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Abstract

Purpose of Review: This review aims to summarize epidemiological literature published 

between May 15, 2018 and May 14, 2019 that examines the relationship between exposure to 

synthetic pesticides and health of agricultural workers.

Recent Findings: Current research suggests that exposure to synthetic pesticides may be 

associated with adverse health outcomes. Agricultural workers represent a potentially vulnerable 

population, due to a combination of unique social and cultural risk factors as well as exposure to 

hazards inherent in farm work. Pesticide exposure among agricultural workers has been linked to 

certain cancers, DNA damage, oxidative stress, neurological disorders, as well as respiratory, 

metabolic, and thyroid effects.

Summary: This review describes literature suggesting that agricultural workers exposed to 

synthetic pesticides are at an increased risk of certain cancers and neurological disorders. Recent 

research on respiratory effects is sparse, and more research is warranted regarding DNA damage, 

oxidative stress, metabolic outcomes and thyroid effects.
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Introduction

There are over 1 billion agricultural workers in the world[1]. In the US alone, there are more 

than 3 million seasonal and migrant workers, self-employed farmers, family members 

working on family farms, hired workers and contract laborers[2, 3]. In South Asia and Sub-

Saharan Africa, more than half of all employment is in agriculture[1]. In many countries, 

including the US, farm working populations are becoming increasingly older and are 
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comprised of a growing number of women[2]. Agricultural workers are among the most 

vulnerable working populations due to social and cultural risk factors frequently associated 

with their ethnicity, immigration status, social class and rural location, as well as disparities 

related to language barriers and lack of access to healthcare[4–7]. In addition, these potential 

risk factors can be exacerbated by occupational hazards associated with agricultural work, 

including exposure to environmental hazards such as synthetic pesticides and fertilizers, 

diesel exhaust, ultraviolet radiation, biologically active dusts, and zoonotic viruses and 

bacteria, all of which may put farm working populations at an increased risk for a variety of 

adverse health effects[8, 9].

This review summarizes recent epidemiological literature regarding potential health effects 

(specifically cancer, DNA damage and oxidative stress, neurological disorders, and 

respiratory, metabolic, and thyroid effects) of occupational exposure to synthetic pesticides 

among agricultural workers. In this review, we include descriptive, cross-sectional, cohort 

and case-control studies published over the past year, between May 15, 2018 and May 14, 

2019. This relatively brief timeframe for review was selected for several reasons. First, this 

review considers exposures to all classes of agricultural pesticides and numerous diverse 

adverse health outcomes, creating a broad reach. Second, this year has seen the publication 

of several studies that include large agricultural cohorts and/or pooled analyses across 

multiple cohorts. Third, there has been a marked increase in the number of studies 

investigating exposures and health effects in previously understudied populations (e.g., Latin 

America and Asia) and employing emerging technologies (e.g., studies evaluating potential 

DNA damage). By focusing on just the last year, we are able to contribute a novel evaluation 

to the existing literature.

We define agricultural workers to include farmers, farm owners, farm workers, field workers, 

growers, harvesters, packers, graders and sorters, as well as agricultural pesticide handlers 

(mixers, loaders, cleaners and sprayers). This review did not consider take-home exposure 

among families of agricultural workers or spray drift in agricultural communities, nor did we 

include studies evaluating health effects exclusively among livestock workers, florists, 

pesticide manufacturers or commercial pesticide users. We also did not include animal 

toxicology studies, meta-analyses that do not represent novel investigations of pooled 

primary data, case reports, or acute poisonings.

Literature searches were conducted in PubMed, Google Scholar, and the Boise State 

University Alberton’s Library System using a predetermined list of search words and 

fragments related to agriculture work, pesticide exposure and health outcomes. These 

searches resulted in a total of 508 articles, of which 484 were excluded due to inappropriate 

scope or focus on non-farm working populations. The results of the remaining 24 studies 

represent primary literature, are grouped according to health outcome and are discussed in 

the following sections.

Cancer

Several studies have identified that farmers have lower rates of mortality than the general 

population and lower rates of specific cancers, including those of the lung, esophagus, 

bladder, liver and colon, primarily attributed to low rates of smoking and high rates of 
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physical activity in this population[9–11]. At the same time, farmers and other agricultural 

workers have demonstrated elevated rates of other types of cancer, including that of the 

prostate, brain, and lip, as well as melanoma and skin cancers, and lymphohematopoietic 

malignancies[8, 9, 12–17]. In this review, we identified six studies published in the last year 

that add to our existing understanding of the relationship between agricultural work and 

cancer.

The Agricultural Health Study (AHS) provides some of the most compelling insights into 

the relationship between agricultural work, pesticide exposures and cancer. This large 

prospective study was initiated in North Carolina and Iowa in 1993 with the express 

intention of identifying and quantifying cancer risks, and other non-cancer health outcomes, 

among a cohort of nearly 90,000 individuals including licensed private pesticide applicators 

(mostly farmers), their spouses, and commercial pesticide applicators[18]. The most recent 

evidence on overall cancer incidence in the AHS was published in April of 2019. Lerro et al. 

present age, year, sex, and race-adjusted standardized incidence ratios (SIRs) for cancer sites 

in the AHS relative to the general population for an extended period of follow-up, 

representing 20 years and 12,420 incident cancers[19] (Table 1). They found that while 

overall cancer incidence was indeed lower than in the general population – driven mainly by 

lower incidences of smoking, alcohol, or obesity-related cancers such as those of the 

respiratory, bladder and digestive systems – private pesticide applicators (primarily farmers) 

had higher incidence rates of lip and prostate cancer, B-cell lymphomas, chronic 

lymphocytic leukemia, acute myeloid leukemia, thyroid cancer, and testicular cancer. The 

authors speculated that the increases in lip cancer may be due to UV exposure and that the 

excess of thyroid and testicular cancer may be due to pesticide exposure in this population.

Other analyses among large cohort studies also provide insights into the relationship 

between agricultural work and cancer. In March of 2019, the Consortium of Agricultural 

Cohort Studies (AGRICOH) published a pooled analysis of the relationship between 

pesticide use and non-Hodgkin lymphoid malignancies (NHL) among participants in three 

agricultural cohorts[20] (Table 1). These cohorts included the AGRIculture and CANcer 

(AGRICAN) study, which enrolled over 180,000 individuals in France between 2005 and 

2007 who were part of the national health insurance system of agricultural workers[21]; the 

Cancer in the Norwegian Agricultural Population (CNAP) study, from which this pooled 

analysis included nearly 150,000 farm owners and workers[22]; and the AHS study, 

described above. This investigation included 2,430 cases of NHL among 316,270 farmers, 

and the researchers found almost no association between exposure to 4 pesticide chemical 

groups and 33 pesticide active ingredients with NHL overall or with any NHL subtype. 

However, the authors noted that associations may vary by cancer subtype and by pesticide, 

and they did observe weak to moderate positive associations between ever use of terbufos 

and NHL overall; ever use of deltamethrin and chronic lymphocytic leukemia/small 

lympocytic lymphoma; and ever use of glyphosate and diffuse large B-cell lymphoma.

Andreotti et al. (2018) specifically examined the relationship between use of the common 

herbicide, glyphosate, and cancer incidence in the AHS and found no relationship between 

glyphosate and cancer at any site, with the exception of an elevated but non-significant 

association between applicators in the highest exposure quartile (compared with never users) 
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and acute myeloid leukemia[23] (Table 1). This analysis included 5,779 incident cancer 

cases among 54,521 licensed pesticide applicators. This finding differs somewhat from that 

observed in the AGRICOH analysis described above, of which the AHS was a part, where 

glyphosate exposure was associated with diffuse large B-cell lymphoma. It may be worth 

noting that the analysis described by Andreotti et al. was limited by incomplete follow-up; 

20,968 participants (37% of the cohort) did not complete the follow-up questionnaire, and it 

has been suggested that the method by which the researchers imputed the missing data may 

have biased the results towards the null[24].

