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Despite the promise of immune checkpoint blockade (ICB) therapy
against cancer, challenges associated with low objective response
rates and severe systemic side effects still remain and limit its clinical
applications. Here, we described a cold atmospheric plasma (CAP)-
mediated ICB therapy integrated with microneedles (MN) for the
transdermal delivery of ICB. We found that a hollow-structured MN
(hMN) patch facilitates the transportation of CAP through the skin,
causing tumor cell death. The release of tumor-associated antigens
then promotes the maturation of dendritic cells in the tumor-draining
lymph nodes, subsequently initiating T cell-mediated immune re-
sponse. Anti-programmed death-ligand 1 antibody (aPDL1), an im-
mune checkpoint inhibitor, released from the MN patch further
augments the antitumor immunity. Our findings indicate that the
proposed transdermal combined CAP and ICB therapy can inhibit
the tumor growth of both primary tumors and distant tumors, pro-
longing the survival of tumor-bearing mice.

drug delivery | immune checkpoint blockade | cold atmospheric plasma |
microneedle | cancer immunotherapy

The immune checkpoint blockade (ICB) increases antitumor
immunity by inhibiting intrinsic down-regulators of immu-

nity, and has greatly transformed the landscape of human cancer
therapeutics (1–4). However, the overall objective rate of ICB
remains modest (4–7), while the occurrence of severe side effects
emphasizes the essential need for delivery approaches of ICB
therapeutics (8–11). Local delivery of immune checkpoint in-
hibitors to the targeted sites could be a desirable approach to
minimize those limitations and augment the therapeutic efficacy
(10, 12).
Plasma, the fourth state of matter (solid, liquid, gas, and

plasma) comprising over 99% of the visible universe, is an ionized
gas composed of positively/negatively charged species, neutral
species, radicals, and photons (13). Cold atmospheric plasma
(CAP) devices, which operate at atmospheric pressure and room
temperature, have great potential for biomedical applications,
including cancer therapy (14, 15). The anticancer effect of CAP
mainly relies on the synergistic action of reactive oxygen species
(ROS) and reactive nitrogen species (RNS) with the target tissue
(14, 15). However, CAP efficacy remains unsatisfactory since the
penetration of CAP into tumor tissues is limited, requiring mul-
tiple and frequent CAP treatments to achieve desirable therapeutic
effects.
Here, we explore the potential of microneedle (MN)-array

patch-based transdermal delivery (16–18) that combines CAP
and ICB (Fig. 1). We leverage the hollow-structured micro-
needle (hMN) patch as microchannels to allow CAP to be de-
livered through the skin into tumors. Cancer cell death induced
by CAP releases tumor-associated antigens and promotes den-
dritic cell (DC) maturation in the tumor-draining lymph node,
where DCs can present the major histocompatibility complex-
peptide to T cells (19, 20). Subsequent T cell-mediated im-
mune response is initiated and can be further augmented by

checkpoint inhibitor, such as anti-programmed death-ligand 1
antibody (aPDL1), included into the hMN patches. We hy-
pothesize that the synergism between CAP and ICB provides a
broad platform to promote tumor elimination.

Results
The CAP device (SI Appendix, Fig. S1) consisted of a two-
electrode assembly connected to the high voltage transformer.
The parameters of the CAP device for stable operation and
high species delivery efficiency were as follows: peak-peak volt-
age ∼11 kV and discharge frequency ∼12 kHz (SI Appendix,
Fig. S2A). The feeding gas for this study was industrial purity
helium (99.996% purity) with a 16.5 L/min gas flow rate. The
optical emission spectrum (OES) indicated the generation of
both ROS and RNS (21, 22), while optical and temperature
monitoring confirmed the formation of CAP (SI Appendix, Fig.
S2 B–D).
After CAP treatment, ROS and RNS were detected in both

