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Abstract

Regressions and meta-regressions are widely used to estimate patterns and effect sizes in

various disciplines. However, many biological and medical analyses use relatively low sam-

ple size (N), contributing to concerns on reproducibility. What is the minimum N to identify

the most plausible data pattern using regressions? Statistical power analysis is often used

to answer that question, but it has its own problems and logically should follow model selec-

tion to first identify the most plausible model. Here we make null, simple linear and quadratic

data with different variances and effect sizes. We then sample and use information theoretic

model selection to evaluate minimum N for regression models. We also evaluate the use of

coefficient of determination (R2) for this purpose; it is widely used but not recommended.

With very low variance, both false positives and false negatives occurred at N < 8, but data

shape was always clearly identified at N� 8. With high variance, accurate inference was

stable at N� 25. Those outcomes were consistent at different effect sizes. Akaike Informa-

tion Criterion weights (AICc wi) were essential to clearly identify patterns (e.g., simple linear

vs. null); R2 or adjusted R2 values were not useful. We conclude that a minimum N = 8 is

informative given very little variance, but minimum N� 25 is required for more variance.

Alternative models are better compared using information theory indices such as AIC but

not R2 or adjusted R2. Insufficient N and R2-based model selection apparently contribute to

confusion and low reproducibility in various disciplines. To avoid those problems, we recom-

mend that research based on regressions or meta-regressions use N� 25.

Introduction

Limbo (noun): (1) A place or state of neglect, oblivion, or uncertainty; (2) A dance or contest
that involves bending over backwards to pass under a low horizontal bar

All researchers seek to avoid their work being cast into the first definition of limbo, often by

increasing sample size (N) and by applying increasingly sophisticated analytical techniques.

But more samples require more effort, cost, and bodily risk (e.g., in field research). Researchers

should then also find how low they can go in N, as in the second limbo definition above. To

bend over backwards in that limbo dance is difficult, as is the process to clearly identify a
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minimum N needed for a study. In an era of big data, this may seem to be a former problem.

In fact, it remains vital because multiple disciplines use data that are hard to acquire and/or

aggregated. For example, it is difficult to collect data on species diversity among multiple

islands with different areas. A similar problem occurs where data are aggregated, as in meta-

analyses, systematic or quantitative reviews, and meta-regressions to evaluate general patterns

across multiple studies (e.g., [1,2,3,4]). Consider a meta-analysis of 15 observational studies on

a link between diet and cancer risk. Analyses may represent tens of thousands of surveyed

individuals, but N = 15 for meta-analysis of the aggregated data. A regression computed with

those aggregated data is called a meta-regression, and bears the same fundamental principles

and assumptions as for a regression of the island diversity data.

Advanced regression methods may also apply to both scenarios. Similar to mixed-effects

regressions that represent fixed and random effects, recent meta-regression methods can

include proxies for variation among individuals as random effects in mixed-effects models,

where the example N = 15 (above) represents the fixed effects [5,6,7]. Mixed-effects models

likely require more N to characterize random effects than simpler models evaluated here. We

return to mixed-effects models below, but results obtained here should set a lower limit for

regressions and meta-regressions alike.

Sample sizes tend to be relatively small in biological and medical disciplines (Fig 1). For

example, economics tends to use hundreds of samples in meta-analyses and meta-regressions

(median = 218; Fig 1A), but most medical and epidemiological meta-analyses tend to have far

fewer samples (median = 20; Fig 1B; see S1 Appendix for a summary of search methods,

results, and sources of those values). Sample size is even more limited where samples are diffi-

cult to obtain and data are then aggregated before analysis (e.g., the island species richness

example, above). For example, nearly two-thirds (64%) of ecological disturbance studies [8]

had N < 25 (median = 17; Fig 1C), as did nearly 4 of 5 (79%) studies of species-area relation-

ships [9] in biogeography (median = 14; Fig 1D). A potential, general relationship between

research funding and sample size among disciplines may exist, but the important point here is

that diverse biological and medical research apparently use relatively small N.

