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For the past four years, the Climate Reconstruction Analysis using 
Coexistence Likelihood Estimation (CRACLE) code existed only as 
a single R script published as a supplement to the original paper 
(Harbert and Nixon, 2015). Despite this, the method has proven 
to be a useful tool to the community, yielding informative paleo-
climate estimates for several fossil systems. Here, we present the 
‘cRacle’ R package, an open-source R software package designed 
to streamline the process of CRACLE modeling, data acquisition, 
the pre-processing of primary biodiversity data (from the Global 
Biodiversity Information Facility [GBIF] and other related data-
bases), and CRACLE result visualization. The ‘cRacle’ R package is 
built from modular functions that perform segments of the mod-
eling protocol, allowing for easy-to-read R scripts as well as future 

modular developments of related methods (e.g., Ballantyne et  al., 
2010; Greenwood et al., 2017).

The primary application of CRACLE and related methods is 
in the reconstruction of paleoclimate from fossil floras. The as-
sociation of plant communities with climate features has long 
been used in the reconstruction of paleoclimates from fossil 
floras based on modern climatic distributions (Hickey et  al., 
1988; Kershaw and Nix, 1988; Kershaw, 1997). All current ap-
plications of CRACLE make assumptions about climatic niche 
stability through time because they rely on the nearest living rel-
ative (NLR) approach to infer the elements of fossil taxon niche 
dimensions by observing the niche space occupied by a closely 
related extant relative (Mosbrugger and Utescher, 1997; Harris 
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et  al., 2014; Utescher et  al., 2014). NLR assumptions are most 
valid when the fossil taxa can be placed as members of extant spe-
cies and least accurate when fossils are members of extinct lin-
eages. For this reason, NLR and CRACLE will produce the most 
reliable reconstructions of relatively recent (e.g., Pleistocene and 
Pliocene) paleoclimates, but may also produce reasonable results 
for much older fossil assemblages where the plant fossil taxa can 
be reliably placed into extant groups with well-sampled modern 
distributions (e.g., Harris et al., 2014).

The use of fossil floras to estimate climate regularly provides 
insights that are complementary to other sources of paleoclimatic 
inference. Here, we will summarize some of the current research us-
ing CRACLE and related methods that could benefit from the com-
putational tools presented in ‘cRacle’ and any future standardization 
of the methods therein. CRACLE modeling was recently applied to 
the estimation of the paleoclimate in western North America using 
Late Quaternary (<50,000 years ago) plant macrofossils in packrat 
(Neotoma spp.) middens (Harbert and Nixon, 2018). The analysis 
of the packrat midden paleoclimate estimates revealed a history of 
rapid climate change during and just after the Late Pleistocene degla-
ciation, followed by Holocene warm and dry periods of 1–2°C above 
the modern (1970–2000) averages (Harbert and Nixon, 2018). The 
CRACLE-derived packrat midden plant macrofossil proxy climate 
record was similar to other results based on biological and isotopic 
proxies from the region, but at a temporal coverage (>30,000 years) 
unavailable from other records (Harbert and Nixon, 2018).

CRACLE was used to analyze community assemblages from 
excavated permafrost at five Pliocene sites in the Canadian Arctic 
Archipelago (Fletcher et  al., 2017). This work revealed that the 
Canadian Arctic during the Early Pliocene (~3.6 mya) was up to 
22°C warmer than today and supported many cool-temperate 
plant taxa. Fletcher et al. (2017) carefully compared results derived 
from CRACLE estimates using species-only identifications vs. ge-
neric-level identifications and found that care must be taken when 
interpreting CRACLE results based on generic-level identifications 
to avoid being misled by model imprecision. Further testing of how 
taxonomic classification impacts CRACLE model output is needed 
to understand the effect of fossil identification uncertainty on pa-
leoclimate estimates. Paleoclimate estimates for the Paleocene–
Eocene Thermal Maximum (~55 mya) and the Eocene Thermal 
Maximum (53.5 mya) have also been generated using Gaussian 
probability bioclimatic envelope methods similar to CRACLE 
(Ballantyne et al., 2010; Greenwood et al., 2017; Hyland et al., 2018; 
Willard et al., 2019).

