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Abstract 

Background:  In this paper, an unsupervised Bayesian learning method is proposed to perform rice panicle segmen-
tation with optical images taken by unmanned aerial vehicles (UAV) over paddy fields. Unlike existing supervised 
learning methods that require a large amount of labeled training data, the unsupervised learning approach detects 
panicle pixels in UAV images by analyzing statistical properties of pixels in an image without a training phase. Under 
the Bayesian framework, the distributions of pixel intensities are assumed to follow a multivariate Gaussian mixture 
model (GMM), with different components in the GMM corresponding to different categories, such as panicle, leaves, 
or background. The prevalence of each category is characterized by the weights associated with each component in 
the GMM. The model parameters are iteratively learned by using the Markov chain Monte Carlo (MCMC) method with 
Gibbs sampling, without the need of labeled training data.

Results:  Applying the unsupervised Bayesian learning algorithm on diverse UAV images achieves an average recall, 
precision and F1 score of 96.49%, 72.31%, and 82.10%, respectively. These numbers outperform existing supervised 
learning approaches.

Conclusions:  Experimental results demonstrate that the proposed method can accurately identify panicle pixels in 
UAV images taken under diverse conditions.

Keywords:  Rice (O. sativa) panicle, UAV, Plant phenotyping, Yield estimation, Image segmentation, Multivariate 
Gaussian mixture model, Markov chain Monte Carlo
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Background
Rice is the most consumed staple food on earth. More 
than half of the world’s population depend on rice for 
their daily calories [1]. The yield of a paddy field is 
directly related to rice panicles, which are the parts of 
the plant that carry the grains. Fast panicle screening 
can help rice yield prediction, disease detection, nutri-
tion value assessment, precision irrigation and fertiliza-
tion, etc [2, 3]. With the rapid development of unmanned 
aerial vehicle (UAV) and machine learning, there have 
been growing interests in high throughput rice field 

phenotyping by using optical images taken by UAVs over 
paddy fields [4–6].

Image-based rice panicle phenotyping relies on accu-
rate panicle segmentation [7]. One of the main chal-
lenges faced by rice panicle segmentation with optical 
images is the diverse conditions under which the images 
are taken. There are significant variations among images 
taken under different conditions, such as water reflec-
tions, lighting conditions, weather conditions, cluttering 
backgrounds, panicle rigidness, rice growth phase, rice 
strains, UAV altitudes, etc. All these factors will affect 
the accuracy of panicle identification. This motivates the 
development of panicle segmentation algorithms that 
can operate over images taken under a large variety of 
conditions.
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Image-based plant phenomics has gained increas-
ing attentions recently. An automated panicle counting 
algorithm was developed in [7] by using artificial neural 
network (ANN). The algorithm was developed by using 
multi-angle images of rice plants, which was rotated on 
a turntable to obtain images at multiple angles. In [8], 
a rice panicle segmentation algorithm, Panicle-SEG, is 
developed by using deep learning with convolutional 
neural network (CNN) and superpixel optimization. The 
Panicle-SEG algorithm is trained with a large number of 
images, from both pot-grown and field plants, to improve 
its robustness against the diverse conditions of images. 
CNN-based deep learning algorithms are also used for 
rice panicle detection in [9], and for sorghum panicle 
detection in [10] and [11]. Optical images were also used 
in [12] for wheat ear detection during the wheat head-
ing stage, and in [13] for studying the flowering dynam-
ics of rice plants. Both [12] and [13] use support vector 
machine (SVM) for detection. Algorithms mentioned 
above require a significant amount of labeled training 
data. More recently, an active learning approach with 
weak supervision is proposed to reduce the number of 
labeled training images for panicle detection in cereal 
crops such as sorghum and wheat [14]. In addition to 
optical images, hyperspectral images have been widely 
studied for detecting different plant diseases [15] based 
on machine learning techniques like principle compo-
nent analysis (PCA) and chi-square kernel support vector 
machine (chiSVM) [16, 17].

All above works are based on supervised learning, 
which requires a substantial number of labeled images 
for training. To the best of our knowledge, no unsuper-
vised learning method has been developed or applied for 
rice panicle segmentation. The performance of super-
vised segmentation algorithm relies heavily on the quality 
of the training data set. Due to the diverse conditions of 
rice fields, there are significant variations in the statisti-
cal properties of pixels from different images. For exam-
ple, the illumination and weather condition will have big 
impacts on the statistical distributions of panicle pixels in 
different images. Even though the supervised algorithm 
can be trained by using a large number of images taken 
under different conditions, it is almost impossible for to 
capture the large variations among different images by 
using a single trained model. As a result, for an algorithm 
trained with one set of images, it might not perform well 
in other sets of images taken at different conditions. This 
motivates us to develop an unsupervised learning algo-
rithm that can learn, identify, and adapt to the underlying 
statistical properties of each individual image, thus works 
well under all conditions.

