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Lung adenocarcinoma is the most frequently diagnosed subtype of nonsmall cell lung cancer. The molecular mechanisms of the
initiation and progression of lung adenocarcinoma remain to be further determined. This study aimed to screen genes related to
the progression of lung adenocarcinoma. By weighted gene coexpression network analysis (WGCNA), we constructed a free-scale
gene coexpression network to evaluate the correlations between multiple gene sets and patients’ clinical traits, then further identify
predictive biomarkers. GSE11969 was obtained from the Gene Expression Omnibus (GEO) database which contained the gene
expression data of 90 lung adenocarcinoma patients. Data of the Cancer Genome Atlas (TCGA) were employed as the validation
cohort. After the average linkage hierarchical clustering, a total of 9 modules were generated. In the clinical significant module
(R=0.44, P <0.0001), we identified 29 network hub genes. Subsequent verification in the TCGA database showed that 11 hub
genes (ANLN, CDCAS5, FLJ21924, LMNBI, MAD2L1, RACGAPI1, RFC4, SNRPDI, TOP2A, TTK, and ZWINT) were significantly
associated with poor survival data of lung adenocarcinomas. Besides, the results of receiver operating characteristic curves
indicated that the mRNA levels of this group of genes exhibited high specificity and sensitivity to distinguish malignant lesions
from nonmalignant tissues. Apart from mRNA levels, we found that the protein abundances of these 11 genes were remarkably
upregulated in lung adenocarcinomas compared with normal tissues. In conclusion, by the WGCNA method, a panel of 11 genes
were identified as predictive biomarkers for tumorigenesis and poor prognosis of lung adenocarcinomas.

1. Introduction

Lung cancer is the leading cause of cancer-related deaths all
over the world and more than 80% of lung cancers are
diagnosed as nonsmall cell lung cancers (NSCLCs) [1, 2]. As
the most common subtype of NSCLC, the incidence of lung
adenocarcinoma (LUAD) is increasing year by year [3].
Historically, the standard care for advanced LUAD was
cytotoxic chemotherapy-involved comprehensive treatment.
Due to the deeper understanding of genomics and

tumorigenesis-associated molecular pathways, molecularly
targeted therapies have been developed and a number of
LUAD patients with these specific gene alterations could
benefit from these regimens [4].

A growing body of evidence indicates that although gene
alterations accumulate during the development of LUADs, a
proportion of LUADs are primarily driven by single gene
alterations such as epidermal growth factor receptor (EGFR)
mutation and (anaplastic lymphoma kinase) ALK or ROSI
rearrangement, which are also known as driven genes [5-8].
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FIGURE 1: The flow chart of this study.

As the most frequent oncogenic driver, nearly 10%-15%
population harbors EGFR mutation in patients with LUAD
especially young nonsmokers [9]. Drugs targeting driven
genes show a more potent anticancer effect and lower
toxicity compared with conventional chemotherapies; thus
multiple molecular targeted agents have been approved by
the U.S. Food and Drug Administration for LUAD treat-
ment [10]. The results of phase III clinical trial IPASS
strongly support using gefitinib as first line treatment for
advanced EGFR mutation-driving LUAD patients [11].
However, in spite of the increasing amount of confirmed
targetable oncogenic drivers (including but not limited to
EGFR, ALK, ROSI, RET, BRAF, HER2, MET, KRAS, and
NTRK), there are about half of LUADs without known
driven genes and treatment targets [12, 13]. Therefore, it is
meaningful to investigate the molecular mechanisms asso-
ciated with the initiation and progression of LUAD.
Screening more candidate genes might be helpful to mo-
lecular diagnosis and the development of targeted agents.
The weighted gene coexpression network analysis
(WGCNA) is a widely utilized technique to generate free-
scale coexpression network which contributes to screen the
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modules containing highly correlated genes [14]. By ana-
lyzing large-scale gene expression data sets with patients’
clinicopathological parameters, WGCNA could be utilized
to identify potential treatment targets and predictive bio-
markers [15]. In this study, we described gene coexpression
patterns via a WGCNA-based systematic biology analysis
method and identified a panel of biomarkers associated with
the tumorigenesis and outcomes of LUADs.

2. Materials and Methods

2.1. Data Procession. This study was conducted following
workflow including data acquisition, WGCNA network
construction, and hub genes identification (Figure 1). The
gene expression matrix (GSE11969) was downloaded from
the Gene Expression Omnibus (GEO) database (https://
www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE11969)
[16]. GSE11969 contains the gene expression values of 90
LUAD patients based on platform GPL7015 (Agilent Homo
sapiens 21.6K custom array). After LOWESS normalized,
background subtracted, the expression value data were
calculated as log10 of processed Red signal/processed Green
signal. We utilized pretreated data and selected the top 50%
variant genes (8092 genes) via variance analysis for further
WGCNA.