CRACLE models have been applied to non-plant communities 
as well, but performance in these systems has not been broadly 
tested. Pliocene Arctic climate estimates revealed notable biases 
in beetle-based CRACLE reconstructions relative to plant-based 
CRACLE reconstructions and stable isotope methods (Fletcher 
et al., 2019). These results suggest that plant communities may be 
more directly influenced by climate than beetle communities and, 
therefore, that CRACLE will be most reliable when using plant sys-
tem data.

For comparison with CRACLE, we have also implemented the 
Thompson’s Mutual Climatic Range (MCR) method in the ‘cRacle’ 
package (Thompson et  al., 2012). This method estimates climate 
based on the climate range intersection rather than probability 
density functions. We include both the weighted and unweighted 
MCR methods as representatives of the many available MCR or 
coexistence approach range-intersect methods (Mosbrugger and 

Utescher, 1997; Sinka and Atkinson, 1999; Utescher et al., 2014) for 
the estimation of climate from vegetation as part of the ‘cRacle’ R 
package. The ‘cRacle’ package is distributed under an MIT License, 
and all code is available on GitHub (https ://www.github.com/rsh24 
9/cRacle).

METHODS

Full documentation of the ‘cRacle’ R code is available with the pack-
age code (https ://github.com/rsh24 9/cRacle). Below is an outline of 
the major functionality of the ‘cRacle’ package and an explanation of 
many of the core functions available.

‘cRacle’ package functions

Data acquisition—Downloading primary biodiversity data from 
the GBIF (https ://www.gbif.org/), iNaturalist (https ://www.inatu 
ralist.org/), and BISON (https ://bison.usgs.gov/) databases is sup-
ported in ‘cRacle’ through the functions gbif_get(), get_bison(), 
and inat(). Each of these functions accepts arguments for a single 
taxon (genus, species, or family) to query and a maximum num-
ber of records to return. Data pre-processing, including cleaning for 
statistical climatic outliers and spatial bias reduction  and climate 
data extraction for a set of georeferenced occurrence data, is done 
through the extraction() function. Data downloading for multiple 
taxa and pre-processing functionality can be done in one step using 
the getextr() function, which is implemented with parallel comput-
ing capability to reduce user wait time.

Likelihood modeling—The primary modeling required by 
CRACLE is the calculation of probability density functions using 
both parametric (Gaussian normal) and non-parametric (ker-
nel density) estimates. These calculations can be performed with 
‘cRacle’ directly from the output of extraction() using the func-
tion(s) dens_obj() and densform() for multiple and single taxa, 
respectively. Note that dens_obj() is simply a wrapper function 
for densform() designed to simplify multi-species likelihood 
model building. Both parametric and non-parametric likelihood 
functions are calculated and stored in the object produced by 
densform() and dens_obj(), meaning all calculations are done in 
tandem for a data set so the results for both methods can be ex-
amined at the end of the CRACLE process.

The likelihood modeling carried out in the densform() function 
includes several options that can be manipulated by the user. The 
kernel density estimation employed by CRACLE can now be im-
plemented with several kernel estimators, including the standard 
Gaussian, Epanechnikov, cosine, optcosine, biweight, rectangular, 
and triangular kernels, based on the R ‘stats’ package function den-
sity() (R Core Team, 2018). The kernel bandwidth can be optimized 
using standard criteria via the argument ‘bw’ in the densform() and 
dens_obj() functions. Likelihoods can be calculated based on a stan-
dard or conditional probability via the ‘manip’ argument, in which 
conditional probabilities take into account the background distri-
bution of each climate parameter using a set of randomly sampled 
points from within a normalized distance from each primary oc-
currence location or from a user-defined set of climate data. Finally, 
the resulting likelihood distributions can be trimmed to empirical 
ranges or confidence intervals to avoid unintended extrapolation 
using the ‘clip’ argument.

