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Methotrexate (MTX) is a commonly used chemotherapeutic agent. Oxidative stress and inflammation have been proved in the
development of MTX toxicity. Paeonol is a natural phenolic compound with various pharmacological activities including
antioxidant and anti-inflammatory properties. The aim of the present study was to evaluate the protective effect of paeonol
against MTX-induced cardiac toxicity in rats and to evaluate the various mechanisms that underlie this effect. Paeonol
(100mg/kg) was administered orally for 10 days. MTX cardiac toxicity was induced at the end of the fifth day of the
experiment, with or without paeonol pretreatment. MTX-induced cardiac damage is evidenced by a distortion in the normal
cardiac histological structure, with significant oxidative and nitrosative stress shown as a significant increase in NADPH
oxidase-2, malondialdehyde, and nitric oxide levels along with a decrease in reduced glutathione concentration and superoxide
dismutase activity compared to the control group. MTX-induced inflammatory effects are evidenced by the increased cardiac
toll-like receptor 4 (TLR4) mRNA expression and protein level as well as increased cardiac tumor necrosis factor- (TNF-) α and
interleukin- (IL-) 6 levels along with increased nuclear factor- (NF-) κB/p65 immunostaining. MTX increased apoptosis as
shown by the upregulation of cardiac caspase 3 immunostaining. Paeonol was able to correct the oxidative and nitrosative stress
as well as the inflammatory and apoptotic parameters and restore the normal histological structure compared to MTX alone. In
conclusion, paeonol has a protective effect against MTX-induced cardiac toxicity through inhibiting oxidative and nitrosative
stress and suppressing the TLR4/NF-κB/TNF-α/IL-6 inflammatory pathway, as well as causing an associated reduction in the
proapoptotic marker, caspase 3.

1. Introduction

Methotrexate (MTX), a cytotoxic chemotherapeutic drug
with folate antagonistic activity, is commonly used in the
treatment of various types of malignancies such as lym-
phoma [1]. It is also used at a low dose in the treatment of
several autoimmune diseases such as rheumatoid arthritis

[2]. MTX primarily inhibits the dihydrofolate reductase
enzyme and secondarily inhibits purines and pyrimidines
necessary for DNA and RNA synthesis; as a consequence,
both contribute to the cytotoxic effects of MTX [3]. The cyto-
toxic effects of MTX are not restricted to tumor cells but also
extend to affect vital organs [4] including the heart [5], where
the inhibitory action of MTX on glyoxalase and antioxidant
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systems may also contribute to the toxicity of the drug [6].
Several agents have been used, with various degrees of suc-
cess, to prevent MTX cardiac toxicity [7, 8].

Paeonol, a phenolic compound isolated from Paeonia suf-
fruticosa, has been shown to have a wide range of pharmaco-
logical activities including antioxidant and anti-inflammatory
properties [9] that may be beneficial in various diseases such
as diabetes [10], cancer [11], gastric ulcer [12], liver fibrosis
[13], and myocardial infarction [14]. Paeonol has been proven
to have a protection against antineoplastic-induced toxicities
such as cisplatin-induced nephrotoxicity [15] and epirubicin-
induced cardiac toxicity [16]; however, to date, this role has
not been investigated in MTX-induced cardiac toxicity.

Toll-like receptor 4 (TLR4), an important member of the
TLR family, activates nuclear factor- (NF-) κB and enhances
production of inflammatory mediators such as tumor necro-
sis factor- (TNF-) α and interleukin- (IL-) 6 [17]. Thus, as
TLR4 is expressed in cardiomyocytes [18], they are impli-
cated in the development and progression of different myo-
cardial inflammations such as myocarditis [19], myocardial
infarction [20], ischemia-reperfusion injury [21], and heart
failure [22]. In addition, TLR4 antagonists improved various
cardiovascular diseases [23, 24]. Therefore, the aim of the
current study was to evaluate the protective effect of paeonol
in MTX-induced cardiac toxicity in rats and to evaluate the
various mechanisms that underlie this effect.