The problem with small N is that inconclusive or contradictory results are more likely, espe-

cially given substantial variation [10,11,12]. This problem is well known; total citations for

those three papers = 11,268 (Google Scholar, 2 September 2019). However, this problem per-

sists (Fig 1), and so it is useful to consider this conundrum before exploring a solution. Small

N has been discussed as one part of a larger reproducibility problem, where recommended

solutions include registered studies, conflict of interest statements, and publication of data

[11,13,14,15,16,17]. Greater sample size is often suggested (e.g, [12]) but a quantitative mini-

mum N is rarely recommended. At least one journal now requires a minimum N = 5 per

group for statistical analyses [18]. Ecological studies have been advised to use N = 10–20 per

predictor [19] or N = 30–45 if studying gradients [20]. Others have offered advice based on the

number of predictors (p): N> 50 + p [21]; N ~ 50 � p [22], or N> 50 + 8 � p [23]. Suggested

minimum N clearly varies, if a value is provided.

It has been difficult to obtain consistent, clear guidelines for minimum N because that work

has been based for decades on statistical power, which is the chance that a null hypothesis can

be correctly rejected [24]. Power analysis is awkward for fundamental and operational reasons.

Power analyses carry forward fundamental problems with null hypothesis inference, which is

the long-standing basis for statistical analyses but that has been recently and widely criticized

for several reasons [25,26,27,28,29]. Briefly, it assumes that the null hypothesis is meaningful,

whereas research is typically conducted on the premise that an alternative model may be sup-

ported. Thus, statistical tests and research are usually mismatched in assumptions, and the

underlying logic is convoluted when evaluating statistical output [26,27]. Also, the arbitrary
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p� 0.05 criterion for statistical "significance" and its numerous work-arounds have been

widely discussed, including post hoc hypothesis formation, data dredging, and p-hacking

[30,31,32]. Finally, null hypothesis testing is now recognized as relatively weak inference

Fig 1. Histograms of N in research. (a) economic meta-analyses & meta-regressions; (b) medical / epidemiological

meta-analyses & meta-regressions; (c) ecological analyses of disturbance [8]; and (d) biogeographical analyses of

species-area relationships [9]. Please see S1 Appendix for a description of literature search methods, data, and

references for (a) and (b).

https://doi.org/10.1371/journal.pone.0229345.g001
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compared to other approaches [33]. Instead, inference is stronger when based on comparison

of multiple models representing alternative hypotheses, including a null [26].

The use of power analysis to estimate minimum N also suffers from a fundamental cart-

before-the-horse problem. Consider an experiment to evaluate three alternative hypotheses

that predict either a sloped linear model, a humped-shape curve, or null data pattern. A typical

and straightforward power analysis for regressions (e.g., pwr.f2.test in the R pwr package [34])

applies only to the linear model–before finding which shape best represents the data. In princi-

ple, a power test is possible for a hump-shaped model [35], but conventional statistical power

tests do not include that possibility. This fact runs counter to strong inference based on multi-

ple working hypotheses [33,36,37,38] because only one of the hypotheses can be evaluated for

statistical power. Studies designed with this approach may not be able to fully evaluate the

hump-shaped prediction.

Operationally, power analysis is a challenging way to estimate minimum N because there

are four interacting parts. A researcher solves for N by assuming the remaining three: a desired

power level (typically� 0.80); effect size (i.e., slope in linear regressions, or elasticity in eco-

nomics); and significance level (typically p = 0.05) [11,24,39,40,41,42]. Preliminary data can

help those assumptions but are not always available or predictive. A consequent challenge

emerges because an expected effect size becomes a goal of the research. But if an effect size is

expected so well that subsequent research is based on it, then a Bayesian, confirmatory analysis

is more appropriate than a frequentist, null hypothesis inference framework that uses statistical

power [43]. Bayesian approaches analogous to power exist [44,45] but have not yet been widely

applied to this problem.

A separate operational problem arises because alternative models are often selected using a

coefficient of determination (R2) or the adjusted R2 that accounts for differences in model

complexity. That practice is ill-suited to select among alternative models, especially if models

differ in the number of parameters and if regression assumptions are violated [38,42,46].

Instead, model selection is now preferred to be based on information theory metrics and parsi-

mony [26,38], according to the logic of Occam’s razor (“shave away all but what is necessary”).

Adjusted R2 can then be used to “criticize” the fit of a selected model [46], essentially applying

Whitehead’s caveat to Occam’s razor: “seek simplicity but distrust it” [47].