https://www.github.com/rsh249/cRacle
https://www.github.com/rsh249/cRacle
https://github.com/rsh249/cRacle
https://www.gbif.org/
https://www.inaturalist.org/
https://www.inaturalist.org/
https://bison.usgs.gov/
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CRACLE joint likelihood—After the likelihood functions are esti-
mated, the next key CRACLE step is to calculate first the joint like-
lihood and then the maximum of the joint likelihood distribution. 
‘cRacle’ implements the functions and_fun() for calculating the joint 
likelihood and or_fun() for creating unions between taxa to merge 
likelihood features between groups (i.e., between species in a clade). 
The output of and_fun() is a set of joint likelihood features for all 
parameters, which can be summarized by the function get_optim(). 
The output of get_optim() is the optimal climate value for each pa-
rameter, providing the user with CRACLE results.

Example pseudocode—The general CRACLE modeling flow uses 
the following functions in order: getextr(), dens_obj(), and_fun(), 
get_optim(). This produces climate estimates from a list of taxa by 
downloading data and extracting climate data, estimating likeli-
hood distributions, calculating the joint likelihood, and finding the 
optimum of the joint likelihood for each climate variable analyzed.

Visualizing likelihood and joint likelihood functions—‘cRacle’ pro-
vides a set of functions for visualizing the likelihood functions as 
standard probability density distributions. These functions are den-
splot() for plotting single distribution objects (i.e., for one taxon/cli-
mate parameter pair), addplot() for adding to an existing densplot() 
figure, and multiplot() for plotting distributions for multiple taxa 
given a single climate parameter. For example, a user may plot the 
distributions for all taxa in their study for mean annual temperature 
using multiplot() and the output from dens_obj(), and then add the 
joint likelihood function using addplot() and the model object out-
put from and_fun().

Issue tracking and versioning

The repository at https ://github.com/rsh24 9/cRacle.git will main-
tain the current development version of ‘cRacle.’ Future major re-
leases will be submitted to the Comprehensive R Archive Network 
(CRAN). Users should notify the authors of problems encountered 
with running ‘cRacle’ code by using the GitHub repository’s ‘Issues’ 
feature (https ://github.com/rsh24 9/cRacl e/issues) or by email to the 
corresponding author of this publication.

Data access

Primary biodiversity data, occurrence coordinates for your target 
taxa, and climate data are required for CRACLE modeling. We rec-
ommend primary biodiversity data downloaded from GBIF and 
support such data access through ‘cRacle’ functions. Climate data 
must be in the form of a raster object readable by the R ‘raster’ 
package (Hijmans, 2018). Climate data from the WorldClim project 
(Hijmans et al., 2005; Fick and Hijmans, 2017) are recommended, 
but users may also use raster data downloaded from other sources 
such as CHELSA (Karger et  al., 2017) and ENVIREM (Title and 
Bemmels, 2018).

Estimation of climate from vegetation

As originally described, CRACLE consists of two methods for likeli-
hood estimation: parametric and non-parametric probability func-
tions. ‘cRacle’ implements these two approaches in tandem for each 
step of the likelihood analysis, and has implemented options about 
whether to calculate the likelihoods from standard probability or 

conditional probability. For comparison, we have implemented cal-
culations for the MCR method for the estimation of climate from 
vegetation described by Thompson et al. (2012), although the un-
weighted MCR described is analogous to the coexistence approach 
described elsewhere (Mosbrugger and Utescher, 1997).

