolin-4(3H)-
one 5–11, 4-(2-(4-oxo-2-((2-(piperidin-1-yl)ethyl)thio)quinazo-
lin-3(4H)-yl)ethyl)benzenesulfonamide (12) and 4-(2-(2-((3-
(1,3-dioxoisoindolin-2-yl)propyl)thio)-4-oxoquinazolin-3(4H)-
yl)ethyl)benzenesulfonamide (13) (KI values ranging from
17.2 to 71.4 nM); (2) the introduction of electron withdrawing
groups such as 4-CN, 4-F, 4-NO2 or electron donating group
such as 4-CH3 at the benzyl moiety in compound 5 (KI,
115.3 nM) produced compounds 8–11 which significantly
increased the CAI activity (KI, 17.2–28.2 nM), while introduc-
tion of 4-Br and 4-Cl groups at the benzyl moiety in com-
pound 5 gave compounds 6 and 7 which significantly
increased the CAI activity (KI values, 57.0 and 65.6 nM,
respectively); 3) 4-(2-(2-(ethylthio)-4-oxoquinazolin-3(4H)-yl)e-
thyl)benzenesulfonamide (2) with KI of 3.9 nM was more
potent than 4-(2-(4-oxo-2-((2-(piperidin-1-yl)ethyl)thio)quina-
zolin-3(4H)-yl)ethyl)benzenesulfonamide (12) with KI of
20.2 nM; (4) hCA XII inhibitory activity of 4-(2-(2-((cyanome-
thyl)thio)-4-oxoquinazolin-3(4H)-yl)ethyl)benzenesulfonamide
(4) (KI, 8.6 nM) was more potent than 4-(2-(2-((4-cyanoben-
zyl)thio)-4-oxoquinazolin-3(4H)-yl)ethyl)benzenesulfonamide
(8) with KI of 14.6 nM; (5) substitution of benzyl group in
compound 5 (KI of 38.4 nM) by propylphthalimide moiety

Table 1. Inhibition constant values of 2-ethylquinazoline derivatives 2–13 and
standard sulphonamide inhibitor acetazolamide (AAZ) against human CA iso-
forms hCA I, II, IX, and XII as determined by a stopped flow, CO2 hydrase
assay48.

Cmpound R

KI (nM)
a

hCA I hCA II hCA IX hCA XII

1 H 31.5 0.62 0.59
2 CH3 67.0 6.4 9.5 3.1
3 C2H5 57.8 11.6 7.1 3.9
4 CH2CN 85.5 13.5 12.6 8.6
5 Bn 229.4 115.3 50.7 38.4
6 4-Br-Bn 700.8 173.4 64.1 57.0
7 4-Cl-Bn 541.9 84.2 34.2 65.6
8 4-CN-Bn 256.8 74.1 47.3 17.6
9 4-F-Bn 370.1 69.3 28.9 17.2
10 4-CH3-Bn 578.7 66.5 57.1 28.2
11 4-NO2-Bn 740.2 81.7 19.3 25.6
12 CH2CH2-piperidin-N-yl 532.2 14.2 22.4 20.2
13 (CH2)3-phthalimid-N-yl 320.5 86.6 93.6 71.4
AAZ 250.0 12.0 25.0 5.7
aMean from 3 different assays, by a stopped flow technique (errors were in the
range of ±5 to 10% of the reported values).

Figure 2. Carbonic anhydrase inhibition of 2-substituted-mercapto-4(3Hj)-quinazolinone derivatives 2–13.
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produced compound 13 with a significant decrease in CAI
activity (KI, 71.4 nM).

3.3. Molecular docking studies

The docking simulations between the hCAs targets, and the most
active compounds such as 2 and 3, as well as least active com-
pound such as 6 compared with the prototype 1 lead compound
were performed using MOE Suite53.

3.3.1. Docking of compounds 2, 3, and 6 with hCA isoenzymes
The most active methyl derivative 2 was docked with the binding
pockets of the hCA isoforms II and XII, utilising the different pro-
tein crystal structures; 5ULN and 1JD0 downloaded from Protein
Data Bank store55,56. As shown in Figure 3, and Table 2, the results
suggested that the compound 2 displayed similar patterns to the
co-crystallized ligands. Firstly, the docking pose of compound 2 in
the complex with isoform II formed bidentate chelate with
SO2NH2 fragment with zinc metal at a distance range of
2.45–2.01 Å. The sulphonyl part was stabilised by three strong
hydrogen bonds through the residues, Thr199 and Leu198 at aver-
age bond distance of 2.35–2.22 Å. Moreover, the carbonyl moiety
of 4(3H)quinazolinone was stabilised by direct and indirect

