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Abstract
In recent years, numerous clinical trials for disease modification in Parkinson’s disease (PD) have failed, possibly because of 
a “one-size-fits all” approach. Alternatively, a precision medicine approach, which customises treatments based on patients’ 
individual genotype, may help reach disease modification. Here, we review clinical trials that target genetic forms of PD, 
i.e., GBA-associated and LRRK2-associated PD. In summary, six ongoing studies which explicitely recruit GBA-PD patients, 
and two studies which recruit LRRK2-PD patients, were identified. Available data on mechanisms of action, study design, 
and challenges of therapeutic trials are discussed.

Keywords  Genetic Parkinson’s disease · SNCA · GBA · LRRK2 · Kinase inhibitor · Small molecule compounds · 
Venglustat · Ambroxol · Clinical trial · TORC1 inhibitor · Superprecision medicine

Parkinson’s disease (PD) is the second most common neuro-
degenerative disorder, affecting more than 6 million people 
worldwide [1]. Numerous drugs for the treatment of PD are 
avilable on the market. While drugs targeting the dopamin-
ergic pathway treat motor symptoms, there is no evidence 
that they modify disease progression. This “one-size-fits 
all” approach may very well explain why clinical trials for 
disease modification in PD have failed. Treatments that 
target the underlying pathophysiology are required. Since 
the pathophysiology of PD may be different in different 
patients, studies should be designed that assess PD treatment 
on a more individual basis. Therefore, a precision medicine 
approach in PD is very timely.

Precision medicine—a conceptual 
framework

Precision medicine—also referred to as personalized medi-
cine or individualized medicine—aims to tailor the specific 
treatment for the right person at the right time. To achieve 
this, it uses diagnostic tools to identify specific biomarkers, 
often genetic, to help assess which medical treatments will 
be best for each patient [2]. By combining data from these 
tests with a patient’s medical history and important factors 
influencing health status, targeted prevention and treatment 
plans can hopefully be developed in the future [2]. Thus, 
precision medicine is not a new concept. It is a conceptual 
framework which became a hot topic beyond the medical 
sphere when President Obama announced a research initia-
tive that aims to accelerate progress toward a new era of 
precision medicine in 2015 [3]. There are various benefits of 
precision medicine, including the detection of disease onset 
at the earliest moment and thereby shifting the emphasis in 
medicine from reaction to prevention (Table 1). 

In the context of neurodegenerative disorders, at the 
time of clinical manifestation (and certainly at the time of 
diagnosis), a substantial number of neuros has been per-
manently lost. Hence, early detection of at-risk individu-
als will be instrumental for early treatments (which will 
ideally protect the cells from neuronal death). Sucessful 
precision medicine will thus move from current reactive 
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approaches to early detection, protection and prevention. 
Early detection of individuals at-risk to develop neuro-
degenerative disorders is a major challenge. However, in 
the case of genetic subforms, early detection is feasible by 
confirming their genetic status with a minimal-invasive 
test.

The genetic architecture of Parkinson’s 
disease

In the past decade, we have seen incredible progress in 
elucidating the genetic architecture of PD: over a dozen 
Mendelian loci are known to cause familial PD. In addi-
tion, multiple loci have been identified by genome-wide 
association studies (GWAS) that are mostly associated 
with a small increase in risk of PD. These latter genetic 
variations of weak effect strength may occur as com-
monly as 40% in the general population, but convey only 
a mildly (up to ~ 1.5-fold) increased disease risk [4]. Even 
when combining all risk factors, the odds ratio is only 3–4 
(i.e. there is a 3 to 4 times increased risk of developing 
the disease) [5]. Notably, alteration in the same gene may 
lead to different variants and mutations with differrent 
risk association with PD [6]. For example, some point 
mutations in LRRK2 are causative for PD, while coding 
polymorphisms in the gene are strong risk factors and 
additional higher frequency variants at the LRRK2 locus 
contribute to a small increase in risk of developing PD 
[7].