In another chemical-specific study within the AHS cohort published in the past year, Lerro 

et al. (2018) investigated the relationship between use of another common herbicide, 

alachlor, and cancer incidence[25] (Table 1). This analysis included 48,685 licensed 

pesticide applicators, among whom 51.6% reported use of alachlor. Although the researchers 

in this study also were limited by incomplete follow-up data, they observed a strong positive 

association and exposure-response trend between alachlor use and laryngeal cancer. They 

also observed an elevated, but non-significant, relationship between alachlor use and 

myeloid leukemia among the most highly exposed participants. No significant associations 

were observed between exposure to alachlor and lymphohematopoietic cancers overall nor 

specifically with NHL.

While multiple studies have shown that farmers are at relatively low risk of lung cancer[10, 

12, 16, 26], a recent analysis in the AGRICAN cohort found trends suggesting that 

winegrowers may be at a slightly higher risk of adenocarcinoma compared to non-

winegrowing farmers, possibly attributable to the historic use of arsenical pesticides in 

vineyards[27] (Table 1). This same study also found pea growers, harvesters, and pesticide 

applicators to be at increased risk of small cell lung cancer, though there was a low number 

of exposed cases and the results were not statistically significant. In contrast, these 

researchers observed a negative association between lung cancer and production of corn and 

wheat/barley, which is more consistent with previous studies of the relationship between 

farming and lung cancer. Also in the AGRICAN cohort, Piel et al. (2018) described a 

positive association between central nervous system (CNS) tumors, particularly gliomas and 

meningiomas, and use of carbamate insecticides[28] (Table 1). Confidence in these results 

are strengthened by the consistency in findings across multiple individual carbamates.

In summary, most studies published in the past year consistently show that agricultural 

workers are at increased risk of some cancers, but the risk varies by cancer subtype and 

pesticide exposure. These studies, and particularly the study including 20 years of follow-up 

in the AHS[19], confirmed previous evidence that the incidence of some cancers is lower 

among agricultural workers compared to the general population. However, it is possible that 

individuals whose health status may have rendered them unable to work may be 

underrepresented in agricultural cohorts, suggesting that the healthy worker effect could 

potentially be a factor to consider when interpreting these results.

Other cancers such as prostate, lip and certain lymphomas, as well as acute myeloid 

leukemia, are higher among those working in agriculture compared to the general 

population, which may reflect differences in lifestyle and behavior, as well as potential 
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exposures to agricultural chemicals. In terms of effects of individual pesticides or classes of 

pesticides, some of the most compelling relationships were between exposure to alachlor 

and laryngeal cancer within the AHS study[25] and exposure to carbamates and gliomas and 

meningiomas within the AGRICAN study[28]. Evidence was inconsistent regarding the 

relationship between glyphosate and cancer. One study found a slight increase in diffuse 

large B-cell lymphoma among those exposed to glyphosate[20] – which supports the results 

of a recent meta-analysis of six studies that found an overall increased risk of NHL among 

individuals in the highest exposure groups[29] – while another showed no such 

association[23].

DNA Damage and Oxidative Stress

Exposure to cytotoxic and genotoxic substances can result in chromosomal aberrations and 

DNA damage, which may be early precursors for the onset of clinical health effects, 

particularly cancer[30, 31]. We reviewed eight publications from the past year that 

investigated potential chromosomal aberrations and DNA damage related to pesticide 

exposure among agricultural workers. While there is no single standardized test for 

chromosomal aberrations and DNA damage, and measurements involve a range of molecular 

biomarkers and endpoints, the most widely used and accepted procedures are comet and 

micronucleus assays[32, 33]. Comet assays, which provide measurements such as comet tail 

length, shape, and/or intensity (known as comet tail moment), can detect various types of 

DNA damage including single and double DNA strand breaks. A longer tail, increased 

moment, or increased percent DNA in the tail are considered indicators of DNA damage[32, 

34, 35]. Micronucleus assays measure the presence of micronuclei, as well as the presence 

of DNA damage biomarkers such as nuclear buds. Micronuclei are whole chromosomes or 

damaged chromosome fragments that are not incorporated into the daughter nuclei during 

mitosis and are thus can be used as an indication of chromosomal abnormalities[33, 36] The 

majority, but not all, of the studies in this section report an increase in chromosomal 

aberrations and DNA damage among agricultural workers exposed to pesticides compared to 

control populations [37–42] (Table 2).

Hutter et al. (2018) compared buccal cells from 38 pesticide applicators who were exposed 

to a complex mixture of pesticides and 33 organic farmers, presumably unexposed to 

pesticides, in the Jarabacoa coffee production region in the Dominican Republic. After 

adjusting for age, body mass index, smoking, tobacco chewing, alcohol consumption, dental 

x-rays in the past month, and frequency of eating spicy foods, these researchers concluded 

that pesticide applicators had significantly increased odds for all micronucleus assay 

endpoints evaluated, including the following: total number of micronuclei cells, total number 

of micronuclei, nuclear buds, broken eggs, and binucleated cells[37]. Of note, fewer than 

14% of pesticide applicators in this study reported wearing personal protective equipment 

(PPE) while spraying. This is consistent with previous studies that report chromosomal 

damage among agricultural workers who predominately did not use PPE[43, 44]. Further, a 

similar study among agricultural workers who did utilize PPE showed the converse -- no 

significant increases in genotoxic outcomes were observed[45].
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Results comparable to Hutter et al. were observed by Kahl and colleagues[38], who enrolled 

121 tobacco field workers exposed to nicotine and complex pesticide mixtures and 121 non-

exposed individuals working in offices and retail in Brazil, matched by sex and age, and 

excluding participants who were smokers or had chronic health conditions. Comet assay on 

whole blood cells showed that agricultural workers had significantly increased DNA damage 

based on tail size and shape, and micronucleus assay on buccal cells showed significantly 

increased mean levels of micronuclei, nuclear buds, and binucleated cells.

A 2019 study in Punjab, Pakistan found significantly increased comet tail length and comet 

frequency measured using whole blood DNA from pesticide industry workers and pesticide 

sprayers compared to controls, matched by age, location, and smoking status[39]. Similarly, 

researchers in Egypt found that several comet assay parameters including tail length, percent 

DNA in tail, and tail moment in whole blood DNA were significantly elevated among rural 

pesticide sprayers and urban researchers using pesticides in laboratories (exposed mostly to 

the insecticides malathion, chlorpyrifos, dimethoate, and carbofuran), compared to 

researchers and rural controls not occupationally exposed to pesticides[40]. While this study 

did match on age and smoking status, it did not adjust for sex or consider the use of PPE. A 

cross-sectional study conducted in tea gardens in India found that women who plucked tea 

leaves (considered occupationally exposed to pesticides, n=77), had significantly increased 

mean comet tail length, percent DNA in tail, and tail moment in peripheral lymphocyte DNA 

compared to women with no occupational exposure to pesticides (n=66). Important for the 

interpretation of this data, almost 80% of exposed women reported not using PPE and 

information regarding quantity and frequency of pesticide mixture application at the tea 

garden was unknown[41].