The objective of this paper is to develop an unsu-
pervised Bayesian learning algorithm for rice panicle 

segmentation with UAV images. The algorithm performs 
panicle detection by identifying the inherent differences 
in statistical distributions between panicle pixels and 
non-panicle pixels within the same image, without the 
need of a training stage. The difference in statistical dis-
tributions can then be used to classify the pixels into dif-
ferent categories. The algorithm adopts a probabilistic 
learning approach that can iteratively calculate the prob-
ability of each pixel in an image belonging to different 
categories, such as panicle, leaves, and background. Such 
a probabilistic approach can quantify the uncertainty 
regarding the detection results that is not available in 
conventional deterministic approaches. Under the Bayes-
ian framework, a multivariate Gaussian mixture model 
(GMM) is used to represent the pixel intensities in one 
image, with each component in GMM corresponding to 
one possible category. With the unsupervised learning 
approach, the model parameters are directly learned by 
using unlabeled data from each individual UAV image. 
Different images will have different model parameters, 
and this makes the algorithm adaptable to images taken 
under a wide variety of conditions. Markov chain Monte 
Carlo (MCMC) [18] with Gibbs sampling [19–21] is 
employed to learn and update the model parameters. 
Experimental results demonstrate that the unsupervised 
Bayesian learning approach can achieve accurate pani-
cle segmentation with UAV images, and it outperforms 
existing supervised learning approaches. Moreover, this 
algorithm can also be used in active learning and semi-
supervised learning models.

Results
The proposed unsupervised Bayesian learning algorithm 
is applied to the UAV images for panicle segmentation. 
The UAV images were stored in RGB format, with each 
pixel represented by a p = 3 dimension vector corre-
sponding to the colors of red, green and blue, respec-
tively. The value of each color is normalized to the range 
between 0 and 1. A total of 12 images were processed by 
the algorithm. Among them, images 1 to 6 were taken at 
an altitude of 3 m, and images 7 to 12 were taken at an 
altitude of 6  m. The average spatial resolution (distance 
between two adjacent ground samples) for 3 m and 6 m 
images are 0.52 mm and 1.17 mm per pixel, respectively. 
Figure 1 shows two images of one square segment taken 
at an altitude of 3m and 6m, respectively. The images 
were acquired during middle heading stage of rice on 
August 21, 2017 and September 1, 2018, respectively. The 
measurements were carried out between 10:00 a.m. and 
2:00 p.m. The weather condition on those two days were 
sunny with a temperature between 21 and 31 °C and class 
1–2 south wind, and sunny with a temperature between 
19 and 28 °C and class 1–2 northeast wind, respectively. 
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Table  1 shows the detailed information of all 12 images 
studied in this paper.

To evaluate the accuracy of the unsupervised Bayes-
ian learning algorithm, the pixels in all UAV images were 
manually labeled into panicle segments and non-panicle 
segments, respectively. The manually labeled results are 
used as a benchmark for evaluation. A pixel-by-pixel 
comparison is performed between the manually labeled 
images and automatically segmented images to quanti-
tatively evaluate the results of the proposed algorithm. 
The percentage of panicle pixels in Table  1 is obtained 
by using the manually labeled results. As an example, 
Fig.  2a, b show Image 3 in RGB format and the corre-
sponding manually labeled results, respectively.

In the Bayesian learning algorithm, the initial 
parameters for the Dirichlet distribution is set as 
α1 = · · · = αk = 1 . The prior mean of the mean vector µj 
of the GMM model is set as τ 1 = · · · = τ k = 0p , where 
0p is a length-p all-zero vector. The prior precision matrix 
of the mean vector µj is set as �(0)

j = 10−3Ip×p . All values 
of the parameters used in the algorithm are summarized 
in “Methods” section. All results are based on T = 150 

(a) 3m (b) 6m
Fig. 1  Images of one sampling square taken at different altitudes

Table 1  Information of the UAV images

Image Altitude (m) Image resolution % 
of panicle 
pixels

Spatial 
resolution 
(mm)

1 3 820× 865 3.67 0.60

2 3 810× 800 4.74 0.62

3 3 1050× 1075 7.09 0.47

4 3 1050× 1050 5.22 0.48

5 3 1080× 1040 7.36 0.47

6 3 1120× 1070 6.89 0.46

7 6 415× 410 5.64 1.21

8 6 440× 415 8.53 1.17

9 6 430× 430 3.97 1.16

10 6 445× 440 7.07 1.13

11 6 430× 430 7.78 1.16

12 6 430× 420 5.48 1.18

0 200 400 600 800 1000 1200

100

200

300

400

500

600

700

800

900

1000

(a) Original image in RGB format.
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(b) Manually labeled image.
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(c) Result of MAP decision rule.
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(d) k = 3 and pTH = 0.999.

Fig. 2  Segmentation results of Image 3
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iterations in Gibbs sampling, and samples from the first 
T0 = 75 iterations are discarded before evaluation. The 
pixels in each image are classified into one out of k = 3 
categories: panicle, leaves, and dark background.