A recent meta-analysis suggested that the detectible 
heritable component of PD (based on genome-wide SNPs 
and less significant SNPs included in a polygenic risk 
score) is around 20% [8]. There is compelling evidence of 
yet-to-be-discovered additional genetic factors that con-
tribute to the etiology of PD. In addition, environmental 
risk factors are yet to be discovered.

This tremendous progress in understanding the genetic 
architecture has set the ground for the development of 
treatments based on disease mechanism rather than symp-
toms. Here, we will review clinical trials which target 
genetic forms of PD, i.e., explicitly recruit (or enrich for) 
patients with a genetic form of PD.

Parkinsonism associated with GBA 
mutations

Homozygous mutations in the glucocerebrosidase (GBA) 
gene cause Gaucher disease (GD), the most common auto-
somal recessive lysosomal storage disease, with an estimated 
annual incidence of 1/60,000 and an estimated carrier fre-
quency [9] of 0.7–0.8% in the general population. Some eth-
nicities show higher mutation rates; specifically, in the Ash-
kenazi Jewish (AJ) population, there is an annual incidence 
is 1/1,000 and carrier frequencies as high as 6% in all AJ.

The clinical presentation of GD can be divided into sys-
temic, which are present in all forms of GD, and include 
hepatosplenomegaly, painful skeletal disorders and pancy-
topenia, and neurological manifestations, which are present 
in the more severe types of GD, GD-II and GD-III. Both GD 
patients and healthy heterozygous carriers are at increased 
risk for PD [10] and longterm follow-up showed worsen-
ing in motor and non-motor prodromal PD features [11]. 
GBA mutations are a common risk for PD and are present 
in 7–10% of PD patients worldwide. Among Ashkenazi 
Jews, around 20% of PD patients carry a GBA mutation 
[12]. High prevalences have also been reported in the Neth-
erlands, where 15% of PD patients carry a GBA mutation 
(oral communication, Dana Hilt). The lowest carrier fre-
quency was reported to be 2.3% in Norwegian Parkinson’s 
disease patients [13]. Notably, there is considerable reduc-
tion of penetrance in that only about 10% of GBA carriers 
will develop PD (which is however considerably higher com-
pared to the global PD prevalence of 1–2% of the general 
population aged 65 years or older) and studies suggest that 
penetrance is age-dependent [14].

Clinically, GBA heterozygotes may be indistinguishable 
from iPD. However, they may have an earlier age at onset, 
more prevalent cognitive impairment and may not respond to 
levodopa as well as iPD patients [15, 16]. GBA mutations are 
also associated with other alpha-synucleinopathies, includ-
ing DLB [17] (pathologically confirmed) and in some, but 
not all studies, with MSA [18-22]. In contrast, there was 
no association with essential tremor or AD (Alzheimer’s 
disease).

More than 300 mutations in GBA have been reported [23], 
some with milder (e.g., the N370S mutation), others with 

Table 1   Benefits of precision 
medicine [2] Diagnose disease more accurately

Select optimal therapies and target medicines and dosages precisely
Increase safety, reduce adverse drug reactions
Detect onset of disease at the earliest moment, incl. detection of early subclinical correlates of neuronal 

death prior to clinical (motor) manifestation
Shift emphasis in medicine from reaction to prevention (i.e., protection of neurons to avoid neuroal death)
Increase the efficiency of the health system by improving quality
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more severe (e.g., the L444P mutation) biological conse-
quences and clinical presentations (e.g., age at onset or pro-
gression rate). The encoded protein, glucocerebrosidase, is 
a lysosomal enzyme which plays a role in the breakdown of 
glucocerebroside into glucose and ceramide. In GD, there 
is lysosomal build-up of the substrate glucocerebroside 
in the reticulo-endothelial system with reduced clearance 
capacities.

Pathologically, the brains of patients with heterozygous 
GBA mutations strongly resemble those from patients with 
iPD. However, there is also widespread cortical Lewy body 
involvement in GBA mutation carriers [16, 22]. A few stud-
ies showed a reciprocal relationship between levels of glu-
cocerebrosidase (Gcase; the enzyme encoded by GBA) and 
levels of the aggregate-prone protein alpha-synuclein [24]. 
Notably, iPD patients also have reduced GCase activity 
(about 33% decrease) in the substantia nigra and cerebel-
lum, making treatments that target GBA relevant for iPD and 
patients with PD dementia as well [21].