cells and culture media, and the extents were elevated with in-
creased treatment time (SI Appendix, Fig. S3). Cell death induced
by CAP was validated in B16F10 melanoma cells. CAP caused
immunogenic cell death (ICD), which correlates with the genera-
tion of ROS/RNS. Longer CAP treatment led to higher cell death
rate and higher expression of calreticulin (CRT, an ICD marker
(23)) (SI Appendix, Fig. S4 A and B). Tumor-associated
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antigens released during cell death could be effectively engulfed
by immature DCs that process antigens into peptides during their
migration to tumor-draining lymph nodes (24–26). Therefore, we
studied the immunological effects of CAP on cancer cells toward
bone marrow-derived DCs in a transwell assay. It was verified that
CAP treatment of B16F10 cells promoted DC maturation in vitro
(SI Appendix, Fig. S4 C andD) as indicated by the up-regulation of
CD80 and CD86 markers.
The hMN patch was made of the mixture of two biocompatible

polymers, polyvinylpyrrolidone (PVP) and polyvinyl alcohol
(PVA), where PVP supports the mechanical strength of MNs
and PVA slows down the dissociation of MN patches upon
fluids. An array of 15 × 15 MNs, with each MN spaced 600 μm
center to center, was used for all tests. Each MN is conical with a
height of 700 μm and a diameter of 300 μm at the base. SEM
images show the formation of an evenly distributed array of
equally sized hollow conical MN structures that comprise the
hMN patch (Fig. 2A). Each MN exhibited a hollow structure
closed at the tip and with a ∼200 μm diameter opening at the
base, indicating a sheath thickness of ∼50 μm. The hollow
structure and uniformity of shell thickness were confirmed by the
3-dimensional (3D) confocal laser scanning microscopy images
(CLSM, rhodamine-loaded MN patch, Fig. 2B and Movie S1).
Measurement of mechanical strength suggested a failure force
for the hollow-structured MNs to be 0.23 N/needle, demon-
strating sufficient strength for skin insertion (SI Appendix, Fig.
S5) (27).
We then investigated whether the hMN patch can serve as

microchannels to facilitate CAP penetration. A CAP jet was

applied to the hMN patch. Strong CAP observation under the
hMN patch (Fig. 2C) indicated successful penetration of CAP
through the hMN patch. The OES also confirmed that CAP
penetrated through an hMN patch exhibited a similar composi-
tion compared to the original CAP, with significant amounts of
ROS/RNS retained (Fig. 2 D and E). In contrast, minimal CAP
signals were detected when the solid MN (sMN) patch or the
mouse skin was applied (SI Appendix, Fig. S6). On the other
hand, CAP signals penetrated through the mouse skin were
greatly enhanced when the hMN patch was applied (SI Appendix,
Fig. S6D), demonstrating a beneficial role of hMN for CAP
delivery. Furthermore, CAP did not alter the morphology of
MN patches as revealed by SEM images (SI Appendix, Fig. S7).
hMN patches can also be embedded with aPDL1 during MN
patch fabrication. aPDL1 was then released from hMN patch in
a sustained manner with 79% being released within 24 h, and
aPDL1 maintained its binding affinity toward PDL1 (SI Ap-
pendix, Fig. S8). Blank hMN patches did not cause detectable
cytotoxicity to the cells (SI Appendix, Fig. S9). In addition, no
significant inflammation was detected in the skin 3 d post
MN application as compared to the untreated skin, indicating
a good biocompatibility of the hMN patch (SI Appendix, Fig.
S10).
On the basis of the aforementioned results, we next evalu-

ated the in vivo antitumor activity of this platform. Firstly, we
tested whether hMN-assisted CAP induces cancer cell death and
triggers DC maturation in B16F10 melanoma-bearing mice.
Mice received one-course treatment of CAP, CAP through
sMN (sMN/CAP), or CAP through hMN (hMN/CAP) (CAP
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treatment: 4 min) (Fig. 3A). No temperature changes were de-
tected in the CAP-treated areas, excluding the photothermal cell-
killing effect (SI Appendix, Fig. S11). The TUNEL assay (SI Ap-
pendix, Fig. S12) demonstrated that hMN/CAP treatment induced
significantly higher cancer cell death as compared to controls, in-
dicating that hMN facilitated the CAP transportation toward tu-
mors and caused cell death in vivo. Consistently, we also observed
enhanced DC maturation (CD86+CD80+ DCs) in the hMN/CAP
treatment group, while direct CAP or sMN/CAP did not promote
DC maturation (Fig. 3 B and C).
Mature DCs initiate T cell-mediated immune responses (24).