Fortunately, statistical advances using information theory enable a different approach

[26,38] that resolves the above problems. Here we use that approach to identify a minimum N
needed to clearly identify the shape of data made with null, simple linear, and quadratic regres-

sions. We simulate data across a range of variances and effect sizes, and then solve regression

models at a range of N to find a minimum N where the data match the regression model. Our

approach is purposefully simple to help make it approachable, but we hope the above back-

ground and Fig 1 demonstrate that the subject is far from trivial.

This work has boundaries. Between the limits of a perfectly fitted model (where every point

is on a line (R2 = 1.0) and random scatter (R2 = 0) there lies a practically infinite set of combi-

nations for the factors affecting power of regressions (i.e., variance � effect size � N). We con-

centrate on four corners of a variance X effect size grid, where the four choices represent low

& high combinations of effect size and variance. Having established those approximate mar-

gins for a data shape (e.g., straight-line pattern), we repeatedly evaluate regressions with differ-

ent N.

We restrict work here to 1st and 2nd-order polynomial linear models, which are two mem-

bers of the class of linear models, so named because they include additive combinations of con-

stants and coefficients multiplying a predictor variable (x). Within that class, the 1st-order or

simple linear model (y = α + βx + ε) is often dubbed the linear model. To avoid confusion

between the class and its models, we hereafter refer to the “straight-line” model in the linear
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class. A 2nd-order polynomial is also a linear model and often dubbed the quadratic equation

(y = α + βx + γx2 + ε), which is the most parsimonious first step to evaluate curvature beyond

a straight-line model [48].

We set aside here multiple regressions (i.e., including covariates) but results should apply

(discussed below). We also do not include higher-order polynomials because we know of no

major hypotheses that predict them. Instead, fitting higher-order polynomials seems to be

more often used in post hoc trend-fitting (e.g., temporal patterns). We also set aside nonlinear

models for two reasons. Curved data are often transformed to fit straight-line models (e.g.,

[9,49,50]), so much evidence on important curvilinear ideas is actually based on straight-line

models. Also, nonlinear models are sensitive to required initial parameter values and thus diffi-

cult to solve (contributing to the first reason). Future work may extend the approach here to

nonlinear models.

Finally, we use the Akaike Information Criterion (AIC) to select the most plausible model

among the analyzed set. A conceptual continuum exists between hypothesis refutation and

confirmation, where a Bayesian version (BIC) is targeted to confirm a true hypothesis (e.g., a

particular model with expected coefficients), and AIC is aimed at exploratory model selection

in a frequentist context [43]. The BIC might seem appropriate at first glance because we evalu-

ate predefined models. However, much empirical research conducted by others does not share

the luxury of already knowing a “true” pattern. Instead it evaluates alternative hypotheses by

exploring observed patterns and solving for the most predictive model coefficients. To be most

useful to research by others, we make data and then use AICs to identify the most likely model

in a set. Results were evaluated for the following specific questions and expectations:

1. What is the minimum N needed for accurate inference (i.e., the match of alternative models

to data classes)? We expected that insufficient N would interfere with accurate inference

(including false positives and false negatives), but that some threshold Nmay exist, where

accurate and consistent inference is always reached). This was best evaluated for data sets

with low variance.

2. How does variance alter the answer to question 1? We expected that general patterns from

above would hold true, but that minimum N would be increased by variance.

3. How does the use of AICc wi vs. adjusted R2 alter interpretations above? Based on statistical

texts cited above, we expected adjusted R2 values to less accurately identify the correct data

class than AICc wi values. This was evaluated by comparing AICc wi and adjusted R2 values

in plots.