2.2. Coexpression Network Construction. By R software
(version 3.6.0) with the WGCNA package, the gene coex-
pression network was constructed based on the expression
data of 8092 genes [14]. We performed the analysis as
previously described [14]. We introduced intermediate
quantity coexpression similarity S;; to reflect the connection
strength between genes as in the following formula:
S;i =|cor(x; x|,
<l )

_ b
a;; —Sij.

The aforementioned x; and x; are the vectors of the
expression values of two different genes i and j. Cor rep-
resents the Pearson correlation coefficient of the two vectors.
This transition aims to increase the weight of strong con-
nections and decrease the weight of weak connections [17].
In this study, f=3 (scale-free R*>0.90) was adopted as a
soft-thresholding index to construct a scale-free coex-
pression network. In this coexpression network, genes with
strong connections would be clustered into one module.
Based on adjacency matrix, we calculated topological
overlap measure (TOM) which is the surrogate measuring
the network connectivity of a certain gene by summing its
adjacency of all other components of the network. Then, we
created a hierarchical clustering tree. Under the condition of
setting minimum cluster size as 50 and height as 0.25, 9
modules were generated via Dynamic Tree Cut algorithm.

2.3. Screening Clinical Significant Modules. The correlations
between clustered modules and patients’ traits were esti-
mated by module eigengenes (MEs) and module gene sig-
nificance (MS). MEs referred to the first principal
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F1GURE 2: Clustering dendrogram of 90 LUAD samples.

component in each single module. The values of MEs could
serve as the surrogate of the expression levels of all genes in
the module. Thus, clinical significant modules could be
identified by calculating the correlations between MEs and
clinic-pathological parameters. Besides, gene significance
(GS) referred to the P value (calculated in logs as lgP-value)
of the linear regression analysis between gene expressions
and samples’ characteristics. The MS means the average GS
of all genes in one module.

2.4. Gene Ontology Terms and KEGG Pathways Enrichment
Analysis. G:Profiler (https://biit.cs.ut.ee/gprofiler) is an
online analysis tool for functional enrichment which con-
tains the data of Ensembl database, Gene Ontology (GO)
terms, Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway, Reactome, and WikiPathways et al. GO terms, and
KEGG pathways enrichment analyses were performed by g:
Profiler (version: €95_eg42 pl3_f6e58b9). The GO terms
consisted of three categories: biological process (BP), cellular

component (CC), and molecular function (MF). With the
cut-off value as a false positive rate (FDR) < 0.05, the sig-
nificantly enriched GO terms as well as KEGG pathways
were screened out.

2.5. Identifying Hub Genes. Hub genes were defined as genes
possessing high connectivity with other genes in the same module
(the absolute value of cor.geneModuleMembership > 0.8).
Besides, hub genes of modules with clinical significance were
prone to highly correlate with corresponding clinical traits
(the absolute value of cor.geneTraitSignificance >0.2). To
further confirm the identified hub genes, we utilized the
online tool Kaplan-Meier Plotter (http://kmplot.com/
analysis/) for prognostic analysis in LUAD populations
[18]. Besides, we downloaded pretreated LUAD expression
data from the TCGA database (https://xenabrowser.net/)
and analyzed the correlation between the hub gene ex-
pression and clinical parameters. Apart from the mRNA
level, we employed the Human Protein Atlas database
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FIGURE 3: Determining the soft-thresholding power. (a) Analyzing the scale-free fit index under the background of different soft-
thresholding powers (f). (b) Analyzing mean connectivity when using different soft-thresholding powers.

(http://www.proteinatlas.org) to confirm the role of hub
genes in tumorigenesis in protein abundances.

3. Results

3.1. Constructing Weighted Coexpression Network and Iden-
tifying Clinical Significant Module. The total 90 LUAD
samples were clustered by Pearson’s correlation and average
linkage algorithms (Figure 2). Then, we conducted coex-
pression analysis. In this study, the soft-thresholding power
was set to f=3 (R*>0.90) to generate a scale-free gene
coexpression network (Figure 3). Eventually, 9 modules
were generated by average linkage hierarchical clustering.
The brown module had the highest correlation with tumor
differentiation (R=0.44, P <0.0001) (Figure 4). Therefore,
the brown module was identified as the one with clinical
significance, which was used for the following analysis.