CRACLE estimates the climate variable likelihood function for 
a set of taxa (t) as follows. For any given set of climate values ‘x’, the 
CRACLE parametric (normal) probabilities are estimated as:

whereas the CRACLE non-parametric (kernel density estimation) 
probabilities are estimated as:

where K is a kernel function with an area of 1 and ‘h’ is the kernel 
bandwidth, a smoothing parameter with a value > 0. We recommend 
using either the “optcosine” or “gaussian” kernels and a bandwidth 
calculated using Silverman’s Rule of Thumb (Silverman, 1986). ‘cRa-
cle’ allows for the calculation of probability density functions con-
ditioned by the probability density of a random background sample 
for each climate parameter, defined as:

where ‘c’ is the set of background climates given by a sample of 
points from within the study area. The conditional probability for 
a taxon (t) is defined as:

For the estimation of climate from vegetation, CRACLE mod-
eling calculates the joint likelihood for multiple taxon probability 
functions as:

where the maximum value of L(x|t1:i) corresponds to the value of 
the climate parameter ‘x’ most likely to lead to the coexistence of 
that set of taxa (t1:i).

Note that ‘cRacle’ also implements the calculation of a weighted 
mean by variance, which can be substituted for the parametric 
CRACLE functions. A weighted mean (x̄) is calculated from a set of 
taxon means (x1:i) and standard deviations (σ1:i):

Modern validation—To test the performance of CRACLE for paleo-
climate modeling, we developed two experimental analyses to test as-
pects of the CRACLE modeling process. Model performance here is 
evaluated as the absolute difference between CRACLE modeled values 
and the WorldClim estimated values for the site location using the 2.5 
arcminute WorldClim version 2.0 model data (http://www.world clim.
org/bioclim). The communities being analyzed are based on modern 
(within the past century) data and, therefore, the CRACLE estimates 
are compared to the WorldClim modern (1970–2000) climate averages.
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For the first experiment, we queried iNaturalist for putatively 
co-occurring species of plants across North America to test the 
performance of parametric and non-parametric CRACLE as well 
as weighted and unweighted MCR. For each of these methods, we 
also tested the effect of varying the scale of spatial thinning in the 
primary occurrence data on model output to examine the impact 
of spatial sampling bias on climate predictions. These species lists 
serve to provide a quick and easy way to generate preliminary 
lists of species that belong to a wide range of plant communities. 
Although these lack expert validation, they do represent the range 
of missing and incorrect community data that might be expected 
when analyzing fossil plant communities; therefore, the quantifica-
tion of CRACLE error rates in this experiment should be conserva-
tive estimates for real-world applications.

To obtain preliminary plant community data, we used a grid search 
to sample the iNaturalist data for North America to identify plant 
species coexisting in 0.1 × 0.1-degree (approximately 10 × 10 km) 
bounded search areas using the ‘rinat’ R package (Barve and Hart, 2017). 
Each of these search areas returned potential lists of co-occurring  
species. These community lists are taken with the caveat that the  
iNaturalist data are contributed by a range of users, including both 
expert and amateur naturalists. These lists thus provide only prelim-
inary community composition data sufficient for testing CRACLE, 
but neither the community composition nor the climate estimates 
should be considered definitive. Using these lists, we built CRACLE 
estimates for mean annual temperature using the modern WorldClim 
2.0 data set at a resolution of 2.5 arcminutes (~4 × 4 km) (Fick and 
Hijmans, 2017), using parametric and non-parametric CRACLE as 
well as weighted and unweighted MCR methods. Primary biodiver-
sity data for CRACLE model fitting were obtained from GBIF using 
the ‘cRacle’ get_dist_all() function and the GBIF RESTful JSON-based 
API. Model overfitting for occurrence data was tested by spatially 
thinning the raw GBIF data using the ‘cRacle’ extraction() function 
for factors of 2, 4, 6, 8, and 10 times the dimensions of the 2.5-arc-
minute WorldClim raster cells. The ‘cRacle’ thinning procedure is an 
imperfect but efficient spatial thinning method consistent with best 
practices for limiting the effects of spatial sampling bias in the ecolog-
ical niche modeling (ENM) literature (Aiello-Lammens et al., 2015). 
The CRACLE and MCR model outputs for each thinning level were 
summarized and reported for general guidance. The R code for the 
iNaturalist grid search test is available at https ://github.com/rsh24 9/
cracle_examp les/tree/maste r/inat_grid_search.