2. Materials and Methods

2.1. Chemicals and Antibodies. Paeonol (2′-hydroxy-4′
-methoxyacetophenone; molecular weight: 166.17; 99% pure
powder) was purchased from Sigma-Aldrich Corp. (St. Louis,
MO, USA), MTX was purchased from Minapharm Pharma-
ceuticals (Cairo, Egypt), and ready-to-use NF-κB/p65 and
caspase 3 rabbit polyclonal antibodies were purchased from
Thermo Fisher Scientific Inc. (Waltham, MA, USA). Rat
TLR4, TNF-α, and IL-6 enzyme-linked immunosorbent
assay (ELISA) kits were purchased from Elabscience (Hous-
ton, TX, USA). All other chemicals were obtained from com-
mercial sources.

2.2. Experimental Design. Male Wistar rats weighing 180–
210 g were used after 1 week for proper acclimatization to
the animal house conditions (12 h lighting cycle and 25 ± 2
°C temperature). Rats were housed three rats per cage, and
they had free access to commercial laboratory chow and tap
water throughout the experiment. The animal ethical stan-
dards were in accordance with EU directive 2010/63/EU.
Animals were divided into three groups (n = 6 each): (a) the
control nontreated group, (b) the MTX-treated group that
received a single intraperitoneal dose of 20mg/kg MTX
[25] at the end of the fifth day of the experiment, and (c)
the MTX/paeonol-treated group treated by a single daily oral
dose of 100mg/kg paeonol suspended in carboxymethyl cel-
lulose [26] for ten consecutive days and received MTX at the
end of the fifth day of the experiment.

2.3. Sample Preparation. After 5 days of MTX injection, total
body weights of rats were recorded, then rats were sacrificed

and hearts were dissected out. Cardiac samples were homog-
enized in 10% w/v ice-cold phosphate buffer (0.01M,
pH7.4). The homogenate was centrifuged at 3000 rpm for
20min, and the supernatant was used for the estimation of
NADPH oxidase- (NOX-) 2, malondialdehyde (MDA), nitric
oxide (NO), reduced glutathione (GSH), TLR4, TNF-α, and
IL-6 levels along with superoxide dismutase (SOD) activity.
Ventricular samples were kept in 10% neutral-buffered
formalin for histopathological and immunohistochemical
examinations. Cardiac tissue samples were kept at -80°C for
the determination of the TLR4 gene using real-time polymer-
ase chain reaction (PCR).

2.4. Histopathological Evaluation of the Cardiac Damage.
Cardiac specimens were fixed in 10% neutral-buffered for-
malin, embedded in paraffin, sectioned at 5μm thickness,
and stained with hematoxylin and eosin. A modified scoring
system was done according to Li et al. [14] and Moreno
Júnior et al. [27]. Ten fields of vision for each group were
selected. Histological changes such as necrosis of myofibers,
hemorrhage, and inflammatory cell infiltration were scored
on a 4-point scale: (-) negative, indicating no necrotic foci;
(+) mild, indicating one or two small foci of myocardial
necrosis, with scattered areas of hemorrhage and a slight
degree of inflammatory process; (++) moderate, indicating
more than two areas of small foci of myocardial necrosis,
with a few areas of hemorrhage and a diffuse inflammatory
process; and (+++) severe damage, indicating confluent foci
of myocardial necrosis, with many areas of hemorrhage and
massive areas of inflammation.

