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How much free energy is irreversibly lost during a thermody-
namic process? For deterministic protocols, lower bounds on
energy dissipation arise from the thermodynamic friction asso-
ciated with pushing a system out of equilibrium in finite time.
Recent work has also bounded the cost of precisely moving a
single degree of freedom. Using stochastic thermodynamics, we
compute the total energy cost of an autonomously controlled sys-
tem by considering both thermodynamic friction and the entropic
cost of precisely directing a single control parameter. Our result
suggests a challenge to the usual understanding of the adia-
batic limit: Here, even infinitely slow protocols are energetically
irreversible.

dissipation | nonequilibrium | energy bounds | entropy production |
molecular machines

Controlling the state of a thermodynamic system requires
interacting with and doing work on its degrees of freedom.

Given an initial thermodynamic state λi and a final state λf , the
second law of thermodynamics implies that the average work
required to produce the transition between these states is at
least the difference in their free energy: 〈W 〉≥F (λf )−F (λi).
Recent work has strengthened this inequality, quantifying two
distinct sources of energetic dissipation. First, to transform a
system at a finite rate, energy must be expended to overcome
thermodynamic friction (1–7). Second, energy must be expended
to bias the motion of λ itself in a preferred direction (8–15).
Here we consider both of these energetic costs together. We
find that while either cost can be made arbitrarily small, they
cannot be minimized simultaneously, as illustrated in Fig. 1.
This leads to a lower bound on the required energetic cost
for controlling a thermodynamic system that remains nonzero
even in the limit that the process moves infinitely slowly and
imprecisely.

Any process that transforms a system in a finite amount
of time must necessarily push the system out of equilibrium.
This requires doing nonconservative work which causes the irre-
versible loss of useable energy, a familiar example of which is
the heat dissipated while moving an object through a viscous
medium. This dissipative cost, incurred by thermodynamic fric-
tion, can be written as 〈Ediss〉≡ 〈∆S〉= 〈W 〉−∆F , where the
dissipation equals ∆S , the change in the entropy of the system
and environment∗ (16). Recent work has explicitly quantified
this form of dissipation, finding an elegant geometric inter-
pretation for the nonconservative work done in a finite-time
process (2, 3).

In the above analysis, the energetic cost is identified with 〈W 〉,
the average work done on the thermodynamic system by an exter-
nally defined and deterministic control protocol λ(t). However,
for an autonomous system which implements its own control pro-
tocol, energy must be dissipated to move λ itself in a directed
manner. Physical systems obey microscopically time-reversible
dynamics.† Thus to bias the motion of λ, breaking time-reversal
symmetry, forward progress must be accompanied by an increase
in entropy, which can be accomplished by dissipating energy into
a heat bath. This entropic increase causes forward movement
to be more likely than backward movement, and without this,

there can be no “arrow of time” (9). A classic example of this
is the consumption of ATP by myosin motors to “walk” along
actin polymers (17). Without the irreversible consumption of
free energy, the system would be constrained to have equilib-
rium dynamics, transitioning backward and forward at the same
rate. Recently, there has been considerable work done in under-
standing the tradeoffs between this bias cost and the accuracy
and speed of system trajectories (8, 13–15, 18–21), culminating
with the development of so-called thermodynamic uncertainty
relations (22–24).

Here we consider the total dissipative cost of autonomously
controlled thermodynamic systems, including contributions from
both thermodynamic friction and entropic bias. In particular, we
consider thermodynamic systems with state x and control param-
eter λ, where the dynamics of λ are now stochastic due to the
fact that the entropic bias required to run a deterministic path
is infinite (6). Additionally, we suppose that the dynamics of x
depend on λ but the dynamics of λ do not receive feedback
from x. This one-way coupling distinguishes λ as a physical con-
trol parameter rather than as simply a degree of freedom in a
larger thermodynamic system. We can think of λ as mediating
a coupling between x and different thermodynamic baths, as in
ref. 25. This setup is analogous to a control knob changing the
amount of power flowing into a thermodynamic system in that
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Fig. 1. (A) The contribution to the energy dissipation from the nonconser-
vative work done on the system (blue), the contribution from the cost of
directing the control protocol in time (red), and the total energy dissipation
cost (purple). On the x axis is the ratio of the diffusion constant D of the con-
trol protocol to the speed v of the control protocol, which captures the level
of stochasticity of the protocol. The marked points in A correspond to dif-
ferent levels of stochasticity in the control protocol. For each mark, a sample
trajectory with that stochasticity is shown in B. The blue mark is a subopti-
mal protocol which is too stochastic, doing more work than is necessary on
the system. The red mark is a suboptimal protocol which is too deterministic,
spending more energy on reducing noise than is necessary. The purple mark
is an optimal protocol which minimizes this energetic tradeoff by balancing
these two constraints.