Hence, we monitored tumor growth in mice treated with a sin-
gle course of CAP, sMN/CAP, hMN/CAP, hMN-aPDL1, and
hMN-aPDL1/CAP (aPDL1: 200 μg; CAP treatment: 4 min; Fig.
3D). Tumor growth was monitored via bioluminescence signals
of B16F10-fLuc cells (Fig. 3E). Neither CAP nor sMN/CAP
caused tumor regression, suggesting the limited penetration of
CAP through the skin or sMN. In contrast, hMN/CAP caused
delayed tumor growth compared with the untreated mice (Fig.
3 F and G). Mice treated with hMN-aPDL1 also exhibited
some tumor control as compared with the untreated mice, but mice
receiving hMN-aPDL1/CAP exhibited the most significant control
of tumor growth that translated into prolonged survival (Fig. 4H).
In additional experiments, tumors were harvested 3 d post-

treatment for flow cytometric analyses and immunofluores-
cence staining. Tumor-infiltrating lymphocytes (TILs, CD3+) were

increased in the tumors treated with hMN-aPDL1/CAP (Fig. 3I).
Both CD8+ and CD4+ T cells were increased in mice treated
with hMN-aPDL1/CAP (Fig. 3 J and K and SI Appendix, Figs.
S13 and S14), while regulatory T cells (Tregs) were decreased
(28–30) (SI Appendix, Fig. S15). Moreover, CD8+ T cells coex-
pressing cytotoxic protein granzyme B (GzmB) and cell pro-
liferation marker Ki67 were also increased in the mice receiving
hMN-aPDL1/CAP (SI Appendix, Figs. S16 and S17). The elevated
levels of cytokine secretion, including IFN-γ, IL-6, IL-12p70, IL-2,
and TNF-α, further substantiated the effective immune re-
sponse induced by hMN-aPDL1/CAP treatment (SI Appendix,
Fig. S18) (31).
With confirmation that hMN-aPDL1/CAP induced locally

anticancer immunity, we investigated whether the local effect
induced by hMN-aPDL1/CAP can trigger a systemic immune
response (32). B16F10 cancer cells were inoculated on both right
and left flanks of each mouse. The tumor on the right flank as
the primary tumor was treated with hMN-aPDL1/CAP, while the
tumor on the opposite site received no treatment (Fig. 4A) (33).
Tumor bioluminescence signal and tumor size significantly
decreased in the mice treated with hMN-aPDL1/CAP as com-
pared with the untreated control (Fig. 4 B and C). Moreover,
the left tumors (distant tumors) in the treated mice were also
effectively regressed as compared with those in the untreated
mice. Consistently, the weights of primary and distant tumors in
the treated mice were also lower than those in the untreated
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mice (Fig. 4D). The increased numbers of TILs (CD3+), CD4+,
and CD8+ T cells (Fig. 4 E–G) in both treated tumors and
distant tumors, and elevated levels of cytokine secretion (SI
Appendix, Fig. S19) confirmed the activation of a systematic
immune response.
Leveraging the unique hollow structure as microchannels, the

hMNs can effectively deliver CAP through the skin, interacting
with the tumor tissue. The resulting antigen presentation by DCs
and T cell-mediated immune response augmented by immune
checkpoint inhibitors from the hMN patch further boost anti-
cancer immunity locally and systemically. The proposed local
treatment strategy can also potentially minimize ICB-related
systemic side effects. Of note, integrated with the latest MN-

assisted treatments beyond skin-associated diseases (34, 35), this
minimally invasive and painless method can be extended to treat
different cancer types and a variety of diseases.