Finally, a case-control study by Intranuovo et al. (2018) in Italian farming regions compared 

2,374 comet assay images from peripheral lymphocytes from 22 agricultural workers 

involved in the production of vegetables, grapes, and olive trees (with exposure mainly to 

chlorpyrifos, deltamethrin, glyphosate, dimethoate, mancozeb, and fosetyl) and 24 non-

exposed individuals. These researchers observed significantly increased odds of tail moment 

and tail length measurements above the 75th percentile among those occupationally exposed 

to pesticides, after adjusting for age and smoking status. Of note, all exposed agricultural 

workers in this study reported using PPE (masks, gloves, and suits)[42].

However, not all studies we reviewed were consistent[46, 47] (Table 2). Cattelan et al. 

(2018) compared whole blood DNA damage between farmers in Brazil who reported 

occupational use of various pesticide combinations and farmers who did not report 

occupational pesticide use, and found no significant differences in micronucleus 

frequency[46]. In this study, over 60% of farmers reported using some form of PPE, though 

exact pesticide combinations and frequency of pesticide use could not be determined due to 

different agrochemical requirements for various crops. Likewise, Sapbamrer et al. (2019) 

compared pre- and post-application season exposures among 56 farmers in Thailand and 

also found no statistically significant differences in tail length or tail moment in comet assay 

of peripheral lymphocyte samples[47]. Of note, this is the only study in this review section 

that examined DNA damage intra-individually and not between individuals.
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Despite some inconsistencies, six of the eight epidemiological studies published in the past 

year examining genotoxic effects of pesticides identified increases in DNA damage among 

occupationally exposed agricultural workers compared to unexposed populations. While all 

of these studies utilized widely accepted assays for chromosomal aberrations and DNA 

damage, assessment of causality remains difficult for numerous reasons. Age, tobacco 

smoke, gender, diet, physical activity, and exposure to ultraviolet radiation have been shown 

to effect comet assay results[42], but not all studies in this review adjusted for these potential 

confounders. Differences in accounting for PPE use, doses, types, combinations, duration, 

and frequency of pesticide use among studies make it difficult to generalize results to all 

agricultural occupations. In addition, the comet assay in particular does not inclusively 

detect all types of cell damage nor is this assay on its own considered predictive of cancer 

risk[42]. Micronucleus assays are also limited by scorer bias, variability, and fatigue[48]. 

Finally, while it is outside the scope of this review to discuss the appropriateness of cell type 

selection, it must be noted that studies listed here were not consistent in their selection, 

ranging from buccal cells to whole blood to separated peripheral lymphocytes. This is 

problematic given that DNA repair capacity can vary by cell type[49]. Moreover, studies 

have identified that peripheral lymphocytes relative to whole blood may be more resilient to 

DNA damage[50], and this could impact the interpretability of the results reviewed here.

Four studies published in the past year – including three that also investigated DNA damage 

– evaluated the relationship between occupational pesticide exposure and markers of 

oxidative stress [38, 46, 47, 51] (Table 2). Oxidative stress results from an imbalance 

between free radicals/reactive oxygen species (ROS), and antioxidant species. When this 

imbalance favors ROS over antioxidants, oxidative damage may occur, resulting in cellular 

adaption, damage to cellular lipids, DNA, proteins, and carbohydrates, and/or cellular 

death[52, 53]. Studies have shown that oxidative damage may contribute to the development 

of a range of chronic conditions, including Alzheimer’s disease and other neurodegenerative 

disorders, cancers, and diabetes[52, 54–57].

There are many cellular and molecular targets of ROS, and as such, measurements of 

oxidative stress and damage in humans are complex. Biological markers of oxidative stress 

can be non-specific to a single oxidative pathway, and methods and markers are often not 

standardized across studies, making comparisons difficult[52, 53]. Most studies measure the 

presence of biomarkers formed from reactions between ROS and other biological molecules 

and/or the disruption in antioxidative enzymatic activities[52, 53, 58]. Examples of oxidative 

stress biomarkers include thiobarbituric acid reactive substances (TBARS), 8-hydroxy-2’-

deoxyguanosine (8-Oxo-dG), and total equivalent antioxidant capacity (TEAC). Examples 

of antioxidant enzymes include superoxide dismutase (SOD), glutathione peroxidase (GPx), 

catalase (CAT), and paraoxonase-1 (PON1).

Regarding oxidative stress biomarkers, Cattelan et al. (2018) found that farmers who used 

pesticides had significantly lower levels of TBARS, suggesting less oxidative stress, 

compared to farmers who did not use pesticides [46]. Sapbamrer et al.(2019) found no 

difference in 8-Oxo-dG among pesticide applicators pre- and post- pesticide application 

seasons[47]. In contrast, both Kahl et al. (2018) and Lozano-Panigua et al. (2018) found 

agricultural workers occupationally exposed to pesticides had significantly increased levels 
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of oxidative stress biomarkers, including increased TBARS and TEAC[38], and ferric 

reducing ability of serum (FRAS) and total thiol groups (SHT) [51]. These inconsistent 

results make it difficult to draw conclusions about the relationship between agricultural work 

and biomarkers of oxidative stress.

Regarding antioxidant enzyme activity, Cattelan et al. (2018) observed that farmers who 

used pesticides had significantly reduced levels of SOD, GPx, and glutathione reductase 

(GSH) compared to farmers who did not use pesticides[46]. The authors note that this effect 

may represent a reduced antioxidant defense system in response to an increase in ROS. 

Other recent studies suggest occupational pesticide exposure is associated with elevations, 

rather than reductions, in antioxidant enzyme activity. Sapbamrer and colleagues found 

significantly increased SOD activity post-pesticide application season compared to pre-

pesticide application season[47]. In addition, Lozano-Paniagua et al. (2018) found an 

elevated but non-significant increase in PON1 activity in greenhouse workers compared to 

controls[51]. This increase in antioxidant enzymatic activity may represent an adaptive 

response to an increase in the generation of free radicals[47].

The inconsistencies seen among these studies could be due to different doses, types, 

combinations, and duration of pesticides use, limitations inherent in cross-sectional study 

designs, and the difficulty in making meaningful measurements of oxidative stress. The 

latter point likely being exacerbated by nonuniform biological sample collection, storage, 

and assessment protocols between studies. It is worth noting that many of these studies were 

unable to determine exposure to specific pesticides and instead analyzed exposure to various 

complex pesticide mixtures used on a variety of crops. In addition, agricultural pesticide 

bans vary by country, and most of these studies were conducted in different countries with 

different types and levels of pesticide usage. While the papers included in this review 

observed conflicting results regarding oxidative stress biomarkers, most studies agreed that 

pesticide exposure may lead to disruptions in antioxidant enzyme homeostasis, though the 

direction of this disruption and possible underlying biological mechanisms are unclear and 

warrant further investigation.

Neurologic Disorders

Numerous studies have documented neurologic effects of pesticide exposure. These effects 

include disruption of cholinergic function as well as various neurological disorders including 

Parkinson’s disease, Alzheimer’s disease, attention deficit hyperactivity disorder (ADHD), 

affective disorders, anxiety, depression, lower intelligence quotient, and delayed mental 

development[59–65]. These studies have primarily focused on organophosphate (OP) 

insecticides, although such effects have also been noted in conjunction with exposure to 

other pesticides as well.