Materials and methods

Three classes of data (i.e., random (null), straight-line, and quadratic) defined above were gen-

erated with N = 50, simply by prescribing a model and then adding variance. Thus, data sets

simply represented scatter plots with little or much variation added. We chose N = 50 to

exceed most data sets of interest here (Fig 1B–1D). Model parameters were aimed to extremes

of variance and effect size (as in four corners of a variance X effect size grid), with the goal that

high variance made it difficult to detect the true pattern (e.g., visually and as indicated by a low

adjusted R2 and a weakly significant coefficient). Alternatively, low variance made an obvious

pattern closely adhering to a model. Because these extremes are approximate, we treated out-

comes as approximate and made cautious recommendations. We anticipated that data sets

with high variance would be most interesting because they most resemble empirical data col-

lected in complex scenarios.
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Two null (random; slope = 0) data sets were created to represent low and high variance in

the intercept term (α). Four straight-line data sets were created with low or high slopes (β) and

low or high variance in β. Eight quadratic data sets were created because the second coefficient

(γ) was added to the straight-line process and also evaluated for its own effect size X variance

combinations. In total, 14 data sets then evaluated for each of null, straight-line, and quadratic

models. Coefficients and variance (modeled as standard deviation of residuals, σ) used to

make data sets are listed in S1 Table. Generated data are shown in Results below.

Analyses were conducted as follows (see R code in S2 Appendix). A sample of N = 4 was

taken from a full data set (N = 50). That minimum N = 4 was set by the minimum degrees of

freedom for a quadratic model because all comparisons included the null, straight-line, and

quadratic models. The sample was evaluated for each of the 3 models, and models were com-

pared by weights (wi) for corrected AIC (AICc) values. A wi value is the preferred criterion for

model selection because it scales from 0–1 to indicate the probability that a model is most plau-

sible. Corrected AIC values adjust for smaller N, and approach uncorrected AIC values at N ~

40 [38]. The wi value and an adjusted R2 value for each model was recorded. That process was

repeated 99 more times at that N (i.e., sampling with replacement from the initial data), so that

mean wi and adjusted R2 values (with 95% confidence intervals) could be computed for the

100 replicates at that N. That whole process was then repeated from N = 5 to N = 50 for a total

of 4,700 AIC comparisons per data set (197,400 AIC comparisons overall). Mean wi and

adjusted R2 values (with 95% confidence intervals) were plotted as functions of N for each

combination of a data set and model. In addition, approximate N where wi values for one

model surpass those of another model were evaluated graphically.

Results

To reiterate findings above, most meta-analyses and meta-regressions in medicine and epide-

miology have much smaller N than similar analyses in economics (Fig 1). Studies of ecological

disturbance and species-area relationships in biogeography tend to have even lesser N. Results

below should be important to multiple biologically-based disciplines.

Analyses of null data represented an extreme edge of the conceptual variance X effect size

grid because there was no effect size (i.e., slope). Interestingly, a null model was implausible

(i.e., mean AICc wi = 0.0 for 100 replicates) for null data with N = 4 because a quadratic model

was always most plausible, regardless of variance in the data (wi = 1.0; Fig 2). Essentially, a

plausible curved line can always be drawn for 4 data points, and this pattern was consistent at

both low and high σ. But adding one more datum reversed that outcome, so that the null

model was now always most plausible with N = 5 and the quadratic was always less plausible.

The null model remained most plausible with greater N (Fig 2), though wi values declined pro-

gressively. A straight-line model was more plausible than the quadratic at N� 7 but never

exceeded null model values of wi (Fig 2). We interpreted these results to indicate that N� 7

should not be used to compare quadratic to straight-line and null models, even if patterns are

tight around lines.

Data generated with a straight-line model represented all four combinations of low and

high σ X effect size (Fig 3). The switch between quadratic and null models at N = 4 & 5

occurred again in every case for straight-line data, regardless of σ or slope (Fig 3). With high

variation and a low slope, the wi for the null model decays slowly; evidence that the straight-

line model is most plausible finally exceeds evidence for the null at N> 20 (Fig 3A). A similar

outcome was observed for straight-line data with high variation but a greater slope (Fig 3B),

though the transition in wi values occurred at N ~ 25. In both cases with high σ, we concluded

that N� 25 would be most able to accurately detect a straight-line pattern using AICc wi

Minimum sample size for regressions
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values. In contrast, analyses of high variance patterns with fewer N will incorrectly support an

inference of a quadratic (N = 4) or null (N = 5 to ~ 25) pattern. Adjusted R2 values for straight-

line and quadratic models were similar at all N> 5 and would not help identify the matching

model (Fig 3A & 3B).