the work required to turn the knob‡ is independent of the state
of the system.

Examples of this class of processes are found throughout biol-
ogy in systems that undergo regulated change. In these systems,
energy is expended both in running the regulatory mechanism
and in instantiating downstream changes (26–28). In muscles,
the release of calcium modulates the pulling force by activat-
ing myosin heads which then hydrolyze ATP to produce a step
(29, 30). In this case, the bias cost is the energy used to con-

‡Since the cost of turning a control knob does not scale with the system size, for any
macroscopic system one would naturally ignore this cost.

trol the amount of calcium that is released through concentration
gradients. Energy is also dissipated through the nonconservative
work that the muscles themselves do as they consume ATP to
contract. Another example is biological cycles, where energy is
used both to coordinate phase in the cycle and to run down-
stream processes. Cyclins, which underlie the cell cycle and
KaiABC proteins which implement circadian oscillations, are
kinases that phosphorylate each other to implement a cycle
as well as downstream targets to instantiate the changes that
must occur throughout the cycle (13, 28, 31–36). Phosphorylat-
ing these downstream targets also consumes energy. In both of
these examples, the control degrees of freedom (calcium con-
centration and cyclin phosphostate) receive minimal feedback
from their downstream target’s state (contraction state of myosin
heads and phosphostate of targets).

Our central result is that thermodynamic processes cannot be
controlled in an energetically reversible manner. While each of
these two energetic costs can be made small in isolation, they
cannot be made small together. The cost of thermodynamic fric-
tion can be minimized only by moving the system slowly and
precisely, while the bias cost can be made small only by mov-
ing imprecisely and with large fluctuations. These competing
constraints cannot be satisfied at the same time (Fig. 1). We
thus suggest that the notion of an energetically reversible con-
trol process exists only as an abstraction for when the control
itself is considered external to the object under study. A real-
istic self-contained thermodynamic machine has no reversible
transformations, even in the quasistatic limit.

Our work builds on a framework developed in refs. 2 and 3
which considered lower bounds on the energy dissipation arising
from a deterministic control protocol λ(t) moving at finite speed.
Those authors found that the dissipation rate is given by

〈Ṡ〉≈ dλα

dt
g̃λ
αβ

dλβ

dt
, [1]

where g̃λ is the Kirkwood friction tensor (7) and where we have
replaced the energy dissipation Ediss with the equivalent notion
of entropy production (16, 37). This rate yields a lower bound on
the energy dissipation,

S ≥ L̃
2(λi ,λf )

∆t
, [2]

where L̃ is the minimum length path in λ space between
λi and λj with the metric g̃λ

αβ (38) and where ∆t is the
total time of the protocol. Energetically optimal control pro-
tocols are geodesics in the Riemannian thermodynamic space
defined by g̃λ

αβ .
Importantly, this result implies that in the quasistatic limit

where the protocol moves infinitely slowly (∆t→∞), the excess
energy cost of transforming the system becomes negligible (Eq.
2). However, in this framework, the breaking of time-reversal
symmetry arises from the deterministic trajectory λ(t), whose
cost is neglected from this energetic bookkeeping.