While the PD field can benefit from decades of research 
done for GD, the underlying mechanisms of how exactly 

GBA leads to the development of PD are not fully under-
stood. One of the hypotheses is that there is a self-prop-
agating bidirectional feedback loop between GCase and 
a-synuclein. On the one hand, loss of GCase activity 
causes a-synuclein accumulation and oligomerization, 
resulting in neurotoxicity through aggregate-dependent 
mechanisms [25]. Furthermore, elevated a-synuclein 
inhibits lysosomal maturation and normal GCase activity. 
a-synuclein hinders GCase transport from the endoplasmic 
reticulum to the lysosome. This continues over time until 
the threshold for neurodegeneration is reached [25].

Based on this, targeted treatments can take different 
approaches including modulation of gylcosphingolipid 
turnover and restoration of enzyme function (Table 2; 
Fig. 1).

Treatment directed at modulation 
of gylcosphingolipid turnover

Substrate reduction therapy inihibits the biosynthesis of lipid 
subtrates and thereby prevents their accumulation. While this 

Table 2   GBA-targeting treatments for PD in the clinical phase aiming at modulation of glycosphingolipid turnover and restoration of enzyme 
function

a see https​://www.trial​regis​ter.nl/trial​/7061 for more information

GBA MOVES-PD study 
Part 1

MOVES-PD study 
Part 2

AiM-PD

Compound Venglustat (GZ/SAR402671) Ambroxol RTB101 LTI-291 PR001
Administration Oral Oral Oral  Oral Injections
Sponsor Sanofi UCL and Cure PD 

Trust
Restorbio LTI/Allergan Prevail

RCT No NCT02906020 NCT02941822 (NL7061; 
NTR7299)a

Mechanism Glucosylceramide synthase inhibiton;
reduction of GBA-related GSLs

GCase activation TORC1 inhibition GCase activation Gene therapy, AAV-
based

Status Completed Recruiting,
estimated primary 

completion 2021

Estimated comple-
tion 04-2018

Ongoing; data 
expected 2020

Recruiting in 
Leiden (NL)

Clinical centers 
initiated

Phase 2 2a 1b/2a 1b 1b
Design Multicenter, 

randomized, 
double-blind, 
placebo–con-
trolled, sequen-
tial cohort

Prospective, single-
centre, open label

Multicenter 2:1 
randomized 
double-blind, 
placebo-con-
trolled

Multicenter, 2:1 
randomized, 
double-blind, 
placebo-con-
trolled

Randomized, pla-
cebo-controlled, 
double-blind, 
parallel study

Randomized, dou-
ble-blind, sham 
procedure-con-
trolled, ascending 
dose study

Total N of part 17 10 + 10 45 Apprx. 40 30/16
GBA-PD

√ √ √ √ √

Idiopathic PD No
√ √

No
√

Age 18–80 yrs (mean 
58 yrs)

40–80 yrs 18 years or older

Duration 36 weeks 52 weeks + 104 weeks 
extension

6 months 4 weeks 28 days

Doses tested 3 escalating doses 1 dose 5 escalating doses 300 mg; ± siroli-
mus

10 or 60 mg once 
daily

Two escalating dose 
cohorts

https://www.trialregister.nl/trial/7061
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approach does not target the mutant gene or dysfunctional 
enzyme itself, it is an effective FDA approved treatment of 
the systemic symptoms of Gaucher disease. However, the 
approved inhibitors show no effective CNS concentration 
and do not affect the neurological symptoms of Gaucher 
disease (i.e., Gaucher type II and III). However, new gluco-
sylceramide synthase inhibitors, show good brain penetra-
tion and improved a-synuclein processing and behavioural 
outcomes in mouse models [26, 27]. Based on these find-
ings, Sanofi launched the MOVES-PD study, a randomized, 
double-blind, placebo-controlled trial, to assess the efficacy 
and safety of the glycosylsynthase inhibitor Venglustat 
(GZ/SAR402671). Initial results from a phase I study were 
recently published [28]. Briefly, 17 GBA-PD were enrolled 
(13 on venglustat, 4 on placebo; mean age 58 years, mean 
disease duration 7 years) into this 36-week randomized pla-
cebo-controlled double-blind sequential cohort study of once 
daily venglustat at three escalating doses. No serious adverse 
events occurred. Side effects included psychological, neuro-
logical and gastrointestinal-related symptoms. Plasma and 
cerebrospinal fluid (CSF) glucosylceramide levels decreased 
in a dose-dependent manner (up to 75%). This favorable 
safety and tolerability profile of venglustat at all doses led 
the company to advance to a phase II, a 52-week trial which 
is currently ongoing [28].