2.5. Evaluation of Cardiac Oxidative and Nitrosative Stress
Markers. Oxidative stress markers were determined in a car-
diac homogenate where NOX-2, MDA, NO, and GSH levels
as well as SOD activity were evaluated. For quantitative
determination of NOX-2, the Rat NOX-2 ELISA Kit (Bioas-
say Technology Laboratory, Shanghai, China) was used
according to the manufacturer’s instructions. The MDA level
was determined by the assessment of thiobarbituric acid
reacting substance through spectrophotometric measure-
ment of color at 535nm, and the results were expressed as
nmol/g tissue [28]. NO determination, an indicator of nitro-
sative stress, was done chemically by the Griess method,
which estimates the stable oxidation end products of NO,
namely, nitrite (NO2

−) and nitrate (NO3
−), as indicators of

NO production. The principle of the assay is the reduction
of NO3

− to NO2
− by copperized cadmium granules, followed

by color development with a Griess reagent in acidic medium
that is measured spectrophotometrically at 540nm; the
results are expressed as nmol/g tissue [29]. The GSH deter-
mination method is based on the reduction of Ellman’s
reagent by thiol groups of GSH to produce 5-thio-2-nitro-
benzoic acid that has a yellow color, which was measured
spectrophotometrically at 412nm and expressed as nmol/g
tissue [30]. Cardiac SOD activity was measured colormetri-
cally at 420nm by the method that is based on the inhibition
of pyrogallol autoxidation by SOD, and the results were
expressed as U/g tissue [31].

2 Mediators of Inflammation



2.6. Determination of Cardiac TLR4. Total RNA was
extracted from a cardiac tissue homogenate using the Ribo-
Zol Reagent (AMRESCO, Solon, OH, USA) according to
the manufacturer’s instructions. Real-time PCR was per-
formed with 50 ng of RNA template per reaction using the
SensiFAST™ SYBR® Hi-ROX One-Step Kit (Meridian Bio-
science Inc./Bioline; Memphis, TN, USA) in 25μl reaction
volume containing 70nM of specific primers in the Applied
Biosystems 7500 Fast Real-Time PCR System (Foster City,
CA, USA). Sequences of the primers were as follows:
TLR4 forward primer, 5′-AATCCCTGCATAGAGGTAC
TTCCTAAT-3′ and reverse primer, 5′-CTCAGATCTAG
GTTCTTGGTTGAATAAG-3′ [32] and glyceraldehyde-3-
phosphate dehydrogenase (GAPDH) forward primer,
5′-GTCGGTGTGAACGGATTTG-3′ and reverse primer,
5′-CTTGCCGTGGGTAGAGTCAT-3′ [33]. The SYBR
green data were analyzed with a relative quantification to
GAPDH as a reference gene. The relative expression levels
of the TLR4 gene were calculated according to VanGuilder
et al. [34]. They were scaled relative to controls where control
samples were set at a value of 1. For quantitative determina-
tion of cardiac TLR4 protein levels, a rat TLR4 ELISA kit was
used according to the manufacturer’s instructions.

2.7. Immunohistochemical Expression of NF-κB/p65 and
Caspase 3 in Cardiac Tissue. Sections were deparaffinized,
hydrated, and washed with phosphate-buffered saline
(PBS). Endogenous peroxidase activity was blocked using
H2O2. Antigen retrieval was done by boiling sections in cit-
rate buffer. Sections were incubated with NF-κB/p65 and cas-
pase 3 primary antibodies and preserved overnight at 4°C.

Then, sections were washed with PBS and treated with goat
anti-rabbit IgG secondary antibody. Sections were incubated
with the streptavidin-biotin complex, and the color was
developed using diaminobenzidine and counterstained with
hematoxylin. For semiquantitative analysis, the mean num-
ber of immunopositive cells was detected in ten high-power
fields of the sections in all groups.

2.8. Determination of Cardiac Inflammatory Cytokines. The
inflammatory cytokines TNF-α and IL-6 were determined
in a cardiac homogenate using rat TNF-α and IL-6 ELISA
kits according to the manufacturer’s instructions.

2.9. Statistical Analysis. GraphPad Prism software was used
for statistical analysis (version 6.01 for Windows, San Diego,
CA, USA). Results were expressed asmeans ± SEM. One-way
analysis of variance (ANOVA) followed by Tukey’s postana-
lysis test was used to analyze the results for statistically signif-
icant difference. Differences with p value < 0.05 were
considered significant.