Let µi,j represent the mean of the j-th color channel in 
i-th class, where i ∈ {1, 2, . . . , k} and j ∈ {r, g , b} . Define 
mi as the total mean across all channels for class i as

Based on our experiment results, panicle pixels have the 
largest total mean across all channels, followed by the 
leaves and background, respectively. Thus the panicle 
class can be detected as

 Since the manually labeled results identify only pani-
cle and non-panicle pixels, the automatically classified 
pixels belonging to the leaves and background catego-
ries are grouped together as non-panicle pixels before 
comparison.

Figure  2c shows the classification results of Image 3 
with the unsupervised Bayesian learning algorithm and 
the MAP (maximum a posteriori) decision rule as shown 
in Algorithm 2 in “Methods” section. A visual compari-
son between Fig. 2b and c indicates that the automatically 
detected results are strongly correlated with the manually 
labeled results.

To quantitatively evaluate the performance of the unsu-
pervised Bayesian learning algorithm, Fig.  3 shows the 
average receiver operation characteristic (ROC) curves of 
the proposed algorithm. Each ROC curve is obtained by 
averaging over all images at the same altitude. Each point 
on the ROC curve is obtained by adjusting the thresh-
old of the posterior probability of the panicle category. 
The tradeoff between the probabilities of true positive 
(TP) and false positive (FP) can be adjusted by tuning 
the threshold pTH . In this case the goodness of perfor-
mance depends on lower FP, thus proper selection of pTH 
is important. As example, for Image 3, a TP probabil-
ity of 0.9788 is achieved with a FP probability of 0.0144 
by setting pTH = 0.9990 . Based on the ROC results, the 
algorithm operates equally well for images obtained at 
both 3m and 6m, with the performance of the 3m images 
slightly better than that of the 6m images. Averaged over 
all 12 images, the unsupervised Bayesian learning algo-
rithm can achieve an average recall of 96.49% with aver-
age precision of 72.31%, and this is achieved by setting 
pTH = 0.9990 . Figure  2d shows the segmentation result 
of Image 3 by setting pTH = 0.9990.

The detection results of all 3 m and 6 m images are 
tabulated in Tables 2 and 3, respectively. The results from 

mi =
∑

j∈{r,g ,b}

µi,j .

c = argmax
i

mi.

k-means clustering [22] and Panicle-SEG [8] are also 
shown in Tables  2 and 3 for comparison. The k-means 
clustering is an unsupervised algorithm aiming to mini-
mize the within-cluster variation after assigning each 
observation to one of the k clusters. In this paper, the 
within cluster variation is measured by using Euclid-
ean distance, and the algorithm is implemented with 
the “k-means++” algorithm [23], which is the default 
k-means implementation in MATLAB. The Panicle-SEG 
algorithm is based on a pre-trained model with both in-
lab and field measurements of 684 images, including 49 
top-view field rice images, 30 overhead-head view field 
rice images, 302 pot-grown rice side-view images, and 
303 pot-grown rice top-view images [8], and the pre-
trained model is available online for download [24]. The 
balancing parameter and optimization coefficient for 
Panicel-SEG are set as 0.5 and 0.9, respectively, for 3m 
images, and they are set as 0.5 and 0.8, respectively, for 
6m images. In addition, Figs.  4 and 5 compare the per-
formance of the three algorithms by averaging over all 
images obtained at the same altitude.

It is evident that the Bayesian based method consist-
ently outperformed Panicle-SEG and k-means algorithm 
for all the images considered in this paper. For the 3 m 
images, the proposed algorithm can achieve an aver-
age recall of 96.35% with an average precision of 75.15%. 
These two values are 75.48% and 73.35% for Panicle-SEG, 
and 76.54% and 48.73% for k-means. The correspond-
ing F1 score of the three algorithms are 83.78%, 74.23%, 
51.52%, respectively, for all 3m images. Therefore, com-
pared to the Panicle-SEG algorithm, the proposed algo-
rithm can achieve a much higher recall with a similar 
precision for 3m images, which results in a significantly 
improved F1 score.
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Fig. 3  Average ROC curves
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For 6m images, the performance of the Bayesian based 
method and the k-means algorithm remain similar to 
those from the 3m images. However, the performance of 
the Panicle-SEG method drops significantly for the 6m 
results. The recall and precision of the Bayesian based 

method are 96.23% and 69.47%. These two metrics for 
the Panicle-SEG algorithm drop to 51.70% and 34.38%, 
and they are 79.36% and 51.94% for the k-means algo-
rithm. Consequently, the F1 scores of the Bayesian based 
method, Panicle-SEG, and k-means are 80.42%, 41.24%, 
and 62.50%, respectively.

The performance degradation of the Panicle-SEG is 
partly due to the fact that a lot of the training images are 
taken at close range with pot plants. On the other hand, 
the unsupervised learning approach can automatically 
adjust to different altitudes and achieve similar perfor-
mances regardless of the altitude differences. This again 
asserts the versatility and adaptability of the Bayesian 
based unsupervised learning approach.