In the second experiment, we queried expert-validated vegetation 
plot survey data to test the model performance for the 19 bioclimatic 
variables (http://www.world clim.org/bioclim) and to test the model 
bias correction using generalized boosted regression (GBR) models. 
The Botanical Information and Ecology Network (BIEN 4.0) data-
base was queried for published vegetation plot surveys from North 
and South America using the ‘rbien’ R package (Maitner et al., 2018). 
BIEN provides expert-curated data for georeferenced plant occur-
rence data, vegetation plot surveys, trait data, phylogenetic trees, and 
gridded distribution maps. The vegetation plot surveys used for this 
section come from well-documented surveys conducted by experts 
and mobilized through BIEN. Thinning factors were held constant 
and non-parametric CRACLE was used for this experiment to sim-
plify the downstream correction modeling. Future work would re-
quire similar analyses for other modeling choices if GBR correction 
is expanded for use across all CRACLE modeling.

FIGURE 1. iNaturalist grid search climate estimation results. (A) 
Geographic search area (shading) with successful climate estimation lo-
cations marked (black squares), (B) mean anomaly rates, and (C) median 
anomaly rates for CRACLE (kde = non-parametric, means = parametric) 
and MCR (uw = unweighted, w = weighted) results for factor levels of 0 
(“raw”), 2, 4, 6, 8, and 10 times the 2.5-arcminute climate raster.

https://github.com/rsh249/cracle_examples/tree/master/inat_grid_search
https://github.com/rsh249/cracle_examples/tree/master/inat_grid_search
http://www.worldclim.org/bioclim
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Errors in CRACLE are non-random (Harbert and Nixon, 
2015); therefore, non-linear regression modeling could account 
for and correct common CRACLE errors. For plot surveys with 
more than five plant taxa with distribution data available from 
GBIF, we estimated climate parameters for all 19 bioclimatic 
variables from the WorldClim 2.0 data (Fick and Hijmans, 2017) 
using parametric CRACLE methods and spatial thinning to a fac-
tor of two times the 2.5-arcminute climate grid. CRACLE results 
for 70,391 plot surveys were then partitioned 50:50 into training 

(n = 35,196) and testing (n = 35,195) sets 
by random sampling without replacement. 
GBR models were fit to the training data for 
each of the 19 bioclimatic parameters using 
the R ‘gbm’ package (Greenwell et al., 2019). 
The GBR models were used to adjust the 
climate estimates in the test. Using inde-
pendently trained GBR models on the test 
data set helped to determine whether error 
patterns in CRACLE could be predicted 
by GBR and corrected for in independent 
analyses. The R code for the BIEN exper-
iment and GBR model fitting is available 
from https ://github.com/rsh24 9/cracle_ex-
amp les/tree/maste r/cracle_bien.

RESULTS

Modern validation

iNaturalist—The grid search of iNaturalist in 
North America enabled climate estimations 
to be made using the CRACLE (both para-
metric and non-parametric) and MCR (both 
unweighted and weighted) approaches for 285 
sites at spatial thinning factors of 0, 2, 4, 6, 8, 
and 10 times the 2.5-arcminute climate raster. 
A total of 1,204,925 unique records were ac-
cessed from GBIF for this analysis, for a total 
of 1541 species. The sampled localities ranged 
in mean annual temperature from 0.4–26.1°C. 
The top-performing (lowest error rates) esti-
mates were the CRACLE non-parametric (‘kde’ 
in Fig. 1) and the MCR weighted (‘mcr.w’ in 
Fig. 1) methods. The mean errors for CRACLE 
were ~1°C, while the median errors were gen-
erally less than the means. Spatial thinning did 
not change the mean or median error rates for 
any of the tested methods (Fig. 1B, C).