When we include the cost of the time-reversal symmetry
breaking in the control protocol λ(t), the optimal control proto-
cols are no longer deterministic. Instead, we consider a protocol
λ(θ) where θ is a stochastic variable that moves with net drift
velocity v and diffusion D . When we include the bias cost of
the control protocol itself, we find that the total rate of energy
dissipation in the near-equilibrium limit is given by〈

Ṡ
〉
θ
≈
〈

dλα

dt+

〉
θ

g̃λ
αβ

〈
dλα

dt−

〉
θ

+
v2

D
+Dgθ, [3]

where gθ is the Fisher information metric on θ (Eq. 10). The first
term of Eq. 3 captures the thermodynamic friction associated
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with pushing the system out of equilibrium. We will see that this
term is the natural generalization of Eq. 1 to a stochastic sys-
tem. The second term captures the dissipation associated with
breaking time-reversal symmetry, moving the control protocol
forward in time. The third term is the result of the redun-
dant thermodynamic friction caused by the stochastic system
trajectory.

From this rate, we show that for a simple system, the total
energetic cost of moving the system from λi to λf has a lower
bound given by

S ≥ 2L(λi ,λf ) +
L̃2(λi ,λf )

∆t
(1− ε), [4]

where L and L̃ are the lengths traversed in thermodynamic
space with metrics g̃ and g and where ε is a small cor-
rection that disappears as ∆t→∞ or in the limit of large
protocol size.

This result is significant because the first term defies the qua-
sistatic limit, remaining nonzero even in the limit of an infinitely
slow protocol (∆t→∞). The result we obtain from the simple
system analyzed here suggests a more general principle: Every
thermodynamic transformation has a minimal energy require-
ment that cannot be made arbitrarily small by using a slow
control protocol. This energy requirement is determined by the
geometry of thermodynamic space.

Our result generalizes and clarifies a bound anticipated in
ref. 25, which considered coupling a thermodynamic system to
a succession of particle reservoirs. Here we explicitly take a
continuum limit and consider protocols which move at a finite
rate, connecting this to other bounds in the literature (3). Our
results clarify that this bound is far more general, showing that
the minimum energy bound is not specific to that class of sys-
tems but is rather a fundamental property of thermodynamic
machines. In particular, it holds for any thermodynamic system
in which a single degree of freedom obeying the microscopic
laws of thermodynamics mediates a coupling to a generalized
thermodynamic reservoir.

Derivation
Consider a system of particles interacting through an energy of
the form

U (y) =λα(θ)φα(x) y= (θ,x), [5]

where x denotes the microstate of the system and θ parameter-
izes the path of the control functions around a cycle. Here we
use Greek letters α,β, γ, etc., to index the controlling potentials
λ and their conjugate variables φ and we use Roman letters i , j ,
k to index the microstate x. We also use natural units and unit
temperature such that β=T = 1.

The control functions λ(θ) are all 2π periodic in θ, allow-
ing the system to reach a steady state where the system cycles
are fully self-contained. We suppose that the control parameter
θ is driven stochastically with net drift velocity v and diffusion
constant D . We describe both θ and x using overdamped
Langevin equations (37):

θ̇= v +
√

2Dη

ẋ i =D ijFj (y) +
√

2D ij ξj

〈η(t)η(t ′)〉= δ(t − t ′)

〈ξi(t)ξj (t ′)〉= δij δ(t − t ′).
[6]

The terms η and ξi represent thermal noise. The overdamped
force on x i due to the interaction energy U is given by Fi(y) =
−∂x iU (y). As discussed in the Introduction, by control parame-
ter we mean precisely that the term Fθ(y) =−∂θU (y) is absent
from the stochastic equation for θ̇; the dynamics of θ do not
receive feedback from the state of the system.

The Langevin dynamics of the system give rise to probability
currents:

j θ ≡ [v −D∂θ]p(y, t) j i ≡D ij [Fj (y)− ∂xi ]p(y, t). [7]

Using stochastic thermodynamics, we can derive the average rate
of energy dissipation by equivalently calculating the average rate
of total entropy production (37):

〈Ṡ(t)〉=
∫

dy

[
[j θ(y, t)]2

Dp(y, t)
+

j i(y, t)[D−1]ij j
j (y, t)

p(y, t)

]
. [8]