Discussion
The data used in this paper was collected in a sunny and 
uncloudy day during the middle heading stage of rice. The 
proposed algorithm relies on the brightness of the pixels, 
so proper care should be taken to ensure uniform bright-
ness within each image. Failure to maintain this condition 
can seriously deteriorate the performance. Weather, like 
other methods [8], is an important factor when the per-
formance is evaluated. As long as panicle pixels and non-
panicle pixels maintain different Gaussian distribution 
this algorithm is going to work quite efficiently irrespec-
tive of the height at which the images are captured. In 
higher altitudes UAV can scan the field with less number 
of images rendering faster implementation of this algo-
rithm. The results presented in this paper are obtained 
using just one variate of rice. Results may vary depending 
on rice variate, rigidness and brightness of rice panicle. 
All simulations have been done using custom routines 
in MATLAB. The computer used in the simulation was 
equipped with 8GB RAM and Intel Core i7-4790 proces-
sor. No GPU or parallel computing paradigms have been 
used. As the number of pixels in 3m images are almost 6 
times compared to number of pixels in 6m images, the 
6m images are much faster to process. T0 has been cho-
sen to make sure that the samples drawn from following 
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Fig. 4  Average performance for 3 m images
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Fig. 5  Average performance for 6 m images

Table 2  Comparing results of 3 m images

Image Recall Precision F1 score

Bayesian P-SEG k-means Bayesian P-SEG k-means Bayesian P-SEG k-means

1 0.9735 0.6811 0.8701 0.5925 0.6718 0.2896 0.7367 0.6764 0.4346

2 0.9847 0.7140 0.8341 0.6427 0.6060 0.4341 0.7778 0.6556 0.5710

3 0.9788 0.8580 0.7151 0.8382 0.7314 0.5752 0.9030 0.7897 0.6375

4 0.9915 0.7761 0.8508 0.6929 0.7849 0.3930 0.8158 0.7805 0.5377

5 0.9546 0.7374 0.6188 0.8348 0.7946 0.6544 0.8907 0.7649 0.6361

6 0.8977 0.7621 0.7037 0.9079 0.8123 0.5775 0.9028 0.7864 0.6344
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iterations are almost from a stationary distribution. Also, 
non-informative prior for precision matrix has been used 
in this paper for faster implementation. Informative pri-
ors of precision matrix can also be used.

Multivariate Gaussian distribution
Figure 6 illustrates probability density functions of pixels 
under three different classes obtained from Image 7. The 
probability density functions are obtained by using the 
classification results from the Bayesian based method. As 
can be seen from the estimated distributions, the pixels 
in different color channels and under different categories 
roughly follow Gaussian distributions which justifies the 
selection of Gaussian distribution in this mixture model. 
The principle of maximum entropy [25] states that 
for a given mean and variance, the Gaussian distribu-
tion has the maximum entropy among all distributions. 
Even if the actual distribution of the underlying data is 
not Gaussian, under the same mean and variance, the 
Gaussian assumption represents the worst case with the 
maximum uncertainty. Thus the Gaussian assumption is 

a good starting point when the prior knowledge of the 
actual distribution is not known. Due to the above two 
reasons, the multivariate Gaussian distribution is used to 
model the pixel distributions under different clusters.

Number of classes
Under different illumination conditions the leaf pixels 
might correspond to multiple categories due to reflec-
tion, diffusion, and shadowing. In that case the num-
ber of categories k can be increased to capture diverse 
conditions, and some of the clusters close to each other 
can be combined later before detection. Details of the 
method of determining the number of clusters are given 
in Algorithm 3 in “Methods” section. Since the objective 
is to identify panicles, all categories other than panicles 
are grouped together at final output of the segmentation. 
Segmentation results of Image 3 with k = 4 and k = 5 are 
in Fig. 7. The recall, precision, and F1 score for Image 3 
with k = 3 , 4, and 5 categories are summarized in Table 4. 
For k = 3 and 4, the results are almost the same, but the 
performance drops considerably when k is increased to 
5. Setting k too high creates unnecessary categories that 
will negatively affect the performance. Therefore, the 
number of categories should depend on the illumination 
conditions to achieve better classification results.

Robustness against anomaly object
The proposed algorithm is robust against the existence 
of anomaly objects. In case of an anomaly object, the 
number of clusters k can be increased to account for the 
distribution of pixels of the anomaly object. Cluster i is 
anomaly if the total mean of a cluster across all chan-
nels is greater than a predefined threshold ǫa , as mi ≥ ǫa . 
Details of anomaly detection is discussed in Algorithm 3 
in “Methods” section. In this paper ǫa = 0.9 has been 
used. Figure  8 shows an image with a white rectangle 
used to mark the rice field. The image is segmented by 
using k = 4 clusters. After classification, the white rec-
tangle has the highest average mean across channels 
(0.9239), and the panicle pixels have the second highest 