3.2. GO Terms and KEGG Pathway Enrichment. To get an
overall understanding of 725 genes in the brown module, we
conducted GO terms and KEGG pathway enrichment. The
results of GO-BP terms and KEGG pathway enrichment
showed that genes within brown modules were significantly
enriched in cell cycle-associated processes (such as “mitotic

» «

cell cycle,” “mitotic cell cycle process,” “cell cycle,” “mitotic
cell cycle phase transition,” “cell cycle phase transition,” and
“regulation of cell cycle”) as well as DNA damage repair-
related processes (including “cellular response to DNA
damage stimulus,” “DNA repair,” “mismatch repair,” “nu-
cleotide excision repair,” and “base excision repair”) (Fig-
ure 5). Besides, a significant enrichment in multiple cancer-
related pathways such as “p53 signaling pathway” and
“human T—cell leukemia virus 1 infection” was observed.
Additionally, by Cytoscape software (version 3.6.0), we
constructed interaction networks between the enriched GO
terms and KEGG pathways (Figures 6 and 7).

3.3. Hub Genes Identification and Comprehensive Vali-
dation in Multiple Database. Under the condition of set-
ting cut-off value as |cor.geneModuleMembership| > 0.8 and
|cor.geneTraitSignificance| > 0.2, 29 genes in the brown
module were identified as hub genes. Among these 29 genes,
we found that the expression levels of 11 genes were sig-
nificantly related with worse overall survival (OS) (Figure 8)
and progression-free survival (PES) (Figure 9), which in-
cluded ANLN, CDCAS5, FLJ21924 (also known as QSERI),
LMNBI, MAD2L1, RACGAPI, RFC4, SNRPDI, TOP2A,
TTK, and ZWINT. In addition, the data of TCGA showed


http://www.proteinatlas.org

BioMed Research International

Cluster dendrogram

Module colors

Il

Module-trait relationships

Green [ | -0.17(0.1) -0.13(0.2) -0.17(0.1) 0.2 (0.06)
Red I | -0.11(0.3) -0.07(0.5) -0.092(0.4) 0.22(0.04)
Black NENEN | -0.23(0.03) -0.19(0.07) -0.2(0.06) -0.084(0.4)| [[°°
Pink 0.12(0.3) -0.098 (0.4) -0.1(0.3) 0.014(0.9)
Blue IEEEE | -0.0046 (1) -0.02(0.8) -0.062(0.6) 0.058 (0.6) -0
Brown [ | 0.15(0.2) 0.12(0.3)  0.069 (0.5) 0.44 (2e - 05)
Magenta [ | -0.08 (0.5) -0.096 (0.4) -0.068 (0.5) -0.23 (0.03) L 05
Turquoise [ |-0.0099 (0.9) -0.025 (0.8) 0.024 (0.8)  —0.1(0.4)
Yellow -0.054 (0.6) -0.085(0.4) -0.13(0.2) —-0.023(0.8)
-1
Tumor size Lymph node Satge Grade
(®)
° 0.30
5 2
<
S 0.15
S5 - ==
< w
0.00
Green Red Black Pink Blue Brown Magenta Turquoise Yellow
Traits by grade

FIGURE 4: Identifying LUAD-associated clinical significant modules. (a) The dendrogram of top 50% most variant genes which were
clustered by the Dynamic Tree Cut algorithm. (b) The heat map describing the correlation between all module eigengenes and clinical traits
including tumor size, lymph node metastasis, TNM stage, and tumor differentiation grade. (c) The histogram describing the relationship
between the average gene significance of all modules and tumor differentiation grade.

that the mRNA levels of the panel of genes were significantly
(all P values <0.0001) upregulated in primary LUAD tissues
compared with normal tissues (Figure 10). Notably, ROC
curves showed that the whole 11 identified genes had highly
diagnostic efficiencies to distinguish tumors from normal
tissues (Figure 11). The results of immunohistochemical
staining in the Human Protein Atlas database indicated that
the protein abundances of ANLN, CDCA5, FLjJ21924,
LMNBI, MAD2LI, RACGAPI, RFC4, SNRPDI, TOP2A,
TTK, and ZWINT were higher in LUAD tissues than normal
lung tissues (Figure 12).