This review describes four studies published in the past year regarding the relationship 

between occupational exposure to agricultural pesticides and neurological effects. A recent 

longitudinal study evaluated the frequency of ADHD symptoms in relation to biomarkers of 

exposure to chlorpyrifos, a common OP insecticide, among adolescents in Egypt[66] (Table 

2). In this study, researchers measured urinary levels of tricholoro-2-pyridinol (TCPy – a 

metabolic product of chlorpyrifos exposure) and blood levels of acetylcholinesterase and 
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butyrylcholinesterase (AChE and BChE – which indicate cholinergic response to OP 

exposure) among 59 participants who either did or did not work as pesticide applicators. The 

researchers found that those adolescents who worked as pesticide applicators were 

significantly more likely to demonstrate ADHD symptoms than non-applicators. They also 

observed a dose-response relationship between increasing levels of all three exposure 

biomarkers (TCPy, AChE, and BChE) and ADHD symptoms. Despite the small sample size, 

this study provides compelling evidence of a relationship between chlorpyrifos exposure and 

ADHD among adolescent pesticide applicators.

AChE inhibition was also measured as a marker of cholinergic disruption among a cohort of 

agricultural workers in the Trang Province of Thailand[67] (Table 2). Guytingco et al. 

(2018) conducted a cross-sectional study in which they surveyed 6,118 agricultural workers 

regarding pesticide-related symptoms. Blood samples were collected from 3,431 of these 

workers and analyzed for AChE. Low AChE levels were measured in 12.5% of the cohort, 

most commonly among those who reported spraying and mixing pesticides. Individuals with 

low AChE were significantly more likely to report experiencing neurological symptoms 

associated with pesticide exposure, such as dizziness and headaches.

Exposure to pesticides and agricultural work has also been linked to anxiety, depression and 

suicide, although epidemiological studies on this are limited[68–71]. Serrano-Medina et al. 

(2019) conducted a cross-sectional study of AChE inhibition and neuropsychiatric disorders 

among agricultural workers in a rural village of Mexico[72] (Table 2). They found that 

agricultural workers (n=140) had significantly more psychiatric disorders than control 

participants recruited from an urban area (n=100), including more frequent depression, 

major depression with suicidal risk, and depression-generalized anxiety. They also found a 

significant relationship between AChE inhibition and suicide risk.

Finally, in the AHS cohort, researchers investigated the association between high pesticide 

exposure events (HPEE), as a surrogate for acute, high-dose exposures, and olfactory 

impairment[73] (Table 2). This relationship was of interest because pesticides may affect the 

sense of smell by affecting peripheral olfactory structures and/or the central nervous system, 

and olfactory impairment has been recognized as one of the earliest symptoms of 

neurological disorders like Parkinson’s disease and Alzheimer’s disease[74, 75]. These 

researchers found that a history of self-reported HPEEs was significantly associated with 

olfactory impairment measured two decades later.

Overall, recent research is consistent regarding the relationship between pesticide exposure 

and neurological effects in agricultural workers. It is worth noting that all four of the 

relevant studies identified in the past year were focused on relatively high pesticide 

exposures, either self-identified as such, or sufficient to result in cholinergic inhibition. 

Together, these studies suggest that occupational exposure to synthetic pesticides – 

particularly OPs – is associated with neurological effects including dizziness and fatigue, 

ADHD, neuropsychiatric disorders, and olfactory impairment, a potential early predictor of 

neurodegeneration.
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Respiratory Effects

In addition to dermal absorption and ingestion, inhalation is an another pathway by which 

agricultural workers may be exposed to synthetic pesticides[76]. Such exposures are 

hypothesized to cause or exacerbate adverse respiratory symptoms in these workers[77, 78]. 

One publication in the past year investigated the relationship between occupational exposure 

to synthetic pesticides among agricultural workers and respiratory symptoms (Table 2). In 

this study, Buralli et al. (2018) investigated the prevalence of respiratory impairment in a 

cohort of family farmers (n=82) who had been exposed to multiple pesticides from an early 

age[79]. The prevalence of cough, nasal allergies, hay fever, breathlessness, and chest 

tightness were reported more frequently during the season in which the farmers were 

actively working in agriculture compared to the off-season. However, due to the small 

sample size, the confidence intervals around these estimates were wide and rarely reached 

statistical significance. The authors did report significant associations between lung 

function, as assessed by various spirometry variables, and self-reported pesticide exposure. 

Though limited by a lack of an unexposed control group, the results of this study are 

suggestive of a relationship between pesticide exposure and respiratory symptoms and 

pulmonary function impairment.

Metabolic Effects

Previous research has suggested that pesticide exposure, particularly exposure to 

organochlorine insecticides and some OPs, may be associated with type II diabetes 

mellitus[80–82]. Two epidemiologic studies published in the past year add to our knowledge 

of the relationship between occupational exposure to pesticides and metabolic diseases 

including diabetes.

One cross-sectional study analyzing data from participants of the Korea Farmers Cohort 

study found that the prevalence of diabetes was significantly higher in study participants 

who had ever been a farmer or had ever used any pesticides, compared to those who had 

not[83] (Table 2). Further, the odds of diabetes were significantly elevated with ever use of 

pesticides, years of pesticide use, frequency of pesticide use, volume/intensity of use, and 

cumulative exposure index of pesticide use, and this remained true among the overweight 

and obese groups when stratified by body mass index (BMI).

Another study among farmers in Thailand investigated differences in levels of adverse 

metabolic biomarkers between organic and conventional farmers[84] (Table 2). In this study, 

the authors investigated the role of pesticide use in metabolic pathways by considering 

employment as a conventional farmer to be a proxy for pesticide exposure, while organic 

farmers were considered unexposed. These researchers found significantly higher BMI, 

waist circumference, percent body fat, triglycerides, total cholesterol, and low-density 

lipoproteins among conventional farmers, compared to organic farmers. No significant 

differences were seen between type of farm work and blood glucose, blood pressure, or 

metabolic syndrome. While the researchers collected and controlled for multiple 

confounding variables, including alcohol intake, smoking, exercise, diet, stress and 

socioeconomics, there were significant differences in demographics and behavior between 

the organic and conventional farmers, and the authors acknowledge that their study results 
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may still reflect uncontrolled confounding. Between this possibility and the cross-sectional 

study design, it is difficult to make a causal argument based on the results of this study.

Overall, research over the past year contributes to the weight of evidence suggesting a 

relationship between occupational exposure to synthetic pesticides and metabolic effects 

among agricultural workers. However, research in this area remains sparse and additional 

work will be required to confirm this relationship.

Thyroid Effects

There is some increasing evidence, though from a limited number of studies, to suggest that 

pesticide exposure may affect thyroid function[85]. Three initial studies in the AHS 

suggested a relationship between pesticide exposure and thyroid dysfunction[86–88]. Most 

recently, Shrestha et al. (2018) followed up on this work by analyzing data from 35,150 

pesticide applicators in this cohort, among whom 829 had self-reported hypothyroidism[89] 

(Table 2). The researchers observed an increased risk of hypothyroidism with ever use of 

several specific pesticides, including chlordane, diazinon, dichlorvos, malathion, dicamba, 

glyphosate, and 2,4-D. However, results from this study are limited, as self-reported 

hypothyroidism may have low validity and diagnoses pulled from medical records are 

considered a more reliable measurement[90]. In a much smaller study, Bernieri et al. (2019) 

observed significant decreases in serum levels of thyroid stimulating hormone (TSH) and 

significant increases in free thyroxin (FT4) and total triiodothyronine (TT3) among 46 

Brazilian soybean growers compared to 27 unexposed participants from urban regions[91] 

(Table 2).

These two studies add to the limited existing epidemiological literature suggesting that 

occupational exposure to synthetic agricultural pesticides may affect thyroid function. It is 

important to note that there is a variable course to thyroid disease, where hypothyroidism 

can develop after hyperthyroidism[92]. There are also many hormones, antibodies, and 

proteins involved in thyroid homeostasis, and pesticides have the potential to alter thyroid 

function via several mechanisms[89]. The specific types of pesticides, thyroid targets, and 

mechanisms that might underlie this relationship are complex, and as such additional 

toxicological and epidemiologic studies are warranted to further evaluate this relationship.