BIEN—Non-parametric CRACLE estimates of 
all 19 bioclimatic variables from the WorldClim 
2.0 data set (Fick and Hijmans, 2017) were 
 generated for the 70,391 vegetation plot sur-
veys accessed through the BIEN 4.0 database 
using a total of 2,560,261 georeferenced spec-
imen records from GBIF. These CRACLE re-
sults produced generally accurate estimates of 
climate across a broad geographic range with 
many distinct climatic regions (Fig. 2).

The mean absolute anomaly rates (i.e., the amount by which 
CRACLE differs from the WorldClim 2.0 model data) for all tem-
perature parameters were between 1°C and 2°C with Pearson’s cor-
relation coefficients greater than 0.9 in the best scenarios (Table 1), 
but up to 5°C and with correlation coefficients <0.7 for estimates 
of mean temperature during the wettest and driest quarters of the 
year (BIO8 and BIO9). The mean absolute anomaly rate for mean 
annual precipitation (BIO12) was 179 mm with a correlation of 0.79 
(Table 1).

FIGURE 2. CRACLE estimates and generalized boosted regression (GBR) error correction demon-
stration for BIEN vegetation plot surveys and representative climate parameters. BIEN vegetation 
plot surveys from 70,391 unique localities (A) were analyzed with CRACLE (B) to estimate the 
19 bioclimatic variables (showing BIO1 [mean annual temperature], 5 [maximum temperature 
of warmest month], 6 [minimum temperature of coldest month], 12 [annual precipitation], 17 
[precipitation of driest quarter], and 18 [precipitation of coldest quarter] here as top-performing 
examples) from the WorldClim 2.0 data set (Fick and Hijmans, 2017). GBR error correction model-
ing was trained and tested (C) on independent subsets of plot data. The GBR correction yielded 
overall reduced error rates and less biased estimates in many cases (D).

https://github.com/rsh249/cracle_examples/tree/master/cracle_bien
https://github.com/rsh249/cracle_examples/tree/master/cracle_bien


Applications in Plant Sciences 2020 8(2): e11322 Harbert and Baryiames—’cRacle’ climate estimation • 6 of 8

http://www.wileyonlinelibrary.com/journal/AppsPlantSci © 2020 Harbert and Baryiames

GBR models were used to correct the CRACLE estimates us-
ing independent random samples without replacement of 50% 
of the data for the training and testing data sets. GBR correction  
improved CRACLE performance in the test set by 20–50% (Tables 1, 
2; Fig.  2). The CRACLE+GBM-corrected anomalies were smaller 
and more symmetrically distributed around ‘0’ than the non- 
corrected CRACLE results (Fig. 2D), and CRACLE+GBM estimates 
were more strongly correlated with the WorldClim data than the 
raw CRACLE results (Tables 1, 2).

DISCUSSION

The modern validation analyses conducted here should provide a 
good baseline for expected CRACLE performance going forward. 
More thorough testing in future studies is certainly welcome, but 
most modeling choices should be made by the user to reflect any 
unique properties of their study system. The results we provide here 
indicate that the best estimates generated using the ‘cRacle’ software 
are the CRACLE non-parametric estimates with spatially thinned 

TABLE 1. Test data set CRACLE performance statistics for 19 bioclimatic parameters estimated for BIEN vegetation plot data (n = 35,195 plots).