Treatment directed at restoration of enzyme 
function

Other therapies focus on restoration of enzyme function, 
thus increasing glucocerebrosidase activity, especially in 
the brain. This can be achieved by (1) enzyme-replacement 
therapy (ERT) with recombinant glucocerebrosidase. This 
treatment is available for patients with Gaucher disease. 
However, as in the case of the currently approved substrate 
reduction therapies, ERT does not cross the blood–brain bar-
rier and does cannot affect the neurological symptoms found 
in GD Type II and III. Of note, there are no data on the use 
of ERT in PD.

Another approach would be (2) gene therapy using adeno-
associated virus vectors to deliver engineered DNA to 
human cells [27, 29]. As for GBA, preclinical studies in mice 
demonstrated that adeno-associated virus-mediated expres-
sion of glucocerebrosidase corrected the aberrant accumula-
tion of the toxic lipid glucosylsphingosine and reduced the 
levels of ubiquitin, tau, and alpha-synuclein aggregates [30]. 
Prevail Therapeutics, a new company launched in 2017, aims 
to start clinical trials with PR001 in 16 GBA-PD patients in 
late 2019 [31]. The company will also test the compound in 
children with neuropathic Gaucher disease starting in the 
first half of 2020.

Furthermore, (3) small molecules have attracted attention 
[32]. Early glucocerebrosidase chaperones that underwent 
clinical trials for Gaucher disease included isofagomine 
(afegostat‐tartrate, AT2101). This treatment did not lead to 

Fig. 1   Treatment approaches for GBA-associated PD include modulation of gylcosphingolipid turnover and restoration of enzyme function
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significant clinical improvement, and further clinical devel-
opment for this indication was discontinued [27].

Ambroxol, which is a promising small molecule chaper-
one widely used in Europe as a mucolytic agent, may poten-
tially facilitate the transit of the misfolded GCase protein to 
the lysosome [33]. Ambroxol has been shown to improve 
lysosomal function and increase enzyme activity in in-vitro 
studies utilizing dermal fibroblasts with GBA1 mutations 
[34] as well as in studies performed on non-human primates 
(i.e., cynomolgus monkeys) with GBA1 mutations [35]. 
The effects of ambroxol at high doses are currently being 
studied in the AiM-PD study, sponsored by UCL and the 
Cure Parkinson’s Trust, UK [36]. Twenty PD patients (10 
GBA-positive & 10 GBA-negative status) are treated with 
up to 420 mg/day (which is considerably higher compared 
to 30–120 mg used for the treatment of respiratory disease) 
in order to evaluate the safety, tolerability and pharmaco-
dynamics of ambroxol at five escalating doses. Outcome 
measures include clinical assessments of motor and cogni-
tive function as well as blood and CSF biomarkers. As men-
tioned above, GCase activity is also reduced in iPD patients’ 
brains (SN) [37], making the therapy potentially relevant 
for iPD. The effect of ambroxol in non-GBA-PD [36] and 
non-GBA-PD dementia [38] will be better understood once 
results from the two ongoing studies become available which 
include ten non-GBA-PD and 75 PDD patients [38, 39] 
(treated at a daily doses of 420 mg / day or 525–1050 mg/
day, respectively).