Table 3  Comparing results of 6 m images

Image Recall Precision F1 score

Bayesian P-SEG k-means Bayesian P-SEG k-means Bayesian P-SEG k-means

7 0.9752 0.5583 0.8519 0.6856 0.3284 0.5209 0.8052 0.4136 0.6465

8 0.9166 0.5963 0.7234 0.8839 0.4066 0.5885 0.8999 0.4835 0.6490

9 0.9873 0.4124 0.8838 0.6242 0.2655 0.4612 0.7649 0.3231 0.6061

10 0.9699 0.5048 0.7387 0.6764 0.3505 0.5187 0.7970 0.4137 0.6094

11 0.9816 0.5506 0.7840 0.6456 0.3495 0.5363 0.7789 0.4276 0.6369

12 0.9669 0.4794 0.7797 0.6526 0.3621 0.4907 0.7793 0.4126 0.6023
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with k = 3 from Image 7
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average mean across channels (0.4973). Detection results 
for panicle and anomaly object are shown in Fig.  8c, d, 
respectively. With the existence of the anomaly object, 
the recall, precision, and F1 values for panicle pixels with 
pTH = 0.999 are 0.86, 0.80, and 0.83 respectively.

Spatial information
The Bayesian based method treats all pixels as independ-
ent in the spatial domain whereas the spatial information 
is utilized by the Panicle-SEG method. The omission of 
spatial information in the Bayesian based method can 
sometimes lead to the misclassification of stems as pani-
cles as shown in Figs.  2d and 7a. Such misclassification 
is not present in the Panicle-SEG as shown in Fig.  7c. 
However, a larger number of background pixels sur-
rounding the panicles are misclassified as panicles by the 
Panicle-SEG algorithm, which leads to a relatively high 
false positive rate in Panicle-SEG. The CNN of Panicle-
SEG was trained on patches of 32× 32 pixels thus some 
panicle pixels remain undetected in rectangular region 
because of this patch based training. This phenomenon 
will also increase false negative rate in Panicle-SEG and 
it gets worse in 6m low resolution images resulting low 

0 200 400 600 800 1000 1200

100

200

300

400

500

600

700

800

900

1000

(a) k = 4 and pTH = 0.999.
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(b) k = 5 and pTH = 0.999.
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(c) Panicle-SEG.
Fig. 7  Segmentation results of Image 3 with k = 4 and 5 and 
Panicle-SEG

Table 4  Segmentation results of Image 3

k Recall Precision F1

3 0.9788 0.8382 0.9030

4 0.9804 0.8016 0.8820

5 0.7326 0.9831 0.8396
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Fig. 8  a RGB image (6m) with white anomalous rectangle; b ground 
truth of panicle pixels; c detected panicle pixel; d detected anomaly 
object
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recall values. As a result, the performance of Panicle-SEG 
degrades significantly for 6 m images as shown in Table 3.

Conclusions
The rice panicle segmentation in UAV images with unsu-
pervised Bayesian learning has been studied in this paper. 
The unsupervised learning approach does not require a 
training phase, which makes it extremely useful for deal-
ing with images taken under diverse conditions and at 
different UAV altitudes. Each pixel in the UAV image 
was modeled by using the multivariate GMM, and the 
model parameters of different categories were iteratively 
learned from the UAV data by using MCMC with Gibbs 
sampling. Experimental results demonstrated that the 
proposed algorithm can detect panicle pixels in UAV 
images with very high accuracy, and it outperforms exist-
ing supervised learning approach such as panicle-SEG. 
To the best of the authors knowledge, there does not exist 
any unsupervised method for panicle segmentation in 
the literature.

For future works, the results from this paper will be lev-
eraged to estimate the number of rice panicles in a unit 
area. The results can be used to predict the rice yields for 
a given field by building new statistical models linking 
yields with panicle counts in UAV images. In addition, in 
this paper each pixel is assumed to be independent from 
neighboring pixels but in practice neighboring pixels are 
dependent on each other. It is expected that the perfor-
mance can be further improved by considering spatial 
dependence among the pixels.

Methods
Experiment setup and data collection
The field experiments were conducted in 2017 and 2018 
at the Super Rice achievement Transformative Base 
(SRTB) (E 123◦55′85′′ , N 41◦81′63′′ ) of the Shenyang 
Agricultural University (SYAU) in northeastern China. 
Shenyang has a temperate semi-humid continental cli-
mate, where annual mean temperatures range between 
6.2 and 9.7 ◦ C and rainfalls range between 600 and 800 
mm. Both experiments were performed during middle 
heading stage of rice using a randomized complete block 
design with 7 types of nitrogen treatments (N1–N7). 
The seven nitrogen fertilizers were: null N (0 kg/ha), low 
N (150 kg/ha), moderate N (240 kg/ha), high N (330 kg/
ha), organic fertilizer substitution 10% , organic fertilizer 
substitution 20% , and organic fertilizer substitution 30% . 
Each nitrogen treatment has three replicates (R1–R3), 
which result in a total of 21 plots, as shown in Fig.  9a. 
Each plot has an area of 30 m2 (4.2 m × 7.61 m), separated 
by dirt paths. The rice cultivar was Shennong 9816.