Climate_Parameter Mean anomaly

Mean 
absolute 
anomaly

Median 
absolute 
anomaly RMSE NRMSE Pearson's r Spearman's r Units

wc2.0_bio_2.5m_01 0.34 1.40 1.09 1.86 0.05 0.95 0.96 °C
wc2.0_bio_2.5m_02 −0.31 1.01 0.74 1.39 0.07 0.82 0.79 °C
wc2.0_bio_2.5m_03 −0.25 2.51 1.80 3.44 0.04 0.87 0.87 °C
wc2.0_bio_2.5m_04 −23.93 64.64 42.35 92.68 0.06 0.84 0.85 °C
wc2.0_bio_2.5m_05 −0.19 1.71 1.19 2.32 0.07 0.92 0.95 °C
wc2.0_bio_2.5m_06 0.64 2.13 1.57 2.93 0.05 0.91 0.92 °C
wc2.0_bio_2.5m_07 −0.94 2.42 1.97 3.19 0.07 0.79 0.83 °C
wc2.0_bio_2.5m_08 1.00 5.60 3.27 7.81 0.18 0.69 0.63 °C
wc2.0_bio_2.5m_09 −1.00 5.64 2.43 8.80 0.16 0.60 0.63 °C
wc2.0_bio_2.5m_10 0.03 1.30 0.97 1.74 0.06 0.94 0.96 °C
wc2.0_bio_2.5m_11 0.31 1.89 1.36 2.66 0.05 0.92 0.93 °C
wc2.0_bio_2.5m_12 26.20 179.17 111.69 275.09 0.06 0.79 0.83 mm/year
wc2.0_bio_2.5m_13 7.32 25.04 11.31 47.92 0.07 0.70 0.75 mm/month
wc2.0_bio_2.5m_14 9.89 15.49 9.72 21.79 0.10 0.77 0.76 mm/month
wc2.0_bio_2.5m_15 −7.11 11.66 8.30 16.12 0.15 0.69 0.71 —
wc2.0_bio_2.5m_16 21.84 68.96 31.48 135.63 0.08 0.69 0.76 mm/3*month
wc2.0_bio_2.5m_17 26.80 45.61 27.49 64.92 0.08 0.80 0.76 mm/3*month
wc2.0_bio_2.5m_18 −6.20 34.76 23.16 52.69 0.05 0.90 0.91 mm/3*month
wc2.0_bio_2.5m_19 34.97 99.35 73.22 142.96 0.10 0.57 0.69 mm/3*month

Note: NRMSE = normalized root mean standard error; RMSE = root mean standard error.

TABLE 2. Generalized boosted regression–corrected test data set CRACLE performance statistics for 19 bioclimatic parameters estimated for BIEN vegetation plot 
data (n = 35,195 plots).

Climate_Parameter Mean anomaly

Mean 
absolute 
anomaly

Median 
absolute 
anomaly RMSE NRMSE Pearson's r Spearman's r Units

wc2.0_bio_2.5m_01 −0.06 1.11 0.85 1.51 0.04 0.96 0.96 °C
wc2.0_bio_2.5m_02 0.00 0.84 0.60 1.18 0.06 0.86 0.81 °C
wc2.0_bio_2.5m_03 −0.01 2.08 1.48 2.89 0.04 0.91 0.89 °C
wc2.0_bio_2.5m_04 1.03 51.65 36.94 72.73 0.05 0.90 0.87 °C*100
wc2.0_bio_2.5m_05 −0.11 1.18 0.83 1.64 0.05 0.96 0.95 °C
wc2.0_bio_2.5m_06 −0.16 1.75 1.18 2.49 0.04 0.93 0.93 °C
wc2.0_bio_2.5m_07 −0.03 1.85 1.33 2.57 0.06 0.85 0.86 °C
wc2.0_bio_2.5m_08 −0.38 4.43 3.00 6.17 0.15 0.74 0.70 °C
wc2.0_bio_2.5m_09 0.41 4.86 2.38 7.66 0.14 0.71 0.69 °C
wc2.0_bio_2.5m_10 −0.06 0.97 0.73 1.32 0.05 0.97 0.96 °C
wc2.0_bio_2.5m_11 −0.15 1.61 1.14 2.32 0.04 0.94 0.94 °C
wc2.0_bio_2.5m_12 12.84 147.83 95.59 225.75 0.05 0.86 0.86 mm/year
wc2.0_bio_2.5m_13 1.52 19.52 10.52 35.44 0.05 0.78 0.82 mm/month
wc2.0_bio_2.5m_14 0.04 10.83 7.50 15.50 0.08 0.85 0.86 mm/month
wc2.0_bio_2.5m_15 2.11 7.56 4.77 11.17 0.11 0.75 0.73 —
wc2.0_bio_2.5m_16 3.25 51.70 28.72 97.37 0.06 0.79 0.83 mm/3*month
wc2.0_bio_2.5m_17 −0.80 32.85 22.45 46.69 0.07 0.87 0.87 mm/3*month
wc2.0_bio_2.5m_18 2.48 28.98 21.01 42.83 0.04 0.93 0.92 mm/3*month
wc2.0_bio_2.5m_19 11.46 70.76 46.68 114.25 0.08 0.71 0.76 mm/3*month