Conclusions

This review summarized epidemiological literature published between May 15, 2018 and 

May 14, 2019 examining the relationship between occupational exposure to agricultural 

pesticides and health outcomes including cancer, DNA damage and oxidative stress, 

neurological disorders, and respiratory, metabolic, and thyroid effects. Most studies 

published in the past year confirm that, while agricultural workers occupationally exposed to 

pesticides have a decreased incidence of some cancers, they are at an increased risk for 

others, such as prostate, lip and certain lymphomas, as well as acute myeloid leukemia, but 

the risk varies by cancer subtype and the specific pesticides. Studies also confirm that 

occupational exposure to synthetic pesticides – particularly organophosphates – is associated 

with neurological and neuropsychiatric effects and disorders. Results regarding respiratory 

function are limited but do suggest a relationship between agricultural pesticide exposure 
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and adverse pulmonary function. Studies of DNA damage, oxidative stress, metabolic effects 

and thyroid effects suggest pesticide exposure among agricultural workers may be 

deleterious, but additional research in these areas is warranted.

Overall, agricultural workers may be at risk for various adverse outcomes due to synthetic 

pesticide exposure. However, further research is warranted to better inform causality, as 

there are many factors to consider when evaluating occupational pesticide exposure. Studies 

on pesticide exposure are often limited by their cross-sectional design, and consideration of 

the use of PPE and adjusting for the appropriate confounders is necessary. In addition, 

exposure to pesticides can occur via various routes (i.e. inhalation, dermal), is often not 

limited to one single pesticide, and may depend on frequency of application, creating 

difficulties in exposure assessment and the interpretation of results. Given the difficulty of 

controlling for confounding and establishing causality, animal studies, in addition to human 

studies, could help elucidate the relationship between exposure to pesticides and health 

outcomes. Worldwide pesticide consumption remains highest in South Asia and Latin 

America, and there has been a marked increase in the number of studies investigating 

occupational pesticide exposures and health effects in these previously understudied 

populations. While generalizations between studies is difficult due to geographic differences 

and agrochemical practices that vary between crops and countries this work indicates the 

importance of continued focus on the health of this vulnerable population.
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Table 1.

Studies regarding agricultural occupational pesticide exposure and cancer: May 15, 2018 – May 14, 2019

Author Participants Exposures and Assessments Outcomes and 
Assessments

Key Results (all confidence intervals 
at 95%)

Cancer

Lerro CC et 
al. April 
2019 [19]

Agricultural Health 
Study (AHS):
89,565 private and 
commercial pesticide 
applicators and spouses, 
from North Carolina and 
Iowa, recruited from 
1993 to 1997

Self-administered 
questionnaires on farm life & 
agricultural practices, types 
of crops & livestock, 
pesticide use/use of >50 
individual pesticide active 
ingredients

Incident cancer 
cases from NC and 
IA state cancer 
registries

All cancer sites:
SIR (private applicators)=0.91, CI 0.89 
– 0.93
SIR (commercial applicators) =0.83, CI 
0.76 – 0.92
Lip cancer:
SIR (private applicators)=2.22, CI 1.71 
– 2.84
Prostate cancer:
SIR (private applicators)=1.15, CI 1.11 
– 1.19
B-cell lymphomas overall:
SIR (private applicators)=1.12, CI 1.03 
– 1.21
Chronic lymphocytic leukemia:
SIR (private applicators)=1.17, CI 1.00 
– 1.36
Acute myeloid leukemia:
SIR (private applicators)=1.29, CI 1.03 
– 1.59

Leon ME et 
al. March 
2019 [20]

Subset of the 
Agricultural Health 
Study (AHS), including: 
57,310 private and 
commercial pesticide 
applicators from North 
Carolina and Iowa, 
recruited from 1993 to 
1997
Agriculture and Cancer 
(AGRICAN):
181,747 active and 
retired farm workers in 
France, recruited from 
2005–2007
Subset of the Cancer in 
the Norwegian 
Agricultural Population 
(CNAP), including: 
147,134 farm holders in 
Norway, based on 
censuses in 1969, 1974, 
1979, 1985, 1989

AHS: self-administered 
enrollment questionnaires on 
farm life & agricultural 
practices, types of crops & 
livestock, pesticide use/use of 
>50 individual pesticide 
active ingredients, 5 year 
follow-up questionnaires on 
pesticide use since 
enrollment
AGRICAN: self-
administered questionnaires 
on cultivating 13 crops and 
raising 5 animal species and 
performance of pesticide 
treatment tasks, crossed with 
country-specific-crop-
exposure matrices
CNAP: census data on type 
of crops and livestock 
produced the preceding year, 
acreage, technology, 
pesticide expenses and 
pesticide spraying 
equipment, crossed with 
country-specific-crop-
exposure-matrices

First incident non-
Hodgkin’s 
lymphoma (NHL) 
during follow-up:
AHS: North 
Carolina and Iowa 
cancer and mortality 
registries and the 
National Death 
Index
AGRICAN: French 
cancer and mortality 
registries and the 
National Death 
Index
CNAP: National 
Cancer Registry of 
Norway

NHL overall & ever use of terbufos: 
mHR(AGRICAN and AHS)=1.18, CI 
1.00 – 1.39;
Chronic lymphocytic leukemia/small 
lymphocytic lymphoma & ever use of 
deltamethrin:
mHR (AGRICAN and CNAP)=1.48, CI 
1.06 – 2.07
Diffuse large B-cell lymphoma & ever 
use of glyphosate: mHR=1.36, CI 1.00 
– 1.85

Andreotti G 
et al. May 
2018 [23]

Subset of the 
Agricultural Health 
Study (AHS): 54,251 
pesticide applicators 
from North Carolina and 
Iowa, recruited from 
1993–1997, 63% of 
whom participated in a 
follow up phone 
interview 5 years after 
enrollment

Ever/never use, lifetime days 
of use (days per year × 
number of years), and 
intensity-weighted lifetime 
days (lifetime days × 
intensity score) use of 
glyphosate from 
questionnaires at enrollment 
and follow-up

Incident cancer 
cases from North 
Carolina and Iowa 
state cancer 
registries

Highest quartile of glyphosate exposure 
to no exposure:
Total cancer:
RR=0.99, CI 0.91 – 1.08
Hematopoietic or lymphatic 
malignancies:
RR=1.00, CI 0.74 – 1.34
Non-Hodgkin lymphoma: RR=0.87, CI 
0.64 – 1.20
Multiple myeloma:
RR=0.87, CI 0.45 – 1.69

Lerro CC et 
al. Sept 2018 
[25]

Subset of the 
Agricultural Health 
Study (AHS):
49,685 pesticide 
applicators from North 

Cumulative lifetime days 
(sum of days of alachlor use 
reported at enrollment 
through the year last farmed 
reported at follow-up) and 

Incident cancer 
cases from North 
Carolina and Iowa 
state cancer 
registries

Laryngeal cancer & alachlor exposure:
RR (Quartile 2, 661–1762 intensity-
weighted days compared to no 
exposure)=4.68, CI 1.95 – 11.23 RR 
(Quartile 3, 1763–5075 intensity-
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Author Participants Exposures and Assessments Outcomes and 
Assessments

Key Results (all confidence intervals 
at 95%)