Because the system is periodic and the Langevin dynamics (Eq.
6) are time independent, the system will eventually reach a steady
state that can be described by the joint probability distribution
p(y). To compute the energy dissipation, we first compute the
average rate of energy dissipation conditioned on the control
parameter being in the known state θ. We can then compute the
total energy dissipation by averaging over a full cycle in θ. Denote
p(x|θ) to be the nonequilibrium steady-state probability of find-
ing the system in the microstate x given that the system is at θ.
Denote 〈· · · 〉θ to mean an average over the nonequilibrium dis-
tribution p(x|θ) for a fixed θ. Finally, denote 〈· · · 〉θ,eq to mean
an average over the equilibrium Boltzmann weight peq(x|θ)∝
e−U (θ,x). We find the rate of entropy production when the sys-
tem is at θ is given by (see SI Appendix, Eqs. 4–20 for the details
of the derivation)

〈Ṡ〉θ =
v2

D
+Dgθ(θ) + 〈δφα〉θ

[
v
∂λ

∂θ

α

(θ) +D
∂2λα

∂θ2
(θ)

]
, [9]

where 〈δφα〉θ = 〈φα〉θ −〈φα〉eq,θ is the deviance of the conju-
gate force φα at θ from its equilibrium value and gθ is the Fisher
information metric with respect to the θ basis:

gθ(θ)≡ dλ

dθ

α

gλ
αβ(λ)

dλ

dθ

β

≡ dλ

dθ

α

〈δφαδφβ〉eq,λ

dλ

dθ

β

. [10]

The Fisher information metric can be thought of as a measure of
how strongly the distribution peq(x|θ) changes as the value of θ
changes as determined by the Kullback–Leibler divergence.

So far this is an exact result. In the next section we use lin-
ear response to approximate 〈δφα〉θ , assuming that D and v are
small.

Linear Response for Stochastic Control. Since we are interested in
a lower energetic bound, we consider the low dissipation regime
where the x system is driven near equilibrium. In this regime, we
can use linear response to compute the thermodynamic friction
of the x system. To evaluate the term 〈δφα〉θ , we use a lin-
ear response approximation. For a fixed control parameter path
θ(τ), the average linear response over all possible microstate
paths is well understood (3). Here we extend this result to an
average over all possible microstate and control parameter paths.

If an ensemble of systems undergoes the same deterministic
protocol θ(τ), then at time t , the average linear response of φα

over this ensemble is given by (39)

〈δφα(t)〉θ(τ) =

∫ 0

−∞
dt ′ C

θ(t)
αβ (t ′)

d

dt ′

[
λβ(t + t ′)

]
, [11]

where C θ
αβ(t ′) = 〈δφα(0)δφβ(t ′)〉

eq, θ
is the equilibrium time

correlation between the conjugate forces φα and φβ and where
we have written λ(t)≡λ(θ(t)) for shorthand.
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Assuming the protocol speed is much slower than the
timescale of system relaxation, by integrating by parts we
find (3)

〈δφα(t)〉θ(τ)≈
dλ

dt

β

g̃λ
αβ g̃λ

αβ(θ)≡
∫ 0

−∞
dt ′C θ

αβ(t ′). [12]

We now have to extend this result to an ensemble of stochastic
protocols which are all located at the same point θ0 at time t0
(to emphasize that we are referring to a specific point, we have
switched from using the generic θ and t to θ0 and t0). This pro-
cess is a bit more challenging (see SI Appendix, Eqs. 21–33 for
the exact details). However, the form of the result is manifestly
the same: We need only to replace dλβ/dt with the ensemble
average of dλβ/dt , where the ensemble is taken over all control
parameter trajectories θ(τ) such that θ(t0) = θ0. As illustrated
in Fig. 2, this quantity is discontinuous at time t0. Its left- and
right-sided limits are〈

dλβ

dt±

〉
θ0

≡ lim
t→0±

d

dt ′
〈λβ(t0 + t ′)|θ0, t0〉≈ v

dλβ

dθ
±D

d2λβ

dθ2
,

[13]

which correspond to ensemble velocities under the reverse-Ito
and Ito conventions (40). Here we have dropped terms quadratic

in v and D . Since the domain of Eq. 11 is t ′< 0, it is the left-sided
limit that is relevant in our calculation, and thus we obtain

〈δφ〉θ ≈
〈

dλ

dt−

〉
θ

g̃λ≈
(
v

dλ

dθ
(θ)−D

d2λ

dθ2
(θ)

)
g̃λ. [14]

To obtain this result we have required that both the control
parameter velocity and the diffusion rate are small with respect
to the system relaxation timescale at equilibrium, τ . Explicitly,
we demand

vτ/L� 1 Dτ/L2� 1, [15]

where L is related to the length scale associated with the control
function λ(θ). Finally, by using the result given by Eq. 14 in Eq.
9, we obtain our central result, Eq. 3.