3. Results

3.1. Effect of Paeonol Treatment on Cardiac Histopathology.
Light microscopic examination of the control group showed
branched cardiac muscle fibers with cross-striations, acido-
philic cytoplasm, and central vesicular oval nuclei. Blood
capillaries were noticed within the connective tissue stroma
between the muscle fibers (Figure 1(a), Table 1). Sections of
the MTX-treated group showed fragmented necrotic muscle
fibers that appeared widely separated. Some fibers assumed
apoptotic morphology with hyperacidophilic cytoplasm,
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Figure 1: Effect of paeonol on histopathological changes in methotrexate- (MTX-) induced cardiac toxicity in rats. (a) Control group showing
branched striated cardiac muscle fibers with acidophilic cytoplasm and central, vesicular, and oval nuclei (arrows). Notice the blood capillaries
between the muscle fibers (C). (b1 and b2) MTX-treated group showing area of widely separated and fragmented necrotic cardiac muscle
fibers (∗), congestion (C), and hemorrhage (H). Notice apoptotic muscle fibers, some with hyperacidophilic cytoplasm and pyknotic nuclei
(arrows), others showing fragmented nuclei (arrowheads). (c) Paeonol+MTX group showing cardiac muscle fibers that appear more or
less normal. Notice dilated congested blood capillaries (C) between the cardiac muscle fibers and area of hemorrhage (H).
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nuclear pyknosis, and nuclear fragmentation. Many areas of
hemorrhage and congestion were noticed (Figures 1(b1)
and 1(b2), Table 1). In the paeonol+MTX group, most of
the cardiac muscle fibers retained their normal appearance.
Few scattered areas showed degenerated fibers. Many blood
capillaries appeared dilated and congested (Figure 1(c),
Table 1). Our preliminary experiments showed that paeonol
alone had no effect on cardiac histopathology and oxidative
stress markers (data are not shown).

3.2. Effect of Paeonol on Cardiac Oxidative and Nitrosative
Stress Markers. In the MTX group, there was an increase in
cardiac NOX-2, MDA, and NO levels, while there was a
decrease in the level of GSH and in the activity of SOD in
comparison to the normal control rats. Oral treatment with
paeonol before MTX challenge significantly decreased the
NOX-2, MDA, and NO levels and increased the level of
GSH and the activity of SOD in comparison with the MTX
group (Table 2).

3.3. Effect of Paeonol Treatment on Cardiac TLR4 mRNA
Expression and Protein Level. MTX-treated rats showed a
significant increase in TLR4 mRNA expression in compar-
ison to normal control rats. Paeonol pretreatment signifi-
cantly decreased the TLR4 mRNA expression; however, it
was still significantly higher than the normal control rats
(Figure 2(a)). The same pattern was seen with the TLR4
protein level (Figure 2(b)).

3.4. Effect of Paeonol Treatment on Cardiac NF-κB/p65
Immunostaining. Immunohistochemical staining of NF-
κB/p65 in the control group showed positive expression in
the cytoplasm of scattered cells of the endomysium. The
endothelium of the blood vessels showed either negative or
low cytoplasmic expression (Figure 3(a)). However, the
MTX-treated group showed positive cytoplasmic and nuclear
expression in many cells. The endothelium of the blood
vessels also showed high expression (Figure 3(b)). On the
other hand, the paeonol+MTX group showed positive
expression in a few scattered cells and low expression in
the endothelium (Figure 3(c)). Semiquantitative analysis
showed a significant increase (p < 0:05) in the mean num-
ber of the NF-κB immunopositive cells in the MTX group
compared to the control group. On the other hand, there
was a significant decrease (p < 0:05) in the mean number
of the immunopositive cells in the paeonol+MTX group
compared to the MTX group (Figure 3(d)).

3.5. Effect of Paeonol Treatment on Cardiac Inflammatory
Cytokines.MTX-intoxicated rats showed a significant increase
in TNF-α and IL-6 levels in comparison with the control
group. Paeonol-treated rats showed a significant decrease in
these inflammatory cytokines compared to MTX-challenged
rats (Figures 4(a) and 4(b)).