4., Discussion

Within the last decade, the finding of EGFR mutation and
ALK rearrangement in LUAD patients have propelled the
development and application of targeted therapies including
EGFR tyrosine kinase inhibitors (TKIs) and crizotinib.
Actually, targeted therapies have been the standard care for
advanced LUAD patients harboring EGFR or ALK alter-
ations. Following the implementation of large-scale genomic
studies of Clinical Lung Cancer Genome Project, it has been
realized that LUADs are more likely to be driven by single
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F1GURE 5: GO terms and KEGG pathway enrichment analysis of genes in the brown module. (a) GO-biological process enrichment analysis.

(b) KEGG pathway enrichment analysis.

somatic alteration than squamous cell carcinomas [19].
Therefore, LUADs could more easily benefit from various
molecular targeted therapies. Despite the huge clinical
benefits brought by targeted therapies in multiple subtypes
of patients, the 5 years survival rate of lung cancer patients is
still less than 20% [20]. More alterations related to LUAD are

continually discovered. For example, Keapl/Nrf2 and
Dach1/Eya/Six signaling pathways are involved in the on-
cogenesis and therapeutic resistance of NSCLC [21-23]. It is
generally believed that due to the high heterogeneity in
genome and complex mutation spectrum, genetic alteration-
guided molecular targeted therapy has a long way to go. A
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more comprehensive understanding of the genetic traits of
tumors is the foundation of personalized medicine for
LUAD. In this study, we analyzed gene expression data from
GEO and TCGA databases to identify biomarkers heralding
tumorigenesis and the poor outcomes of LUAD:s.

This WGCNA was performed based on GSE11969 which
was aiming to explore the coexpression modules related to
clinical outcomes of LUAD patients. To save computer
memory and data processing time, we selected top 50% most
differentially expressed genes to generate a coexpression
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F1GURE 8: Overall survival analysis of the 11 hub genes in LUADs by online tool Kaplan-Meier plotter. The patients were classified into high-
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network. Eventually, we found the brown modules were
significantly correlated with patients’ clinical traits and
identified 29 hub genes. After validating in multiple public
databases, we noticed the elevated mRNA levels of 11 genes
strongly indicated the poorer PFS and OS of LUADs. The
preliminary results showed that this panel of genes including
ANLN, CDCAS5, FLj21924, LMNBI1, MAD2L1, RACGAPI,
RFC4, SNRPDI, TOP2A, TTK, and ZWINT were potential
adverse prognostic factors and tumorigenesis biomarkers for
LUAD patients.

Human ANLN is a homologue of anillin (an actin-
binding protein in Drosophila) [24]. ANLN is a cell cycle-

associated protein which not only participates in cytokinesis
but also promotes the growth and migration activities by
PI3K-Akt and Rho signaling pathways [24, 25]. Previous
studies demonstrated that the high protein abundance of
ANLN was the predictive biomarker for multiple cancers
such as breast cancer [26], lung squamous cell carcinoma
[27], and prostate cancer [28]. Our results showed that
upregulated ANLN was related to shortened PFS and OS of
LUADs. However, the exact mechanisms by which ANLN
induces LUAD progression and affects patients’ outcomes
are still unclear. Human CDCA5 (also known as Sororin) is
the core regulator of the cohesion of sister chromatins and
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FIGURE 9: Progression-free survival analysis of the 11 hub genes in LUADs by online tool Kaplan-Meier plotter. The patients were classified
into high-expression group and low-expression group based on the median mRNA level of (a) ANLN, (b) CDCA5, (c) FL]21924, (d) LMNBI,
(e) MAD2LI, (f) RACGAPI, (g) RFC4, (h) SNRPDI, (i) TOP2A, (j) TTK, and (k) ZWINT.

the removal of cohesion [29]. Up to now, there is no direct
evidence that CDCA5 relates to the initiation and devel-
opment of any subtype of lung cancer. However, the role of
CDCAS5 has been confirmed in other cancers including
hepatocellular cancer [30], breast cancer [31], gastric cancer
[32], and colorectal cancer [33]. Accumulating studies
showed that increased CDCA5 level was a diagnostic bio-
marker and risk factor for numerous cancers which could
enhance the tumor cells’ capability of proliferation and
metastasis by oncogenic ERK5-AP-1 pathway [33, 34].
LMNBI (also termed as lamin B1) is the vital component
of nuclear structure which locates between inner nuclear