Images were acquired during middle heading stage 
of rice on August 21, 2017, and September 2, 2018, 

respectively, using unmanned aerial vehicles (UAV). The 
UAV platform was Inspire2 with ZENMUSE X5S camera 
(15 mm focal length, 20.8MP, 5280 × 3956 pixels). Images 
were taken from 3 and 6 m above rice canopy (Fig. 9b). 
Each image represents a 0.5 m × 0.5 m white square seg-
ment distributed in the middle and edge areas of the 
plots. Totally 126 images were collected and each image 
was standard RGB image in unit8 data format with .jpg 
encoding. The measurements were carried out between 
10:00 a.m. and 2:00 p.m. when it was sunny and uncloudy. 
Field measurement were performed to manually count 
the number of panicles in each sampling square right 
after image acquisition (Fig.  9c). Figure  1 shows two 
images of one square segment taken at an altitude of 3 m 
and 6 m, respectively.

During our experiment, there was significant down-
wash effects when the flight altitude is 1 m or less. Under 
such condition, the downwash effect makes it difficult for 
the camera to achieve proper focus on the plants, and the 
correspondingly acquired images are out of clarity. How-
ever, there was almost no downwash effects when the 
altitude is 2 m or higher based on our aerial experiment.

Problem formulation with Bayesian mixture model
Assume each UAV image contains n pixels. The i-th pixel 
in an image can be represented as a p-dimension vector 
as

where aT represents matrix transpose. For a regular opti-
cal camera, we have p = 3 , with the three dimensions 
corresponding the the intensities of red, green, blue of 
the pixel. The UAV image can thus be represented as the 
collection of the n pixels as X = [x1, x2, . . . , xn].

Each pixel can be classified into one of k catego-
ries, such as panicles, leaves, dirt, water, etc. Define a 
sequence of independent latent variable zi ∈ {1, 2, . . . , k} , 
for i = 1, 2, . . . , n . The latent variables are used to indi-
cate the classification result, that is, zi = j means that the 
i-th pixel belongs to the j-th category, for j = 1, . . . , k . 
Define z = [z1, z2, . . . , zn]

T . It is assumed that the latent 

(1)xi = [xi1, xi2, . . . , xip]
T , fori = 1, . . . , n.

(a) 21 rice plots (b) UAV image
acquisition

(c) Field mea-
surement

Fig. 9  Experiment setup at the Super Rice achievement 
Transformative Base of SYAU. (N1–N7: nitrogen application levels; 
R1–R3: three replicates)
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variables follow a multinomial distribution, with the 
probability mass function (PMF) of zi represented as

where qj is the prior probability of i-th pixel belonging to 
the j-th category.

In Bayesian inference, the prior probability vector 
q = [q1, q2, . . . , qk ]

T ∈ Lk×1 with L ∈ [0, 1] is unknown 
and is usually assumed to be a random vector that follows 
the Dirichlet distribution, i.e.,

where α = [α1,α2, . . . ,αk ]
T ∈ R

k×1 represents the 
parameter of the Dirichlet distribution.

The objective of the unsupervised classifier is to iden-
tify the value of zi , for i = 1, . . . , n , based on the UAV 
image data X . The optimum classifier that can minimize 
the classification error is the maximum a posterior prob-
ability (MAP) classifier, which maximizes the posterior 
probability of zi as

where ẑi is the classification results, and Pr(zi|X) is the 
posterior probability of zi given the UAV data X . It is in 
general difficult, if not impossible, to directly calculate 
the posterior probability Pr(zi = j|X) . We propose to iter-
atively learn the posterior probability and correspond-
ing probability distributions by using Bayesian mixture 
model and Markov chain Monte-Carlo.

A multi-modal Bayesian mixture model is used to rep-
resent the probability distributions of the intensities of 
pixels in the UAV image, with each component in the 
mixture model corresponding to one possible category. 
The probability density function (pdf) of the i-th pixel 
can be represented as

where f (xi|zi = j, θ j) is the likelihood function of xi given 
that the i-th pixel is in the j-th category, and θ j is the cor-
responding distribution parameters of the j-th category. 
In Bayesian inference, θ j is assumed to be unknown and 
random, with a prior distribution π(θ j).

The multivariate Gaussian mixture model (GMM) is 
adopted in this paper, where the likelihood function is 
assumed to follow a Gaussian distribution with mean 
vector µj ∈ Rp×1 and covariance matrix �−1

j ∈ Rp×p as

(2)π(zi = j) = qj ,

(3)π(q) = Dir(α),

(4)ẑi = argmax
j∈{1,...,k}

Pr(zi = j|X),

(5)f (xi|{θ j}
k
j=1, q) =

k
∑

j=1

qjf (xi|zi = j, θ j),

(6)xi|(zi = j, θ j) ∼ Np(µj ,�j),

where the inverse of the covariance matrix, �j is the 
precision matrix. Using precision matrix instead of the 
covariance matrix can reduce the number of matrix 
inversions in the learning process. The corresponding 
distribution parameters are thus θ j = {µj ,�j} . Under the 
Bayesian setting, the mean vector µj and precision matrix 
�j are unknown and random.