Model fits to straight-line data with relatively low σ and low slope (Fig 3C) more simply

echoed the patterns above: the quadratic model was most plausible at N = 4, the null was most

plausible at N = 5, but thereafter the straight-line model was most plausible. That general pat-

tern was repeated for straight-line data with low σ but relatively high slope (Fig 3D), except the

low σ and high slope combination prevented the null from being most plausible at N = 5.

Straight-line models for tightly straight-line data maintained highest wi values beyond N = 5

with slight decay. Again, adjusted R2 values could not distinguish between straight-line and

quadratic models at all N (Fig 3C & 3D).

Data generated as a quadratic function had low and high effect size for two coefficients (β,

γ) and low and high σ, so the σ X effect size grid was effectively a cube. We organized results

for high σ outcomes (Fig 4) and then low σ outcomes (Fig 5). For high σ results, the same pat-

tern at N = 4–5 was repeated; first the quadratic, then the null model was most plausible (Fig

4). At N> 5, the null became progressively less plausible when the quadratic data appeared

roughly linear (i.e., had low γ; Fig 4A & 4C), and the straight-line model was most plausible at

intermediate N (i.e., 5< N< 20). In those cases, the quadratic model most plausibly repre-

sented quadratic data only at N> 20 (Fig 4A & 4C). Where greater γ was used to make data

pattern appear more curved (Fig 4B & 4D), the quadratic model became most plausible at N�

Fig 2. Data made with a null model (1st column) and results of analyses using null (2nd column), straight-line (3rd column) and quadratic (4th column) models.

Data with (a) high variance and (b) low variance were each analyzed atN = 4–50. Results are presented with maximumN = 30 for visual clarity; all results stabilized at

N> 30. Circles are means; error bars are 95% confidence intervals. “Traffic signal” colors on sample size (N) axes for the null model indicate ranges whereN is too small

(red = stop), or sufficient (green = go) to correctly infer the pattern. Note the quadratic model outcomes at N = 4 (red circles).

https://doi.org/10.1371/journal.pone.0229345.g002
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8 given a tight pattern (Fig 4B) but at N� 25 given a scattered pattern (Fig 4D). Thus, accurate

inference of a quadratic model depended greatly on N, σ, and effect size, where either the null

or the straight-line could inappropriately appear most plausible at insufficient N. We con-

cluded that N� 25 is needed to correctly detect a quadratic pattern using AICc wi values with

relatively high σ in the data (which should be expected a priori if a researcher is cautious).

Fig 3. Data made with a straight-line model (1st column) and results of analyses using null (2nd column), straight-line (3rd column) and quadratic (4th column)

models. The four combinations (a-d) of low/high variance (σ) and effect size (α) represent approximate graphical extremes. Grey lines represent transitions in leading

wi between two models. “Traffic signal” colors on sample size (N) axes for the straight-line model indicate ranges whereN is too small (red = stop), about equivalent to

the null (yellow = caution), or sufficient (green = go) to correctly infer the pattern. Note the null and quadratic model outcomes at low N (red circles or ellipses).

https://doi.org/10.1371/journal.pone.0229345.g003
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Adjusted R2 values only helped to identify the quadratic when γ was high, which makes sense

because that term is what differs between straight-line and quadratic models. In other words,

given a weak quadratic effect (low γ), adjusted R2 could not accurately identify the data shape,

though AIC wi values could (given sufficient N).

When quadratic data were made with low σ (Fig 5), general patterns for the variable qua-

dratic analyses (Fig 4) were repeated, but with sharper boundaries between models. As before,

Fig 4. Data made with a quadratic model and with high variance (σ; 1st column) and results of analyses using null (2nd column), straight-line (3rd

column) and quadratic (4th column) models. All else as in Figs 2 & 3.

https://doi.org/10.1371/journal.pone.0229345.g004
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the quadratic and null models traded places as most plausible at N = 4 and 5, respectively. But

now with low σ, the null model did not linger at greater N as plausible (Fig 5). Likewise, the

straight-line model repeatedly peaked in wi values at N = 6 (essentially in the “valley” of qua-

dratic wi values; Fig 5). Quadratic models repeatedly regained primacy at N ~ 8 and remained

so.