The effects of the activator of the GCase enzyme LTI-
291 were studied in a one-month phase 1b trial conducted 
in the Netherlands, where the rate of GBA mutations are 
reported to be around 15%. Around 40 GBA-PD patients 
participated. There were no safety events and data showed a 
good dose-dependent brain penetration (personal communi-
cation). The company, Lysosomal Therapeutics, Inc. (LTI), 
is a Massachusetts-based biotech venture, which plans to 
develop therapies for Gaucher disease and other lysosome-
based neurodegenerative diseases.

Small molecules have also targeted PD by modifying 
GBA-independent pathways. One such example is RTB101, 
which is an inhibitor of target of rapamycin complex 1 
(TORC1) [40]. Rapamycin, which is known for its immu-
nosuppressant properties, prolongs lifespan by 15–25% in 
various non-mammalian organisms, even when given late 
in life; it has also been found to increase health-span. A five 
year-study in dogs is planned to test geroprotective effects of 
RTB101 in mammals [41]. Rapamycin reached public atten-
tion when Bloomberg magazine publicized it as the potential 
“forever pill” on its cover in 2015, which reflects the great 
desire of rejuvenation. TORC1 plays a role in cell growth, 
aging and is the switch between fasting and feeding states 
[40]. Mutations in TORC1 cause focal cortical dysplasia, 
an established cause of epilepsy. The role of mTORC1 in 

regulating autophagy may also have implications for neuro-
degenerative diseases. In preclinical models, TORC1 inhibi-
tion induces autophagy and prevents neuronal loss [41, 42]. 
It improves motor function in multiple PD models including 
a-synuclein transgenic mice and MPTP models of PD [43]. 
In oncology cell cultures, treatment with RTB101 reduced 
the levels of glucosylceramide, the main substrate of GCase. 
A current phase 1b/2a trial of RTB101 in combination with 
sirolimus involved 45 PD patients with or without GBA 
mutation. The study was initiated in early 2019; data are 
expected in 2020.

LRRK2‑associated Parkinsonism: kinase 
inhibitors are a promosing target

LRRK2 mutations are the most common cause of auto-
somal dominant PD accounting for 5–15% of dominant 
familial PD and 1–3% of sporadic PD (Fig. 2). The Inter-
national LRRK2 Consortium study estimated that the most 
common mutation in LRRK2, G2019S, alone accounts for 
1% of sporadic and 4% of familial PD patients [44].

Similar to GBA, mutations in LRRK2 are more common 
in certain ethnicities. North African Arabs (mutation-pos-
itive: 36% in familial, 39% in sporadic PD) and Ashkenazi 
Jews (28% in familial, 10% in sporadic PD) have the high-
est frequencies. As in GBA, different mutations and vari-
ants confer different levels of risk for PD. For example, the 
G2019S mutation, which is common in Whites, confers a 
higher risk for PD than the common Asian variants, G2385R 
and R1628P [11, 13]. These latter two variants are detected 
in around 5–10% of Asian PD patients [45]. The G2385R 
variant is associated with an odds ratio of 2.24. Penetrance 
in LRRK2 is age-dependent and estimations in the general 
population are widely variable, ranging between 30 and 74% 
[46, 47].

Additionally, non-coding polymorphisms close to the 
LRRK2 locus act as risk factors for sporadic disease [48] 
Furthermore, LRRK2 interacts with the protein products of 
at least two GWAS hits, RAB7L1 and GAK, linking PD-
related genes with monogenic and complex forms [49, 50].

LRRK2 is a large gene with 51 exons, spanning a genomic 
region of 144 kb. It contains five functional domains includ-
ing a leucine rich repeat domain. More than 80 missense 
mutations have been reported, but only around one dozen are 
pathogenic [48]. The mechanisms by which mutations cause 
PD have not been completely disentangled yet, but there is 
increasing evidence of increased LRRK2 kinase function in 
PD. The G2019S mutation, for example, results in a direct 
two-to-threefold increase in kinase activity [51, 52]. Others 
studies have focused on the GTP domain which may also 
play an important role. Loss of function, on the other hand, 
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i.e., by haploinsufficiency of LRRK1 or LRRK2, appears to 
be neither a cause of nor protective against PD [53].