Carolina and Iowa, 
recruited from 
19931997, 63% of whom 
participated in a follow 
up phone interview 5 
years after enrollment

intensity-weighted days 
(cumulative lifetime days 
multiplied by an intensity-
weighting factor) from 
questionnaires at enrollment 
and follow-up on alachlor 
use

weighted days compared to no 
exposure)=6.04, CI 2.44 – 14.99 RR 
(Quartile 4, >5075 intensity-weighted 
days compared to no exposure)=7.10, 
2.58 – 19.53

Boulanger M 
et al. May 
2018 [27]

Agriculture and Cancer 
(AGRICAN):
148,044 active and 
retired farm workers in 
France, recruited from 
2005–2007

Self-administered 
questionnaires on lifetime 
history of agricultural 
activities, cultivating 13 
crops and raising 5 animal 
species, performance of 
harvesting, pesticide 
application, seed treatment, 
seedling, and/or re-entry 
tasks

Incident lung cancer 
cases from French 
cancer registries

Adenocarcinomas & winegrowing:
HR (Ever vineyard farm work to never 
vineyard farm work)=1.27, CI 0.94 – 
1.72
Small cell lung cancers & pea/field 
beans:
HR (Ever pesticide application to never 
pesticide application)=2.38, CI 1.07 – 
5.28
Squamous cell carcinomas & beets:
HR (Ever pesticide application to never 
pesticide application)=1.47, CI 0.92 – 
2.34
Squamous cell carcinomas & 
sunflowers:
HR (Ever harvester to never 
harvester)=1.61, CI 0.91 – 2.86
Squamous cell carcinomas & fruit-
trees:
HR (Ever pruner to never pruner)=1.44, 
CI 0.92 – 2.27
Overall lung cancer & corn:
HR (Ever grower to never 
grower)=0.76, CI 0.62 – 0.92
Overall lung cancer & wheat/barley:
HR (Ever grower to never 
grower)=0.85, CI 0.70 – 1.04

Peil C et al. 
November 
2018 [28]

Agriculture and Cancer 
(AGRICAN):
181,842 active and 
retired farm workers in 
France, recruited from 
2005–2007

Self-administered 
questionnaires on cultivating 
13 crops and raising 5 animal 
species and occupational 
activities

Incident central 
nervous system 
cancer cases 
(gliomas and 
meningiomas) from 
French cancer 
registries and the 
National Death 
Index

CNS tumors & exposure to all 
carbamates:
HR=1.47, CI 1.03 – 2.10
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Table 2.

Studies regarding agricultural occupational pesticide exposure and other health outcomes: May 15, 2018 – 

May 14, 2019

Author Participants Exposures and Assessments Outcomes and 
Assessments

Key Results (all confidence 
intervals at 95%)

DNA Damage and Oxidative Stress

Hutter HP et al. 
August 2018 
[37]

38 pesticide sprayers 
and 33 farmers not 
exposed to pesticides 
from coffee 
production farms in 
the Dominican 
Republic

Pesticide sprayers were 
considered exposed, 
additional information was 
collected from a questionnaire 
on demographics and 
indicators of pesticide 
exposure including type and 
duration

Buccal cell samples 
analyzed for genotoxic 
and cytotoxic effects: 
micronuclei cells, total 
micronuclei, nuclear 
buds & broken eggs, 
binucleated cells, 
condensed chromatin, 
karyorrhectic cells, 
karyolitic cells, and 
pyknosis

Micronuclei cells:
OR=3.098, CI 1.297 – 7.404
Total micronuclei:
OR=2.534, CI 1.219 – 5.226
Nuclear buds & broken eggs:
OR=1.916, CI 1.448 – 2.536
Binucleated cells:
OR=1.412, CI 1.207 – 1.650

Kahl SVF et al. 
September 
2018 [38]

121 tobacco farm 
workers 
occupationally 
exposed to pesticide 
mixtures and 121 
non-exposed non-
farm workers in 
Brazil

Those with an occupation as a 
tobacco farmer were 
considered exposed to 
pesticides and completed a 
questionnaire adapted from 
the International Commission 
for Protection against 
Environmental Mutagens and 
Carcinogens

Whole blood comet 
assay as well as buccal 
cell micronucleus cytome 
assay for damage index, 
micronucleus, nuclear 
buds, binucleated cells, 
and telomere length; 
blood cotinine levels and 
inorganic elements; 
thiobarbituric acid 
reactive substances 
(TBARS) and total 
equivalent antioxidant 
capacity (TEAC); and 
various polymorphisms

Increased frequency of:
Damage index: 22.1 ± 1.6 
(exposed) vs. 4.6 ± 0.4 
(unexposed), p=<0.001
Micronucleus: 25.3 ± 2.9 
(exposed) vs. 5.8 ± 0.7 
(unexposed), p=<0.001
Nuclear buds: 3.3 ± 0.3 (exposed) 
vs. 1.1 ± 0.1 (unexposed), 
p=<0.001
Binucleated cells: 7.2 ± 0.5 
(exposed) vs 5.4 ± 0.4 
(unexposed), p=0.010
Exposed vs. non-exposed 
increased levels of oxidative stress 
biomarkers:
TBARS: p=<0.001
TEAC: p=<0.001

Hayat K et al. 
November 
2018 [39]

Pesticide industry 
workers (formulators 
and packers), 
pesticide sprayers, 
and controls with no 
occupational 
exposure to pesticides

Pesticide industry workers 
and sprayers were considered 
exposed to pesticides

Whole blood comet 
assay for tail length and 
comet frequency, 
pesticide residues in 
blood samples, and 
hepatic and nervous 
system enzymes

Tail length (μm):
16.88 ± 8.57 (industry workers) 
vs. 16.33 ± 3.78 (sprayers) vs. 6.53 
± 2.75 (controls), p=<0.01
Comet frequency:
17.56 ± 11.55 (industry workers) 
vs. 15.76 ± 9.37 (sprayers) vs. 3.25 
± 1.42 (controls), p=<0.01

Saad-Hussein 
A et al. 
February 2019 
[40]

50 urban researchers 
using pesticides in 
laboratories, 50 rural 
pesticide sprayers, 
and 50 urban 
researchers not 
occupationally 
exposed to pesticides 
and 50 rural controls 
not occupationally 
exposed to pesticides

Urban researchers exposed to 
pesticides in laboratories and 
rural pesticide sprayers were 
considered exposed

Whole blood telomere 
length, telomerase 
activity, comet assay for 
tail length, percent DNA 
in tail, and tail moment; 
GST genotypes; liver 
tumor markers

Comet tail length:
17.84 ± 1.07 (rural exposed) vs. 
8.4 ± 0.72 (rural controls), 
p=<0.0001
Percent DNA in tail:
4.57 ± 0.40 (rural exposed) vs. 
0.84 ± 0.19 (rural controls), 
p=<0.0001
Tail moment:
0.73 ± 0.05 (rural exposed) vs. 
0.08 ± 0.001 (rural controls), 
p=<0.0001

Dhananjayan V 
et al. March 
2019 [41]

77 tea garden workers 
exposed to pesticide 
and 66 individuals 
with no occupational 
exposure to pesticides 
in India, recruited 
from December 2013 
to February 2014

Women who had worked in 
tea gardens for at least 3 years 
were considered exposed to 
pesticides. Participants 
completed a questionnaire on 
demographics, health, 
lifestyle, and occupational 
details

Peripheral lymphocyte 
comet assay for percent 
DNA in tail, tail length, 
tail moment, and olive 
tail moment; and 
cholinesterase activity in 
erythrocytes and blood 
plasma