3.6. Effect of Paeonol Treatment on Cardiac Caspase 3
Immunostaining. Immunohistochemical staining of caspase
3 revealed minimal expression in control animals
(Figure 5(a)). The MTX-treated group showed high cyto-
plasmic and nuclear expression in many cells (Figure 5(b)).
Paeonol+MTX animals had a positive expression only in
scattered cells (Figure 5(c)). Semiquantitative analysis
showed a significant increase (p < 0:05) in the mean number
of the caspase 3 immunopositive cells in the MTX group
compared to the control group. On the other hand, there
was a significant decrease (p < 0:05) in the mean number
of the immunopositive cells in the paeonol+MTX group
compared to the MTX group (Figure 5(d)).

4. Discussion

Cardiac toxicity after large doses of MTX was previously
reported in the form of arrhythmias, hypotension, and car-
diac arrest [5, 35], which necessitates multiple studies to eval-
uate agents with cardiac protective activities against the
MTX-induced damage [7, 8]. The current results indicated
that MTX treatment resulted in cardiac tissue damage mani-
fested by histopathological changes of cardiac tissues. These
results are in accordance with the findings of Tousson et al.
[7] who reported that MTX treatment was associated with
many histopathological abnormalities in rat cardiac tissues.
On the other hand, in the present study, the alleviation of his-
topathologically examined MTX-induced cardiac tissue
damage by paeonol is in line with the results of Wu et al.
[16], who found that epirubicin-induced cardiac injuries
were characterized by cytoplasmic vacuolization and intersti-
tial hemorrhage; however, paeonol noticeably decreased this
severe damage. Moreover, paeonol improved isoproterenol-
induced myocardial histological changes such as necrotic
changes in myofibrils with intense infiltration of neutrophil
granulocytes and interstitial edema in rats [14].

MTX-induced oxidative and nitrosative stress plays an
important role in the development and progression of MTX
multiorgan toxicity including the heart [4, 7, 8]. MTX is
known to elevate reactive oxygen species (ROS) by the eleva-
tion of homocysteine that is rapidly autooxidized forming
ROS [36], reduction of NADPH that is utilized by glutathi-
one reductase to retain the reduced state of glutathione that
protects against ROS [37], and activation of NOX that gener-
ates ROS [38]. In the present study, MTX-induced oxidative
cardiac tissue damage with disturbed oxidant/antioxidant
balance is expressed as a significant increase in cardiac
NOX-2 and MDA levels with a concurrent decrease in car-
diac GSH level and SOD activity. In addition, MTX signifi-
cantly increased the nitrosative stress marker NO level.
These results are in accordance with the findings of Abdel-
Daim et al. [8] who reported that MTX treatment was

Table 1: Effect of paeonol on the severity of histopathological
lesions in methotrexate- (MTX-) induced cardiac toxicity in rats.

Groups
Myocardial
necrosis

Hemorrhage
Inflammatory cell

infiltration

Control − − −
MTX +++ ++ +

Paeonol
+MTX

+ + +

Score level (−) is considered normal. Scores (+), (++), and (+++) are mild,
moderate, and severe levels.
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associated with a significant increase in MDA and NO levels
together with a significant decrease in the GSH level and
SOD activity.