The potential gain-of-function effect would be an attrac-
tive target for treatment because inhibition is easier to 
achieve than improvement of reduced protein activity (as 
in GBA). Furthermore, kinase inhibitors are widely used in 
oncology, and the PD field can benefit from such achieve-
ments in other fields. Since the first generation of LRRK2 
inhibitors, newer compounds have progressively improved in 
potency, selectivity, and brain penetrance. However, efficacy 
and safety remain a concern. That is because other tissues, 
particularly the kidney, lung, and a subtype of peripheral 
immune cells, robustly express LRRK2. For example, the 
kidney has a ~ 6.2-fold higher expression of LRRK2 com-
pared to the brain [52]. This is a potential source of periph-
eral side effects, which can include abnormal accumulations, 
a-syn aggregations, and impaired autophagy-lysosomal 
function induced by LRRK2 inhibitors [53-55]. More recent 
data, however, suggest that compounds that only partially 
downregulate LRRK2 levels or kinase activity, i.e., by 50% 
or less, are unlikely to produce major side effects related 
to on-target safety [56] and lipid droplets in lamelar bod-
ies are absored after the drug is withdrawn. One alternative 
to avoid systemic toxicity is to find a way to specifically 
modify LRRK2 activity in the brain without modifying 
activity peripherally. Several strucutrally different LRRK2 
inhibitors from Genentech, GSK, Merck and Pfizer are in the 
pipeline (Table 3) [27]. The compound developed by Denali 
is already in clinical trial. A phase 1b trial in healthy indi-
viduals has been completed, which included pulmonary and 
renal safety parameters. The company is advancing DNL201 

(GNE-7915) to a Phase 1b safety and biomarker study in 
LRRK2-linked PD and iPD. 30 mild to moderately affected 
PD patients with or without LRRK2 mutation will be ran-
domized to low or high dose DNL201 or placebo in this 
28-day randomized placebo-controlled trial. The first patient 
was reported in December 2018; data readout is expected 
for the end of 2019. To facilitate recruitment, a “direct-
to-consumer” approach for testing and counselling will be 
available [57]–a strategy that proved successful in genetic 
testing with the PPMI initiative. Most recently, Denali has 
announced a strategic collaboration with a gene diagnos-
tic lab, Centogene, in order to globally identify and recruit 
LRRK2 mutation carriers, further characterize this genetic 
subtype, and build a source for patient recruitment for future 
studies [58]. However, such strategies of a commercial diag-
nostic lab in concert with a drug company to offer directed 
to consumer diagnostic testing is viewed critically by some.

Finally, Biogen is currently recruiting LRRK2 patients 
into one arm of a phase 1 trial. These patients will receive 
a single intrathecal injection of the compound BIIB094, 
an antisense oligomere (ASO), on multiple days. Recently, 
ASOs have produced a lot of interst in a variety of disorders, 
including spinal muscular atrophy, Huntington’s disease or 
non-neurological disorders such as cancers [59, 60]. ASOs 
reduce the expression of a mutated gene by binding to target 
mRNAs and blocking the translation of the abnormal protein 
or inducing its degradation [60]. ASOs can also promote 
splicing around mutations. For disorders due to toxic gain-
of-function such as LRRK2, further investigation regarding 
ASOs is warranted. In a preclinical study, administration of 
LRRK2 ASOs to the brains of mice reduced LRRK2 protein 

Fig. 2   World map of LRRK2-
associated Parkinsonism. 533 
cases have been reported. 
Circles reflect frequency per 
region. Data and image were 
retrieved from the MDSGene 
Website [47]
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levels and fibril-induced α-syn inclusions [61]; data from 
humans are not yet available.

Interestingly, most recent studies found an mechanistic 
and therapeutic convergence of LRRK2 and GCase with 
reduced GCase activity in dopaminergic neurons derived 
from PD patients with LRRK2 mutations and increased 
GCase activity induced by inhibition of LRRK2 kinase 
activity [62]. Rab10 was identified as a key mediator of 
LRRK2 regulation of GCase activity and may be an inter-
esting target for future studies [62].