hydrogen bonding between water and polar residues Gln92 and
Asn67 at distance of 2.25 Å as co-crystallized inhibitor S-atom
does. In addition, hydrophobic interactions were experienced with
methylthioether fragment through Phe131 residue. Secondly, the
docking poses of compound 2 in the complex with isoform XII
exhibited interactions like the co-crystallized inhibitor especially
the SO2NH2 part with Zinc metal and stabilising Thr199 and
Thr200 residues. In addition, hydrophobic interactions were expe-
rienced with methylthioether fragment through Leu141 residue.
The compound 3 was docked with the binding pockets in the
hCA isoforms I and IX, utilising the different protein crystal struc-
tures; 4WR7 and 5FL4 downloaded from Protein Data Bank
store57,58. As shown in Figure 4 and Table 2, the results suggested
that the compound 3 interacted with both active sites in a similar
fashion to the co-crystallized ligands in the pockets. Firstly, the
docking pose of compound 3 in the complex with isoform I, con-
sisted of a long, narrow tunnel, leading to a cavity that contained
the catalytic Zn2þ ion chelated with SO2NH2 fragment
(2.45–2.01 Å) and a sulphonyl part stabilised by two strong hydro-
gen bonds through the residues, Thr199 and His200 (2.38-2.41 Å).
Moreover, different hydrophobic aromatic interactions were also
formed with ethylthioether, phenethyl, and 4(3H)quinazolinone
moieties through pockets of Leu131, Leu198, Pro202, Leu141,
Trp209, Ala135, and Ala132 residues. Secondly, the docking pose

Figure 3. Docking modes of compound 2 in the binding pockets of CA isoenzymes II and XII. Interactions between the protein (PDB IDs: 5ULN and 1JD0). Predicted
binding modes of co-crystallized inhibitor (upper left panel) and compound 2 (upper right panel) with hCA-II target as well as co-crystallized inhibitor (lower left panel)
and compound 2 (lower right panel) with hCA-XII target.
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of compound 3 in the complex with isoform IX, revealed that the
cavity contained the catalytic Zn2þ ion forming bidentate chelate
with SO2NH2 fragment (2.32-2.12 Å) and the sulphonyl part was
stabilised by three hydrogen bonds through the residues, Thr200,
His96 and His94 (2.44-1.99 Å). Different hydrophobic aromatic
interactions were formed with ethylthioether, phenethyl, and
4(3H)quinazolinone moieties through pockets of Val130, Leu134,
and Leu91 residues. The 4(3H)quinazolinone was modulated
through molecules of H2O in the pocket by polar interactions. In
addition, the aryl moiety of benzene sulphonamide formed a H2O-
mediated p-p interactions with certain aromatic amino acids.
Thr201 might also play an important role in increasing their bind-
ing affinity for the enzyme. In addition, the lease active compound
6 was placed in the hCA I binding cavity (Figure 5, right panel)
and results showed that certain factors affecting the incorrect
placement like the insertion of S-bromophenyl ring among polar
Gln92 and Asn69 residues and disorienting of planer quinazoli-
none to Leu131 residue. Moreover, the docking of the least active
compound 6 into the hCA-II pocket (Figure 5, left panel) revealed
the intolerance of S side chain bromophenyl moiety into the

His119 polar part leading to protrusion out of the pocket and so
appeared incompatible with pocket residue that makes it
low active.

However, the lead compound 1 was docked into the pockets
of hCA II and XII (Figure 6, Table 2) for comparing its behaviour
that showed the loss of SH role in the interactions compared to
the potent active 2 and 3 derivatives. These overall docking find-
ings proved that the S-alkylated derivatives exhibited good bind-
ing interactions better than the lead compound 1.

4. Conclusions

A new series of 4-(2-(2-substituted-thio-4-oxoquinazolin-3(4H)-yl)e-
thyl)benzenesulfonamide derivatives 2–13 were synthesised and
assessed in vitro for CA inhibition in comparison to AAZ as refer-
ence drug. 4–(2-(2-Aliphatic-thio-4-oxoquinazolin-3(4H)-yl)ethyl)-
benzenesulfonamide derivatives 2–4 showed efficient inhibitory
activity against hCA I, hCA II, h IX and hCA XII with KI values rang-
ing between 57.8–85.5, 6.4–13.5, 7.1–12.6, and 3.1–8.6 nM, respect-
ively, which were better or had the same activity as AAZ as

Table 2. Description of the docking data of selected target compounds 2 and 3.