The results of the present study have shown that paeonol
prevents MTX-induced NOX-2 increase. In agreement with
these results, paeonol decreased NOX-2 in rat primary
microglia [39] and human primary chondrocytes [40]. In
the current study, the ability of paeonol to significantly
improve cardiac GSH level and SOD activity along with a
decrease in MDA level is consistent with the finding of Li
et al. [41] who reported that paeonol significantly increased
cardiac GSH level and SOD activity besides decreasing
MDA level in isoproterenol-induced myocardial injury in
rats. NOX isoforms are a principal source of cardiac ROS
and are associated with a wide range of cardiovascular dis-
eases such as hypertension, atherosclerosis, heart failure,
and cardiac arrhythmias [42]. GSH, a tripeptide nonenzy-
matic antioxidant, performs an essential role in antioxidant
protection directly via scavenging ROS and indirectly via
working as a cofactor of antioxidant enzymes [43]. SOD, an
important first line antioxidant enzyme, catalyzes the dis-
mutation of the superoxide radical into either molecular
oxygen or hydrogen peroxide [44]. The inhibitory effect of
paeonol on lipid peroxidation, assessed as MDA, could be
secondary to its antioxidant activity and/or its repressing
effect on inducible NO synthase- (iNOS-) mediated NO
bioavailability [45, 46].

In harmony with the present study, several previous
studies [47, 48] noted similar findings regarding the ability
of paeonol to decrease the NO level. NO, a short-lived
gasotransmitter, is known as a mediator and regulator of

inflammatory responses. High levels of iNOS-derived NO
are produced in response to inflammatory stimuli and
mediate proinflammatory and destructive effects. These
effects are mediated indirectly by a very quick interaction
of NO with reactive oxygen species, which are synthesized
by activated inflammatory cells resulting in the formation
of the cytotoxic reactive nitrogen species peroxynitrite
[49]. In addition, NO can activate NF-κB, a transcription
factor that controls many genes involved in inflammation
[50]. NF-κB is constitutively bound to inhibitor of κB
(IκB) molecules, which confine its localization to the cyto-
sol. After engagement of TLRs, signaling through MyD88
results in the phosphorylation of IκB kinase. Phosphoryla-
tion of serine residues on IκB promotes its degradation,
thereby freeing NF-κB to enter the nucleus and activate
the transcription of target inflammatory genes. NF-κB-reg-
ulated genes direct the differentiation of distinct immune
cell types as macrophages. Differentiated macrophages pro-
duce different cytokines as TNF-α and IL-6 [51].

The present study showed that the MTX-induced cardiac
inflammatory response (NF-κB/TNF-α/IL-6) can be evi-
dence of the increased cardiac TLR4 mRNA expression and
protein level. These results are in accord with previous stud-
ies that demonstrated the MTX-induced increase in TLR4
and TNF-α mRNA [52] and NF-κB/p65 immunostaining
and TNF-α protein level [53] in the rat intestine. Moreover,
Famurewa et al. [54] reported that MTX increased the IL-6
level in MTX-induced oxidative stress and inflammation in
rats. On the other hand, in agreement with the current study,
paeonol decreased the TLR4/NF-κB/TNF-α/IL-6 inflamma-
tory signaling pathway in lipopolysaccharide-induced acute

Table 2: Effect of paeonol on NADPH oxidase- (NOX-) 2, malondialdehyde (MDA), nitric oxide (NO), and reduced glutathione (GSH) levels
along with superoxide dismutase (SOD) activity in methotrexate- (MTX-) induced cardiac toxicity in rats.

Groups NOX-2 (ng/ml) MDA (nmol/g tissue) NO (nmol/g tissue) GSH (nmol/g tissue) SOD (U/g tissue)

Control 1:68 ± 0:10 27:20 ± 2:62 788:8 ± 73:8 1261 ± 13:4 5362 ± 350
MTX 6:01 ± 0:27a 56:77 ± 5:54a 3594 ± 244a 489:4 ± 41:7a 522:3 ± 47:4a

Paeonol+MTX 3:18 ± 0:13a,b 29:84 ± 0:43b 1780 ± 32:4a,b 751:6 ± 59:1a,b 4678 ± 445b