The Bayesian posterior probability can then be calcu-
lated as

The calculation of the posterior probability requires 
multi-level integration with respect to the multi-dimen-
sional parameter θ j and qj , which are usually difficult to 
carry out either analytically or numerically. We propose 
to solve this problem by employing unsupervised Bayes-
ian learning with Gibbs sampling [19, 20], and details are 
given in the next section.

Unsupervised Bayesian learning with Gibbs sampling
In this section, an unsupervised Bayesian learning 
method with the Gaussian mixture model (GMM) is 
used to classify the pixels in the UAV images into one 
of several categories, such as panicles, leaves, dirt, 
water, etc. The classification is performed by analyzing 
and identifying the statistical properties of the pixels 
belonging to different categories, without the need of a 
training phase.

As in the problem formulated in (4) and (7), the clas-
sification requires the knowledge of the posteriori 
probability. MCMC with Gibbs sampling can obtain a 
numerical approximation of Pr(zi = j|xi) by iteratively 
taking samples from the joint distribution

For a given X , if T samples are drawn from the joint 
distribution and, and the samples are denoted as 
{z(itr)}Titr=1, {θ

(itr)
j }Titr=1 for j = 1, 2, . . . , k and {q(itr)}Titr=1 . 

Based on the law of large numbers, as T → ∞,

where I(E) is an indicator function defined as I(E) = 1 if 
E is true and 0 otherwise. The basic idea of MCMC with 
Gibbs sampling is to iteratively take samples based on the 
posterior distributions of different variables conditioned 
on previously taken samples.

(7)

Pr(zi = j|X) =

∫

θ j

∫

qj
qjf (X|zi = j, θ j)π(θ j)π(qj)dθ jdqj

f (X)

f (z, {θ j}
k
j=1, q|X).

(8)Pr(zi = j|X) = lim
T→∞

1

T

T
∑

itr=1

I(z
(itr)
i = j),
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Initialization
In order to start the iterative sampling process, the values 
of the unknown variables and parameters need to be ini-
tialized. The values obtained using results from k-means 
clustering [22, 23] are used as initial values. With the 
k-means algorithm, the pixels {xi}ni=1 are classified into 
k categories. Consider the set of pixels that correspond 
to the j-th category as S(0)

j = {i : zi = j} with cardinal-
ity n(0)j = |S

(0)
j | . The vector z(0) is initialized by assigning 

z
(0)
i = j if i ∈ S

(0)
j  . Then the vector q(0) is initialized as

Define a matrix X j = {xi}i∈Sj , which contains all pixels xi 
labeled as zi = j.

The unknown parameters θ j can then be estimated 
from X j by using maximum likelihood estimation. Under 
GMM, the unknown parameters are θ j = {µj ,�j} , and 
they can be initialized as

Gibbs sampling with GMM
Gibbs sampling is used to iteratively take samples from 
the joint distribution f (z, {θ j}kj=1, q|X) . The results are 
then used to estimate the posteriori probability as in (8).

With GMM, the unknown model parameters are 
θ j = {µj ,�j} for j = 1, 2, . . . , k . Under the Bayesian set-
ting, both µj and �j are assumed to be unknown and ran-
dom, and their values will be learned from the data. The 
prior for the mean vector µj is assumed to be Gaussian 
distributed with mean vector τ j and precision matrix �j 
as

The parameters τ j and �j will be iteratively updated dur-
ing the Gibbs sampling process.

The non-informative prior [26] for precision matrix �j 
is taken as

During the iterative Gibbs sampling process, the sam-
ples of different variables at each step are drawn based 

(9)q
(0)
j =

n
(0)
j

n
, j = 1, 2, . . . , k .

(10)µ
(0)
j =

1

n
(0)
j

∑

i∈S
(0)
j

xi

(11)�
(0)
j =







1

n
(0)
j

�

i∈S
(0)
j

(xi − µj)(xi − µj)
T







−1

(12)µj ∼ Np(τ j ,�j).

(13)π(�j) ∝ |�j|
(p+1)/2

on their respective posterior distributions, conditional 
on current states of all other variables. Thus the imple-
mentation of Gibbs sampling requires the knowledge of 
full conditional posterior distribution of all parameters 
of interests which include z, q, {µj}

k
j=1, and {�j}

k
j=1 . The 

full conditional posterior distributions of all parameters 
are given as follows. Detailed derivations of (14)–(17) are 
given in Appendix.

Posterior distribution of q Let nj denote the number of 
pixels belonging to the j-th category, then

where n = [n1, n2, . . . , nk ]
T .