membrane and peripheral heterochromatin [35]. LMNBI
and its binding protein form the nuclear matrix and
modulate a number of biology functions such as genome
replication, DNA damage repair, transcription, as well as
nuclear stability [35]. Moreover, LMNBI is regarded as a
cancer-associated protein. It was reported that the expres-
sion of LMNBI positively correlated with low-grade dif-
ferentiation and the risk of distant metastasis [36]. In
addition, the silencing of LMNBI impaired tumorigenicity,
tumor invasion, and cell proliferation in pancreatic cancer
cells [36]. Additionally, the overexpression of LMNBI was
the biomarker indicating the occurrence of retinoblastomas
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FIGURE 10: Gene expression levels of the 11 hub genes in normal tissues and LUADs. (a) The heat map of mRNA levels of ANLN, CDCAS,
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parisons of mRNA levels of (b) ANLN, (c) CDCA5, (d) FLJ21924, (e) LMNBI, (f) MAD2L1, (g) RACGAPI, (h) RFC4, (i) SNRPDI, (j)
TOP2A, (k) TTK, and (1) ZWINT between primary tumors and normal tissues.

and poor prognosis of colon cancers [35, 37]. The rela- RACGAPI (also referred to as Rac GTPase activating
tionship between LMNBI and LUAD has not been observed ~ protein 1) is a cytokinesis-regulatory protein which is often
previously and LMNBI might be a promising predictive ~ overexpressed in multiple cancers. Knocking out RACGAPI
biomarker and molecular target. in hepatocellular carcinoma cells hampered cytokinesis and
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Figure 11: The ROC curves of 11 hub genes. These ROC curves described the diagnostic efficiency of the mRNA levels of (a) ANLN, (b)
CDCAS5, (c) FLJ21924, (d) LMNBI, (e) MAD2L1, (f) RACGAPI, (g) RFC4, (h) SNRPDI, (i) TOP2A, (j) TTK, and (k) ZWINTfor LUADs and

normal tissues.

induced cell apoptosis [38]. Upregulated RACGAPI pre-
dicted the poor outcomes in patients with hepatocellular
carcinoma [38], ovarian cancer [39], and bladder cancer
[40]. However, there are no preclinical or clinical studies
demonstrating the role of RACGAPI in LUAD. Similar to
RACGAPI, RFC4 (also known as human replication factor
C4) participates in the regulation of cell cycle as well, which
acts as a clamp loader in DNA replication. Previous studies
showed that the high expression of RFC4 was the biomarker
of tumorigenesis, poor survival [41], as well as chemotherapy
resistance of colorectal cancer patients [42]. Given no ex-
perimental results supporting the role of RFC4 in LUAD,
turther investigation is needed.

There are rare studies investigating the role of FLJ21924
(QSERI) and SNRPDI in cancers. On the contrary, the

predictive roles of MAD2L1 and ZWINT for LUADs have
been reported [43, 44]. Moreover, TOP2A (DNA topo-
isomerase II alpha) encodes a DNA topoisomerase which is a
well-studied cancer-associated protein [45]. Several anti-
cancer agents targeting DNA topoisomerase have been
applied in clinical practice [46]. Apart from TOP2A, agents
targeting another oncogenic molecular TTK are under de-
velopment [47].

WGCNA is a widely adopted method to perform large-
scale data mining. It is generally believed that genes in the
same module share similar biology function. In our study,
we found that the genes in the clinical significant module
were significantly enriched in cell cycle and DNA damage
repair-related pathways. However, the results might be
misinterpreted due to the tissue contaminations or other
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F1GURE 12: The results of the immunohistochemistry staining of the 11 hub genes obtained from the Human Protein Atlas database.
Representative images of immunohistochemistry staining of (a) ANLN, (b) CDCA5, (c) FLJ21924, (d) LMNBI, (e) MAD2LI, (f) RACGAPI,
(g) RFC4, (h) SNRPDI, (i) TOP2A, (j) TTK, and (k) ZWINT in normal (left) and LUADs (right). These images were obtained from the
Human Protein Atlas database and the corresponding web links were given in supplementary file 3.

technical defaults. To make our results more stable and
decrease the potential biases, we conducted a comprehensive
validation in other databases including TCGA and the
Human Protein Atlas.

5. Conclusion

In conclusion, based on the WGCNA data mining technique,
our study identified a panel of tumorigenesis and poor prog-
nosis-related biomarkers. Among the screened hub genes, the
mRNA levels of ANLN, CDCA5, FLJ21924, LMNBI, MAD2LI,

RACGAPI1, RFC4, SNRPDI1, TOP2A, TTK, and ZWINT sig-
nificantly related to worse survival data of LUAD patients. Our
results indicated that these 11 genes might be potential pre-
dictive biomarkers and molecular targets in LUAD treatment.
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