Note: NRMSE = normalized root mean standard error; RMSE = root mean standard error.
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data. These yield mean errors of approximately 0.5°C less than the 
MCR method implemented by ‘cRacle’ (Fig. 1), a method analogous 
to the widely used coexistence approach (Mosbrugger and Utescher, 
1997). Furthermore, the CRACLE results presented here compare 
favorably, although indirectly, to recent applications of the weighted 
average partial least squares (WA-PLS) model, commonly used for 
the analysis of fossil pollen samples, which uses modern analog 
communities to build proxy models (Montade et al., 2019). A direct 
comparison of the CRACLE and WA-PLS methods is necessary in 
future work.

Through our analysis of BIEN vegetation plot surveys, we show 
that CRACLE can produce accurate climate estimates for a vari-
ety of both temperature and precipitation parameters (Fig. 2), al-
though some parameters are better predicted than others (Table 1). 
Notably, BIO8 (mean temperature of the warmest quarter), BIO9 
(mean temperature of the coldest quarter), BIO13 (precipitation of 
the wettest month), and BIO15 (precipitation seasonality – coeffi-
cient variable) are relatively poorly predicted by CRACLE, possibly 
due to less direct impact of those variables on plant distributions. 
In contrast, estimates of BIO1 (mean annual temperature), BIO5 
(maximum temperature), BIO6 (minimum temperature), and 
BIO18 (precipitation of the driest quarter) yield the highest cor-
relation with known values (Table 1). We also show that CRACLE 
model correction via GBR can lower error rates from the CRACLE 
baseline (Fig. 2, Table 2). The GBR model correction based on the 
model testing presented here is implemented in ‘cRacle’ get_optim() 
as an option for users to correct non-parametric CRACLE estimates 
for the WorldClim 2.0 bioclimatic variables. Further testing and fit-
ting of GBR models to test data sets can expand on the options for 
model correction to include other climate parameters and model 
choices in the ‘cRacle’ modeling suite.

Resources and tutorials

We are actively developing resources and tutorials in support of 
the ‘cRacle’ R package. Demonstration code and short projects will 
be maintained on a continuing basis at https ://github.com/rsh24 9/ 
cracle_examples. We aim to provide a series of web tutorials for 
various CRACLE modeling tasks to guide beginner users through 
the process. Tutorials and issue tracking are distributed through the 
main ‘cRacle’ repository: https ://github.com/rsh24 9/cRacle.git.

Conclusions

‘cRacle’ is a new and actively maintained resource for climate esti-
mation from biological community compositions. These estimates 
are particularly relevant to the study of fossil systems, where often 
the best indication of past climate is the community of plant and 
animal fossils. We show that users of ‘cRacle’ should expect accurate 
estimates (e.g., within 1°C for mean annual temperature) when ap-
plying best practices.
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