Discussion
The first term in Eq. 3 represents the frictional dissipation aris-
ing from pushing the system out of equilibrium. This term is
a generalization of the dissipation rate found in the determin-
istically controlled coupled system studied in ref. 3. To obtain
that result, the authors made the assumption that the system
moves much slower than the relaxation timescale of the sys-
tem. Concretely, this is the assumption that vτ/L� 1. In moving
from Eq. 11 to Eq. 14, we make essentially the same assump-
tion, but we also require that Dτ/L2� 1. This is merely the

A

B

C

D

Fig. 2. An illustration of why the time derivative of the ensemble value of λ is discontinuous. This system state is described by a variable θ with net drift
v and diffusion D (explicitly θ̇= v +

√
2Dη) and a control function λ(θ). Here we look at the ensemble Λ of all possible system trajectories θ(τ ) such that

θ(t0) = θ0 for a fixed point (t0, θ0). (A−C) In blue is the probability of finding the system at a particular value of θ conditioned on the system being at θ0

at time t0 for three different times: immediately before t0 (A), at t0 (B), and directly after t0 (C). Since the value of θ at t0 is known, B is a Dirac delta
function. A and C are identical Gaussians shifted forward and backward by vdt. In red is the value of the control parameter λ as a function of θ. The
important quantity is 〈λ(θ)〉, the value of λ(θ) at a given time averaged over trajectories in Λ. Note that while 〈θ〉 increases as a function of time (from A
to C) and λ(θ) increases as a function of θ, it is not the case that 〈λ(θ)〉 increases as a function of time. This is because of diffusion. Between B and C, the
distribution of θ diffuses away from θ0. Because λ is convex, this causes 〈λ(θ)〉 to increase. The same argument applies backward in time as well. As we
move backward in time from B to A the θ distribution also diffuses away from θ0, which in turn increases 〈λ(θ)〉 due to the convexity of λ(θ). This means
that the minimum value of 〈λ(θ)〉 occurs at the intermediate time t0. This is the origin of the discontinuity shown in (D). (D) In purple is a plot of 〈λ(θ)〉
over time averaged over the same ensemble of trajectories Λ. The time derivative has a discontinuity at t = t0 related to d2λ/dθ2 (the convexity of λ). The
left- and right-sided limits of the time derivative (shown in blue and red) are the derivatives given by the Ito and reverse-Ito conventions for stochastic
calculus (40).

Bryant and Machta PNAS | February 18, 2020 | vol. 117 | no. 7 | 3481

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1915676117/-/DCSupplemental


statement that the random movements of the control parameter
cannot be large enough to take us away from the linear response
regime. Since we are searching for a lower energetic bound, this
is certainly true in the limiting behavior. The system of ref. 3
can be seen as a special case where D→ 0 and the v2/D term
is ignored.

The other two terms in Eq. 3 are analogous to dissipation
terms found in an earlier paper (25) investigating a discrete sys-
tem. The first of these, v2/D , is the energy required to break
time-reversal symmetry in the control parameter, i.e., the energy
required for “constancy” in the control clock (8, 41). The final
term Dgθ can be thought of as the energetic cost of straying from
the optimal protocol, a geodesic (38).