Compound Target Fragments Residues (distance, Å) Interactions
Binding energy
(dG, kcal/mol)

1 hCA-II SO2NH2 Thr199, 2.31
His119, 2.72
His94, 2.45

Hydrogen bonding �24.11

Zn metal, 2.42 Coordination bonding
Phenethyl Trp209 Hydrophobic
4(3H)-Quinazolinone Gln92, Lys67 (H2O) Hydrogen bonding

hCA-XII SO2NH2 Thr199, 2.22
His119, 2.81
His94, 2.46
His96, 2.25

Hydrogen bonding �23.65

Phenethyl Leu198 Hydrophobic
4(3H)-Quinazolinone Gln92 (H2O), Lys67 (H2O) Hydrogen bonding

2 hCA-II SO2NH2 Thr199, 2.31
Thr199, 2.42
Leu198, 2.46

Hydrogen bonding �24.9

Zn metal, 2.51 Coordination bonding
Phenethyl His96 Aromatic stacking
4(3H)-Quinazolinone Asn67 (H2O) Aromatic stacking

Gln92, 2.44
Ile91 (H2O)

Hydrogen bonding

Phe131 Hydrophobic
Methylthioether Phe131 Hydrophobic

hCA-XII SO2NH2 Thr199, 2.50
Thr200, 2.47

Hydrogen bonding �27.5

Zn metal, 2.38 Coordination bonding
Phenethyl Pro201, Ser128 Hydrophobic
4(3H)-Quinazolinone Gln92, 2.44 Hydrogen bonding
Methylthioether Leu141 Hydrophobic

3 hCA-I SO2NH2 His200, 2.57
Thr199, 2.45

Hydrogen bonding �19.5

Zn metal, 2.54 Coordination bonding
Phenethyl Leu141, Trp202 Hydrophobic
4(3H)-Quinazolinone Ala135, Ala132, Tyr204 Hydrophobic
Ethylthioether Leu198, Leu131, Tyr204 Hydrophobic

hCA-IX SO2NH2 Thr200, 2.47
His94, 2.36
His96, 2.48

Hydrogen bonding �25.6

Zn metal, 2.44 Coordination bonding
Phenethyl Thr201 (H2O) Aromatic stacking

Trp210 Hydrophobic
4(3H)-Quinazolinone Pro202 (H2O) Hydrogen bonding

Asp131, Leu134 Hydrophobic
Ethylthioether Val130, Leu134 Hydrophobic

aThe data reported in the table were extracted from MOE programme showing the corresponding amino acid residues in
enzyme pocket, corresponding fragment of ligands, interaction distances, types of interaction, and their binding energy to
prototype 1 and selected active compounds.
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Figure 4. Docking modes of compound 3 in the binding pockets of CA isoenzymes I and IX. Interactions between the protein (PDB IDs: 4WR7, 5FL4). Predicted bind-
ing modes of co-crystallized inhibitor (upper left panel) and compound 3 (upper right panel) with hCA-I target as well as co-crystallized inhibitor (lower left panel) and
compound 3 (lower right panel) with hCA-IX target.

Figure 5. Docking modes of compound 6 as the least active example in the binding pockets of CA isoenzymes I and II. Interactions between the protein (PDB IDs:
4WR7, 5ULN). Predicted binding modes of compound 6 with CA-I; right panel, and CA-II; left panel.
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standard drug with KI values of 250, 12.0, 25.0, and 5.7 nM,
respectively. 4–(2-(2-Aliphatic-thio-4-oxoquinazolin-3(4H)-yl)ethyl)-
benzenesulfonamide derivatives 2–4 were more active than the
corresponding 2-(benzylthio)quinazolin-4(3H)-ones 5–11, 4–(2-(4-
oxo-2-((2-(piperidin-1-yl)ethyl)thio)quinazolin-3(4H)-yl)ethyl)benze-
nesulfonamide (12) and 4-(2-(2-((3-(1,3-dioxoisoindolin-2-yl)pro-
pyl)thio)-4-oxoquinazolin-3(4H)-yl)ethyl)benzenesulfonamide (13)
but lower than 4-(2-(4-Oxo-2-thioxo-1,4-dihydroquinazolin-3(2H)-
yl)ethyl)benzenesulfonamide (1) as parent compound. Molecular
docking studies for compounds 2 and 3 were done and exhibited
specific binding modes for hCA isoforms as comparable inter-
action with lead compound 1.
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