Final remarks

Recent failures in large Phase III clinical trials for PD sug-
gest that disease modification would be difficult to achieve 
as long as we treat PD as one disease one pathophysiology. 
Therefore, we believe that precision medicine in PD may be 
a promising alternative.

As summarized in this review, several gene-targeted 
therapies are being tested in clinical trials and numerous 
more are in the pipeline. These are exciting times. However, 
the process of bringing a drug into the clinic is cumber-
some [63]. Pharmaceutical Research and Manufacturers of 
America (PhRMA) estaimate that for every 5000–10,000 
compounds screened, only 250 enter preclinical testing, five 
enter human clinical trials, and one is approved by the Food 
and Drug Administration, with only two in ten drugs gener-
ating enough revenue to recoup their research and develop-
ment costs [64]. Thus, set-backs will not come unexpected.

In addition to the hurdles of all clinical trials, precision 
medicine trials may be more complicated. It is unclear who 
may benefit from precision medicine drugs. Would these 
be useful only for mutation carriers (and therefore require 
an orphan drug assignment) or would they be beneficial 
for the larger group of idiopathic PD or atypical parkinso-
nian disorders? It seems unlikely that all these patients will 
respond to the same drug. Indeed, even within the group of 
GBA mutation carriers, one may have to differentiate due 
to the effect that a specific mutation has on the protein. For 
example, the affinity of chaperones to a mutated enzyme 
may be different depending on the mutation. Furthermore, a 
new drug that facilitates protein function may fail in patients 
with null mutations who do not express any protein. The 
term “superprecision medicine” has been used to capture 
this phenomenon.

There are challenges that remain that need to be overcome 
when planning or conducting a clinical trial (Table 4) [65]. 
A major challenge will be to recruit a large enough num-
ber of study participants. Genotyping significantly larger 
proportions of PD patients would be required. Different 
strategies have been developed for this purpose, including 
the Parkinson’s Foundation effort called PD GENE and the 
“direct-to-consumer” approach, which may allow identifica-
tion of eligible individuals even if they do not live close to a 
movement disorders unit. Raising awareness and educating 
the community, including physicians, patients and caregiv-
ers, will be an important step to reach critical numbers. We 
are hopeful that the treatment for PD will drastically change 
in the next decade and evolve beyond dopaminergic or surgi-
cal treatments.

Table 3   LRRK2-targeted treatments including LRRK2 inihibitors and antisense oligomeres under development for PD

LRRK2 Denali trial

Compound DNL-201 No public data No public data No public data BIIB094
Sponsor Denali GSK Pfizer Genetech Biogen
RCT No NCT03710707 NCT03976349
Mechanism LRRK2 inhibition LRRK2 inhibition LRRK2 inhibition LRRK2 inhibition Antisense oligomere
Status Ongoing, recruiting, 

data expected end of 
2019

Planned Under development Under development Ongoing

Phase 1b N/a N/a N/a Phase 1
Design Multicenter, rand-

omized, placebo-
controlled

N/a N/a N/a

Total N of pat 30 N/a N/a N/a 62
LRRK2-PD

√

N/a N/a N/a
√

Idiopathic PD
√

N/a N/a N/a
√

Age 30–75 N/a N/a N/a 35–80
Duration 28 days N/a N/a N/a N.d.
Doses tested Low / High N/a N/a N/a Single-and multiple-

ascending-dose
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Another challenge is the relative lack of biomarkers that 
reliably reflect disease progression and response to treat-
ment. This applies to genetic subtypes as well as the larger 
group of iPD in general. Concerted efforts are being made 
to identify a biospecimen-based (i.e., blood, urine, CSF or 
biopsy), imaging, or other (e.g., electrophyiological) bio-
marker of PD or disease progression. Among these, the 
PPMI initiative is a valuable source that brings together 
longitudinal data and specimen collection from more than 
1200 volunteers with PD [66].

Advancing precision medicine will further encourage and 
support the next generation of scientists to develop creative 
new approaches for detecting, measuring, and analyzing a 
wide range of biomedical information—including molecu-
lar, genomic, cellular, clinical, behavioral, physiological, and 
environmental parameters [3].
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