Materials and Methods
MN Patch Fabrication.All MN patches were prepared using siliconemolds with
arrays of conical holes. Polymer solution was directly deposited by pipetting
onto the silicone mold surface which was pretreated with deionized water.
After desiccation was completed, needle arrays were separated from the
silicone molds.

In Vivo Studies. 1 × 106 B16F10-fLuc cells were transplanted into the right flanks
of mice. Six days later, tumor-bearing mice were treated one time with either
CAP, sMN/CAP, hMN/CAP, hMN-aPDL1, or hMN-aPDL1/CAP. Mice without any

A B C
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G H I J K

Fig. 3. Combination of CAP and hMN-aPDL1 inhibits B16F10 melanoma growth in vivo. (A) Schematic of B16F10 melanoma-bearing mice treated either with
the hMN path (Upper image) or hMN/CAP (Lower image). (B) Quantification and (C) representative flow cytometry plots of DC maturation in vivo in the
tumor-draining lymph nodes. Cells in the tumor-draining lymph nodes were collected 3 d after the treatments (G1: untreated; G2: CAP; G3: sMN/CAP; and G4:
hMN/CAP) for assessment by flow cytometry. (D) Schematic of the treatment schedule. (E) In vivo tumor bioluminescence of the untreated mice and mice
treated with CAP, sMN/CAP, hMN/CAP, hMN-aPDL1, and hMN-aPDL1/CAP (aPDL1: 200 μg; CAP treatment: 4 min). Four representative mice per treatment
group are shown. (F) Individual and (G) average tumor growth kinetics in experimental groups (n = 7). Growth curves were stopped when the first mouse of
the corresponding group died. Data are presented as mean ± SEM. (H) Kaplan-Meier survival curves for treated and control mice (n = 7). Statistical significance
was calculated via the log-rank (Mantel-Cox) test. *P < 0.05; **P < 0.01; ***P < 0.001. Intratumoral (I) CD3+ T cells, (J) CD8+ T cells, and (K) CD4+ T cells in the
B16F10 tumor detected 3 d after treatments (n = 4). Data are presented as mean ± SEM. Statistical significance was calculated via one-way ANOVA with a
Tukey post hoc test for multiple comparisons. *P < 0.05; **P < 0.01; ***P < 0.001.
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treatment served as control. For the distant tumor model, 1 × 106 B16F10-fLuc
cells were inoculated into both left and right flanks of mice. Tumors in the
right flank were treated with hMN-aPDL1/CAP as described above.

Detailed experimental procedures for MN preparation and characteriza-
tion, in vitro aPDL1 release, in vivo animal studies, flow cytometry, immu-
nofluorescence staining, and cytokine detection are provided in SI Appendix.
The animal study protocol was approved by the Institutional Animal Care
and Use Committee at the University of California, Los Angeles.

Data Availability. All data are available within this manuscript and the as-
sociated SI Appendix.
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Fig. 4. CAP and hMN-aPDL1 inhibit distant tumor growth. (A) Schematic of the treatment schedule. Tumors on the right side were designated as “primary
tumor” and were treated with hMN-aPDL1/CAP, and tumors on the left side were designated as “metastatic tumor” and were not treated (n = 7). (B) In vivo
tumor bioluminescence images of the untreated mice and treated mice. Three representative mice per treatment group are shown. (C) Left and right tumor
growth curves and (D) tumor weights of the mice untreated and treated with hMN-aPDL1/CAP. Intratumoral (E) CD3+ T cells, (F) CD8+ T cells, and (G) CD4+

T cells in the B16F10 tumor detected 3 d posttreatment (n = 4). Data are presented as mean ± SEM. Statistical significance was calculated via one-way ANOVA
with a Tukey post hoc test for multiple comparisons. *P < 0.05; **P < 0.01; ***P < 0.001.
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