Fig. 1A plots the contribution to the total energy cost of a
control protocol from the two sources of dissipation: the noncon-
servative work done by the control parameter on the x system
(W NC =W on −∆F shown in blue) and the work required to
break time-reversal symmetry and direct the movement of θ for-
ward in time (W TR =

∫
v2

D
dt shown in red). We see that they are

minimized on opposite ends of the stochasticity spectrum.
In Eq. 3 there is an implicit energetic tradeoff. A control pro-

tocol that is very precise (D� v) (e.g., the red curve in Fig. 1B)
may minimize the dissipation due to thermodynamic friction
done by the control parameter on the system; however, such a
protocol pays a high energetic cost for strongly breaking time-
reversal symmetry. On the other hand, a control protocol that
only weakly breaks time-reversal symmetry (D� v) (e.g., the
blue curve in Fig. 1B) pays a high energetic cost for undergoing
suboptimal trajectories and performing redundant thermody-
namic transitions. Ref. 3 investigated the energetically optimal
control path λ(t). This work shows that there is also the question
of the energetically optimal “diffusive tuning” between v and D
which minimizes this tradeoff (e.g., the purple mark and curve in
Fig. 1 A and B). In particular, the optimal control protocol is not
deterministic (D 6= 0).

As an example, consider a 2D harmonic oscillator where the
center is moved in a circle of radius A:

U (θ,x) =
1

2
k(x−Aλ)2 λ= (cos θ, sin θ). [16]

Here λ(θ) = (cos θ, sin θ) is the control function and φ(x) =
−kAx is the conjugate force. The Fisher information metric is
given by gλ = kA2I, where I is the 2D identity matrix and in the
θ basis we have gθ = dλx

dθ
gλ
xx

dλx

dθ
+ dλy

dθ
gλ
yy

dλy

dθ
= kA2. Using Eq.

3, we find the average dissipation rate:

〈Ṡ〉= v2

D
(1 + gθDτ) +Dgθ(1−Dτ). [17]

If we require that the protocol takes an average of ∆t time per
cycle, this fixes the net drift velocity v = 2π/∆t . To find the min-
imum dissipation, we then optimize S with respect to D . This
yields

D(opt) =
v√
gθ

(1 + ε), [18]

where |ε|� 1 is a small order correction due to the small Dτ
term. Plugging this in yields a total dissipation per cycle of

〈S〉≥ 2L+
L̃2

∆t

(
1− (1 + ε)2

gθ

)
, [19]

where L= 2π
√

gθ and L̃= 2π
√

gθτ are the thermodynamic
lengths of paths under the metrics gλ and g̃λ. In particular, we
note that the dissipation remains bounded by 2L in the limit of
an infinitely long protocol ∆t→∞.

In units where β 6= 1, the Fisher information metric is gθ =
kA2β. Thus the correction to the Sivak and Crooks bound can
be neglected whenever the energy scale of the control is greater
than the average thermal fluctuation.

The nonvanishing bound 2L scales with
√

gλ, the size of an
average fluctuation in the system. Thus it is subextensive and dis-
appears in the macroscopic limit. Its contribution is also dwarfed
by thermodynamic friction when the control protocol is fast.
Therefore it is expected that this bound should become relevant
only in slow microscopic systems.

We also note that this analysis applies only to autonomous
thermodynamic machines: those whose control is independent
of environmental signals. In cases where the source of time-
reversal symmetry breaking occurs externally, e.g., a system
reacting to cyclic changes in heat from the Sun, this bound
does not necessarily apply, although other bounds likely do.
This is because the origin of time-reversal symmetry breaking
in such networks is environmental and thus no energy must be
expended to drive the system in a particular direction. Such reac-
tive systems would be more appropriately characterized by ref. 4,
which likewise addressed the question of optimality and ener-
getic bounds in stochastically controlled systems, only without
taking into account the cost of breaking time-reversal symmetry.
Those authors found a minimum bound on the energy of control
which cannot be made arbitrarily small in the presence of a noisy
control protocol. However, their bound is proportional to the
magnitude of the control noise and thus can be made arbitrarily
small in the limit of noiseless protocols.

This work elucidates additional constraints in the design of
optimal thermodynamic machines. In previous studies, it has
been found that systems must dissipate more energy to increase
the accuracy of their output (22–24, 42). The optimal diffusive
tuning found here indicates that below a certain level of accu-
racy, increasing precision actually decreases the dissipation cost.
In addition, the lower dissipation bound indicates that for very
slow microscopic thermodynamic transformations, the dissipa-
tion cost no longer scales inversely with time. The diminishing
energetic returns from increasing the length of control protocols
perhaps set a characteristic timescale for optimal microscopic
machines without time constraints.
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