All parameters are expressed asmeans ± SEM of 6 observations. Significant difference is reported when p < 0:05. “a” means significant difference compared to
the control group and “b” means significant difference compared to the MTX-treated group.
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Figure 2: Effect of paeonol (PAE) on cardiac Toll-like receptor 4 (TLR4) mRNA expression (a) and protein level (b) in methotrexate- (MTX-)
induced cardiac toxicity in rats. All parameters are expressed as means ± SEM. “A” means significantly different from the control group and
“B” means significantly different from the MTX-treated group, at p < 0:05.
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lung injury [55] and IL-1β-induced human fibroblast-like
synoviocyte rheumatoid arthritis [56]. Stimulation of TLR4
produces the activation of NF-κB, which induces the genera-
tion of proinflammatory cytokines including TNF-α and IL-6
[17]. TLR4 also activates NOX to produce ROS [57]. In
addition, inflammation and oxidative stress are interrelated

as oxidative stress is involved in the activation of NF-κB
and the latter can induce oxidative stress [58], so it is
difficult to predict a specific cause/effect relationship
between them.

Caspase 3, a key enzyme in apoptosis, is activated in apo-
ptotic cells through both extrinsic and intrinsic pathways
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Figure 3: Effect of paeonol (PAE) on cardiac nuclear factor- (NF-) κB/p65 immunostaining in methotrexate- (MTX-) induced cardiac
toxicity in rats. (a) Control group showing positive expression in the cytoplasm of scattered cells of the endomysium (arrow). Notice
negative expression in the endothelium (arrowhead). (b) MTX-treated group showing positive cytoplasmic and nuclear expression in
many cells (arrows) and high expression in the endothelium (arrowhead). (c) PAE+MTX group showing positive expression in scattered
cells (arrow) and low expression in the endothelium (arrowhead). (d) Semiquantitative analysis of the results. Values represent means ±
SEM. “A” means significant difference compared to the control group and “B” means significant difference compared to the MTX-treated
group, at p < 0:05.

0

20

40

60

80

Ca
rd

ia
c T

N
F-
𝛼

 (p
g/

m
l) A

AB

Control MTX PAE+MTX

(a)

Ca
rd

ia
c I

L-
6 

(p
g/

m
l)

0

20

40

60

80
A

B

Control MTX PAE+MTX

(b)

Figure 4: Effect of paeonol (PAE) on cardiac tumor necrosis factor- (TNF-) α (a) and interleukin- (IL-) 6 (b) levels in methotrexate- (MTX-)
induced cardiac toxicity in rats. Values represent means ± SEM. “A” means significant difference compared to the control group and “B”
means significant difference compared to the MTX-treated group, at p < 0:05.
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[59]. The MTX-induced increase of caspase 3 has been
reported in multiorgan toxicity [4, 25, 53, 60, 61]. Our results
showed a significant increase in caspase 3 expression in
response to MTX treatment. NF-κB/p65 activation is
required for endoplasmic reticulum stress-mediated apo-
ptosis in cardiomyocytes [62]. Alternatively, stimulation
of cardiomyocytes with ROS causes apoptosis [63].
Accordingly, in the current study, the effect of paeonol
on caspase 3 expression, which concurs with various previous
studies [12, 16], appears to be secondary to its antioxidant
and anti-inflammatory activities. Remarkably, paeonol
increased apoptosis and enhanced the cytotoxic effects of
various anticancer drugs, such as doxorubicin [64], paclitaxel
[65], and epirubicin [66]. Moreover, paeonol alone had its
own cytotoxic effect [67, 68].

5. Conclusion

In summary, paeonol attenuates MTX-induced cardiac toxic-
ity in rats partly through ameliorating oxidative stress by
decreasing the NOX-2 level and preserving the level of GSH
and activity of SOD as well as inhibiting the expression of
the TLR4/NF-κB/TNF-α/IL-6 inflammatory pathway. This
was associated with a decrease in the level of the proapoptotic
marker, caspase 3.
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group showing minimal expression. (b) MTX-treated group showing positive cytoplasmic and nuclear expression (arrow). (c) PAE+MTX
group showing positive expression in scattered cells (arrow). (d) Semiquantitative analysis of the results. Values represent means ± SEM.
“A” means significant difference compared to the control group and “B” means significant difference compared to the MTX-treated group,
at p < 0:05.
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