Mean tail length (μm):
9.45 ± 5.28 (exposed) vs. 2.09 ± 
0.95 (unexposed), p=<0.05
Percent DNA in tail:
13.1 ± 8.17 (exposed) vs. 2.26 ± 
1.63 (unexposed), p=<0.05
Tail moment (μm):
3.19 ± 2.29 (exposed) vs. 0.20 ± 
0.12 (unexposed), p=<0.05
Olive tail moment (μm):
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Author Participants Exposures and Assessments Outcomes and 
Assessments

Key Results (all confidence 
intervals at 95%)

4.15 ± 2.18 (exposed) vs. 0.59 ± 
0.44 (unexposed), p=<0.05

Intranuovo G et 
al. July 2018 
[42]

22 agricultural 
workers exposed to 
pesticides and 24 
non-agricultural 
hematologic 
outpatients from the 
provinces of Bari and 
Taranto, Italy

Agricultural workers were 
considered exposed to 
pesticides. Intensity level 
score for pesticide exposure 
calculated based on 
questionnaire responses 
regarding pesticide mixing, 
application, personal hygiene, 
use of protective equipment, 
repair of pesticide tanks, and 
use of tractors with cabins

Peripheral lymphocyte 
comet assay for tail 
moment, tail area, head 
DNA, tail DNA, integral 
intensity, head radius, tail 
length, olive movement, 
and head area

Odds of tail moment above 75th 
percentile in exposed to 
unexposed:
OR=5.77, CI 4.63 – 7.21
Odds of tail length above 75th 
percentile in exposed to 
unexposed:
OR=6.36, CI 5.1 – 7.95

Cattelan MDP 
et al. June 2018 
[46]

84 farmers reporting 
occupational 
pesticide use and 68 
farmers not reporting 
occupational 
pesticide use in 
Brazil

Farmers reporting pesticide 
use were considered exposed, 
based on a questionnaire 
regarding pesticide use and 
occupational practices

Blood samples to 
measure thiobarbituric 
acid reactive substances 
(TBARS) and 
carbonylation of proteins 
(Carbonyl); superoxide 
dismutase (SOD), 
catalase (CAT), 
glutathione reductase 
(GSH), and glutathione 
peroxidase (GPx); and 
frequency of micronuclei 
in leukocytes

Micronuclei frequency:
0.24% (exposed) vs. 0.12% 
(unexposed), p=0.288
SOD activity:
decreased in exposed vs. 
unexposed, p=< 0.01
GSH activity:
decreased in exposed vs. 
unexposed, p=<0.01
GPx activity:
decreased in exposed vs. 
unexposed, p=< 0.01
TBARS:
decreased in exposed vs. 
unexposed, p=0.02

Sapbamrer R et 
al. May 2019 
[47]

56 male farmers in 
Thailand

In-person interview on 
demographics and 
occupational exposures, and 
blood samples collected pre- 
and post-pesticide application 
seasons

Peripheral leukocyte 
comet assay for tail 
length and tail moment;, 
8-hydroxy-2’-
deoxyguanosine (8-
OHdG) levels; 
superoxide dismutase 
(SOD) activity

Median tail length (μm): 5.66 (pre-
pesticide application season) vs. 
5.67 (post-pesticide application 
season), p=0.867
Median tail moment (μm): 2.84 
(pre-pesticide application season) 
vs. 2.83 (post-pesticide application 
season), p=0.729
Median 8-OHdG (ηg/mL): 8.31 
(pre-pesticide application season) 
vs. 7.20 (post-pesticide application 
season), p=0.757
Median SOD (U/mL): 0.94 (pre-
pesticide application season) vs. 
1.35 (post-pesticide application 
season), p=< 0.001

Lozano-
Paniagua D et 
al. October 
2018 [51]

175 greenhouse 
workers carrying out 
farming activities 
(pruning, weeding, 
thinning, and 
applying pesticides) 
and 91 healthy 
individuals without 
occupational 
exposure to pesticides 
in Almeria, Spain

Greenhouse workers were 
considered exposed to 
pesticides. Analyses was 
conducted for two crop 
seasons: low pesticide 
exposure season (one to two 
pesticide applications per 
month) and high pesticide 
exposure season (weekly 
pesticide applications)

Blood samples to 
measure thiobarbituric 
acid reactive substances 
(TBARS), ferric reducing 
ability of serum (FRAS), 
total thiol groups (SHT), 
and gamma-glutamyl 
transpeptidase (GGT) 
and Paraoxonase 1 
(PON1)

Mean FRAS (μmol/l):
High exposure season: 2.800 ± 
0.017 (greenhouse workers) vs. 
2.664 ± 0.020 (unexposed), p=< 
0.001
Mean SHT (μmol/l):
High exposure season: −0.250 ± 
0.015 (greenhouse workers) vs. 
−0.396 ± 0.019 (unexposed), 
p=<0.001
Low exposure season: −0.366 ± 
0.019 (greenhouse workers) vs. 
−0.387 ± 0.126 (unexposed), 
p=<0.001
Mean PON1 (U/l):
High exposure season: 2.276 ± 
0.036 (greenhouse workers) vs. 
2.206 ± 0.047 (unexposed), 
p=0.069
Low exposure season: 2.231 ± 
0.033 (greenhouse workers) vs. 
2.115 ± 0.046 (unexposed), 
p=0.069

Neurological Disorders
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Author Participants Exposures and Assessments Outcomes and 
Assessments

Key Results (all confidence 
intervals at 95%)

Rohlman DS et 
al. May 2019 
[66]

98 adolescents aged 
12–21 years, 
comprised of 59 
pesticide applicators 
working for the 
Ministry of 
Agriculture in Egypt 
and 39 non-
applicators

Pesticide applicated were 
considered exposed to 
pesticides, measurements 
were also done for urinary 
3,5,6-trichloro-2-pyridinol 
(TCPy) levels, a biomarker of 
chlorpyrifos exposure, and 
blood acetylcholinesterase 
(AChE) and 
butyrylcholinesterase (BChE) 
activity, biomarkers of 
organophosphate exposure

Symptoms of attention 
deficit hyperactivity 
disorder (ADHD) 
assessed by parental 
completion of the 
Revised Short Form of 
Conners’ Parent Rating 
Scale

ADHD symptoms:
4.46 ± 4.95 (applicators) vs. 1.44 ± 
2.18 (non-applicators), p=<0 .001
Positive dose-response effect for 
number of ADHD symptoms and 
TCPy level:
p=<0.001
Positive dose-response effect for 
number of ADHD symptoms and 
AChE:
p=<0.001
Positive dose-response effect for 
number of ADHD symptoms and 
BChE:
p=<0.001

Guytingco A et 
al. July 2018 
[67]

6,118 agricultural 
workers in Thailand 
completing a 
questionnaire on 
occupational 
pesticide use and 
pesticide behavioral 
patterns, and 
symptoms, among 
those 3,431 providing 
a blood sample

Blood acetylcholinesterase 
(AChE) levels, a biomarker of 
organophosphate pesticide 
exposure

Self-reported symptoms 
of dizziness, dry skin & 
irritation, fatigue, 
burning sensation in 
nose, sore throat, cough, 
rash, sweating, headache, 
conjunctivitis, heart 
palpitations

12.5% of participants had low 
AChE levels;
Prevalence of dizziness:
12.4% (abnormal AChE) vs. 4.0 % 
(normal AChE), p=<0.001
Prevalence of headache:
3.3% (abnormal AChE) vs. 1.3% 
(normal AChE), p=0.010
Prevalence dry skin and irritation: 
10.5% (abnormal AChE) vs. 4.0% 
(normal AChE), p=<0.001

Serrano-
Medina A et al. 
February 2019 
[72]

140 agricultural 
workers and 100 
individuals not 
exposed to pesticides 
in Mexico