Fig 5. Data made with a quadratic model and with low variance (σ; 1st column) and results of analyses using null (2nd column), straight-line (3rd column)

and quadratic (4th column) models. All else as in Figs 2–4.

https://doi.org/10.1371/journal.pone.0229345.g005
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Discussion

Low sample size contributes to problems of reproducibility, including false positives and false

negatives and apparently contributes to uncertainty in biology and medical sciences

[8,9,11,12,14,16]. Most attention on sample size has focused on power and effect size, as well as

matters of study design and biases [11,12]. We approached the matter of sample size differently

by addressing a question that should be answered before evaluating effect sizes: What is the

minimum N needed to correctly match a model to a data shape? That question is handled by

model selection, where models should represent alternative hypotheses [26,38].

The answer depends on variance, but importantly, not on effect size or the model (straight-

line or quadratic). Where one must evaluate support for alternative hypotheses predicting null,

straight-line, or quadratic regression models, we recommend a minimum N = 8 for a tight

data pattern (i.e., very low variance). But with high variance, minimum N is pushed to N� 25

to clearly match a model to the data pattern. That answer represents the upper edge of the vari-

ance X effect size grid analyzed here, and represents a cautious recommendation for many

observational studies that rely on regressions, including meta-regressions. The expectation

that effect size would alter the answer was inherited from power analyses, which focus on sta-

tistical significance of a slope coefficient. That did not translate to the AIC-based model selec-

tion used here, where the answer did not depend on statistical significance.

We also compared AICc wi to adjusted R2 for the interpretations above. Results here con-

firm existing recommendations that R2-based values do not clearly identify the data shape

[38,42,46] though it continues to be widely used for that purpose. This practice needs to be

abandoned, and our collective understanding of past research built on comparisons of R2 val-

ues among alternative models needs to be re-evaluated. Going forward, we echo Bolker’s [46]

recommendation that researchers first compare models using AIC (or BIC), and then use R2

or adjusted R2 to “criticize” goodness-of-fit for the most plausible model.

The main recommendations above (N� 8 with very little variance, but N� 25 with any

more variance) assume samples are not clustered at one end of a data cloud, and regression

assumptions are met. Models here did not include covariates, which add a degree of freedom

per covariate but can help “explain” variation in empirical data and yield better coefficient esti-

mates. Relatively weak (i.e., scattered) evidence for ideas at low Nmight be “rescued” with

important covariates, especially if predictors are scaled to standardize varying units. For exam-

ple, a regression to predict risk of a disease as a function of body weight should include impor-

tant covariates (demographics, health history, etc.), which may affect disease risk more than

body weight. Careful planning and foreknowledge of the study system may help ensure that

the most fruitful covariates are measured [42]. Also, analyses here used only fixed effects, but

can inform mixed-effects regressions and meta-regressions increasingly used in natural sci-

ences and medical research. Estimating sample size for mixed-effects models is complicated

because it depends on having enough random factor levels and samples within those levels to

characterize random variation. In addition, correlation between random levels is important

[51]. Thus, our recommended minimum N� 25 for fixed effect models is surely too low for

many mixed-effects models. Therefore, mixed-effects regressions and meta-regressions with

random effects [6,52] are very likely to require N>> 25 to adequately represent data patterns.

These considerations emphasize that skepticism should be applied to mixed-effects regressions

and meta-regressions with N� 25 and without well-described variance and correlation

structures.

In summary, statistical limbo may be better avoided and reproducibility improved if

research based on regressions and meta-regressions uses N� 25. This cautious recommenda-

tion is based on analyses that use information theory rather than power analyses encumbered
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by fundamental and operational problems. Greater N is likely needed for regression models

more advanced than those used here. Results here bear important implications for the way

future research is conducted and how past research is interpreted for some important subjects

in biology and associated professions.

For example, results here indicate that insufficient N has been used in ~1/2 of medical and

epidemiological meta-analyses and meta-regressions, ~2/3 of ecological disturbance studies,

and ~4/5 studies of species-area relationships in biogeography. This fundamental problem

contributes to uncertainty in subjects as disparate as benefits of exercise [53], linkage between

binge drinking and heart disease [54], ecological disturbances [8,55,56,57] and the relationship

between natural diversity and habitat area [9,58]. We expect other subjects share these prob-

lems, but re-analyses of past evidence using N� 25 will better resolve uncertainties, and future

research conducted with N� 25 will better resolve patterns in regressions and meta-

regressions.
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