Agricultural workers were 
considered exposed to 
pesticides, measurements 
were also done for blood 
acetylcholinesterase levels, a 
biomarker of 
organophosphate pesticide 
exposure

Symptoms of 
neuropsychiatric 
disorders as assessed by 
the Mini International 
Neuropsychiatric 
Interview Diagnostic 
Test (MINI)

Depression diagnosis frequency:
14.3% (exposed) vs. 3.0% 
(unexposed)
Major depression with suicidal 
risk diagnosis frequency:
31.4% (exposed) vs. 8.0% 
(unexposed)
Generalized anxiety diagnosis 
frequency:
14.3% (exposed) vs. 18.0% 
(unexposed)
No psychiatric disorder diagnosis 
frequency:
36% (exposed) vs. 64% 
(unexposed)
Positive association between 
AChE activity & psychiatric 
disorders such as suicide risk:
p=0.006

Shrestha S et 
al. January 
2019 [73]

Subset of the 
Agricultural Health 
Study (AHS) who 
completed the third 
AHS follow-up and 
met all study 
inclusion criteria:
11,232 pesticide 
applicators from 
North Carolina and 
Iowa

Self-reported experience of a 
high pesticide exposure event 
(HPEE)

Self-reported olfactory 
impairment

Olfactory impairment and:
History of HPEE reported at 
enrollment: OR=1.49, CI 1.28 – 
1.73
HPEE involving the respiratory or 
digestive track:
OR=1.53, CI 1.22 – 1.92
HPEE involving dermal contact: 
OR=1.47, CI 1.22 – 1.78

Respiratory Effects

Buralli RJ et al. 
June 2018 [79]

48 farm workers in 
tomato cultivation in 
Brazil and 34 
relatives residing in 
the same area who 
also may have helped 
in agricultural 
activities

Rural workers and relatives 
were considered exposed to 
pesticides, specifically 49 
pesticides from 31 chemical 
groups based on self-reported 
use Crop season (active work 
in tomato cultivation) and off-
season (not working in 
agriculture) were compared, 
blood acetylcholinesterase 
(AChE) and 

Self-reported respiratory 
symptoms based on the 
European Community 
Respiratory Health 
Survey (ECRHS) and 
spirometry testing

Crop season and:
Wheeze or chest tightness:
OR=2.25, CI 0.63 – 10
Wheeze with breathlessness:
OR=0.67, CI 0.06 – 5.82
Wheeze without cold:
OR=1.5, CI 0.17 – 17.96
Waking with chest tightness:
OR=6, CI 0.73 – 275.99
Waking with cough:
OR=5.5, CI 1.20 – 51.07
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Author Participants Exposures and Assessments Outcomes and 
Assessments

Key Results (all confidence 
intervals at 95%)

butyrylcholinesterase (BChE) 
activity was also measured

Nasal allergies and hay fever:
OR=2.4, CI 0.79 – 8.70

Metabolic Effects

Park S et al. 
January 2019 
[83]

Korea Farmers 
Cohort Study:
2,559 farmers and 
farm managers from 
rural areas of Wonju 
and Pyeongchang, 
Gangwon-do, Korea, 
recruited from 2005 – 
2008

Intensity level [(mixing status 
+ application method + repair 
status) × Personal Protective 
Equipment] and Cumulative 
Exposure Index (CEI) 
[intensity levelxduration 
(number of years) × frequency 
(average days per year)], from 
questionnaires on occupation 
as a farmer, mixing or 
applying pesticides, and 
specifics of pesticide use

Prevalence of diabetes 
defined by fasting plasma 
glucose ≥ 126 mg/dL, or 
2-hour plasma glucose ≥ 
200 mg/dL during oral 
glucose tolerance test, or 
HbAlc ≥ 6.5%, or 
reported current use of 
insulin or antidiabetic 
medication

Diabetes and:
Ever pesticide use:
OR=1.58, CI 1.13 – 2.21
≥ 20 years of pesticide use:
OR=1.51, CI 1.07 – 2.14
≥ 10 days of pesticide use per 
year:
OR=1.53, CI 1.09 – 2.15
Pesticide exposure at lower 
intensity level:
OR=1.55, CI 1.07 – 2.24
Pesticide exposure at higher 
intensity level:
OR=1.53, CI 1.06 – 2.22
Higher CEI:
OR=1.54, CI 1.03 – 2.30

Kongtip P et al. 
November 
2018 [84]

243 conventional 
farmers and 235 
organic farmers in 
Thailand

Work as a conventional 
farmer was considered 
exposed, work as an organic 
farmer was considered non-
exposed

Body mass index (BMI), 
waist circumference, 
percent body fat, blood 
pressure, metabolic 
syndrome, and blood 
sample analysis of serum 
glucose, triglycerides 
(TGs), total cholesterol 
(TC), high-density 
lipoprotein (HDL), and 
low-density lipoprotein 
(LDL)

Conventional farm work to organic 
farm work:
BMI:
RR=1.83, CI 1.20 – 2.78
Waist circumference:
RR=1.69, CI 1.13 – 2.51
Percent body fat:
RR=1.31, CI 1.05 – 1.64
TGs:
RR=1.51, CI 1.01 – 2.27
TC:
RR=2.20, CI 1.69 – 2.86
LDL:
RR=1.34, CI 1.14 – 1.57
HDL:
RR=0.83, CI 0.37 – 0.95

Thyroid Effects

Shrestha S et 
al. Sept 2018 
[89]

Subset of the 
Agricultural Health 
Study (AHS) who 
completed at least 
one follow-up survey 
between 1999 and 
2016: 38,698 
pesticide applicators 
from North Carolina 
and Iowa

Ever/never use of pesticides 
and intensity-weighted 
cumulative days of pesticide 
use based on self-
administered questionnaires 
on farm life & agricultural 
practices, types of crops & 
livestock, and pesticide 
use/use of >50 individual 
pesticide active ingredients

Self-reported 
hypothyroidism

Hypothyroidism and:
Ever use of chlordane:
HR=1.21, CI 1.04 – 1.41
Ever use of diazinon:
HR=1.27, CI 1.10 – 1.48
Ever use of dichlorvos:
HR=1.42, CI 1.17 – 1.72
Ever use of malathion:
HR=1.23, CI 1.04 – 1.46
Ever use of dicamba:
HR=1.27, CI 1.08 – 1.50
Ever use of glyphosate:
HR=1.28, CI 1.07 – 1.52
Ever use of 2,4-D:
HR=1.30, CI 1.07 – 1.58

Bernieri T et al. 
March 2019 
[91]

46 soybean growers 
and 27 individuals 
not exposed to 
pesticides an urban 
area of Brazil

Employment as a soybean 
grower was considered 
exposed to pesticides, blood 
butyrylcholinesterase (BChE) 
activity was also measured

Serum levels of free 
thyroxin (FT4), total 
triiodothyronine (TT3) 
and thyroid-stimulating 
hormone (TSH)

Activity of BChE (U/L):
7969.8 ± 1582.3 (exposed) vs. 
9140.2 ± 2032.3 (unexposed) U/L, 
p=0.006
TT3 (ng/dL):
139.0 ± 28.6 (exposed) vs. 104.5 ± 
20.0 (unexposed) ng/dL, p=<0.001
FT4 (ng/dL):
0.78 ± 0.15 (exposed) vs. 0.66 ± 
0.09 (unexposed) ng/dL, p=<0.001
TSH (μUI/mL):
2.15 ± 1.09 (exposed) vs. 2.91 ± 
1.35 (unexposed) μUl/mL, 
p=0.007
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