Algorithm 1
Gibbs Sampling of Gaussian Mixture Model
Input: Pixels X = {xi}ni=1 and hyper-parameters of prior distri-

butions α, {τ j}kj=1, {Ωj}kj=1
Initialization :
Obtain z(0), {µ(0)

j }kj=1, {Φ
(0)
j }kj=1 by using results from k-

means clustering as in (10) and (11).
1: for itr = 1, 2, · · · , T do
2: Update S(itr)

j = {i : z(itr−1)
i = j} and X

(itr)
j = {xi}

i∈S(itr)
j

by using z(itr−1).
3: Draw q(itr) from (14) using z(itr−1).
4: Draw Φ(itr)

j from (15) using µ
(itr−1)
j , X(itr)

j and z(itr−1),
for j = 1, 2, · · · , k.

5: Draw µ
(itr)
j from (16) using Φ(itr)

j and X
(itr)
j , for j =

1, 2, · · · , k.
6: Draw z

(itr)
i from (17) using {µ(itr)

j }kj=1, {Φ
(itr)
j }kj=1, q

(itr)

and xi for i ∈ S(itr)
j and j = 1, 2, · · · , k.

7: end for
Output: z(itr), for itr = 1, 2, · · · , T.

Posterior distribution of �j (non-informative Prior)

where Sj =
∑

i∈Sj
(xi − µj)(xi − µj)

T , Sj = {i : zi = j} , 
and Wp(S

−1
j , nj) is Wishart distribution with nj 

degrees-of-freedom.
Posterior distribution of µj

where �∗
j = nj�j +�j and τ ∗j = �∗−1

j (nj�j x̄j +�jτ j). 
Here, x̄j = 1

nj

∑

i∈Sj
xi.

Posterior distribution of zj

where xi|(zi = j,µj ,�j) ∼Np(µj ,�j).

(14)q|z ∼ Dir(α + n).

(15)�j|(µj ,X j) ∼ Wp(S
−1
j , nj),

(16)µj|(�j ,X j) ∼ Np(τ
∗
j ,�

∗
j ),

(17)

Pr(zi = j|xi, {θ j}
k
j=1, q) =

qjf (xi|zi = j,µj ,�j)
∑k

v=1 qvf (xi|zi = v,µv ,�v)
,
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The Gibbs sampling algorithm with GMM is summa-
rized in Algorithm 1.

As the number of iterations grows large, the samples 
drawn through this process converge to their joint dis-
tributions. With such a process, the values of all model 
parameters are learned from the data without the need 
of a training process. The output of the Gibbs sampling 
algorithm is then used to evaluate the posterior probabil-
ity Pr(zi = j|X) to obtain an estimate of ẑi.

Algorithm 2
Unsupervised Bayesian Learning with MCMC
Input: Pixels matrix X = {xi}ni=1.

Initialization :
Obtain z(0),q(0), {θ(0)

j }kj=1 by using results from k-means
clustering.

1: Gibbs Sampling: With Algorithm 1, draw T samples
z(itr),q(itr), {θ(itr)

j }kj=1, for itr = 1, 2, · · · , T by using their re-
spective posterior distributions.

2: Evaluation: Calculate the posterior probability Pr(zi = j|X)
as,

Pr(zi = j|X) = lim
T→∞

1
T − T0 + 1

T
∑

it=T0

I(z(it)i = j) (18)

for i = 1, 2, · · · , n, and j = 1, 2, · · · , k.
Output:

ẑi = argmax
j∈{1,··· ,k}

Pr(zi = j|X). (19)

Algorithm 3 Pre- and Post-Processing
Input: Pixels matrix X = {xi}ni=1.

Initialization : Set initial cluster number k > 3
Obtain MAP results using Algorithm 2.

1: Merging Clusters: Merge two clusters with mean µi and µj ,
if D(µi,µj) ≤ εm for i, j ∈ {1, 2, · · · , k}. The updated mean
of the merged cluster is the weighted average of µi and µj .

2: Anomaly Detection: If mi ≥ εa for i ∈ {1, 2, · · · , k}, assign
cluster i to the anomaly set A.

3: Binary Classification:

Panicle cluster c = argmax
j /∈A

mj (20)

Output: Final segmentation based on pTH .

Unsupervised Bayesian learning with MCMC
The outline of the unsupervised Bayesian learning algo-
rithm with MCMC is summarized in Algorithm  2 with 
the initial values of z(0), q(0) and θ (0)j . In Gibbs sampling, 
the generated samples at the beginning of the sampling 
process usually do not represent the actual joint distribu-
tion. Therefore, first T0 − 1 samples are usually discarded 
during the evaluation process as shown in (18).

It is important to highlight that since there is not a 
natural ordering between mixture components, it is 
necessary to label them for their posterior identifica-
tion. In this proposed algorithm, the label of the com-
ponents are ordered according to total mean across all 
channels i.e. under this assumption the panicle seg-
ments have the highest total mean across all channels.

Pre‑ and post‑processing
In order to account for diverse illumination condi-
tions and the presence of anomalous objects, the clas-
sification is started with a relatively large number of 
clusters k > 3 . After classification with k > 3 , two addi-
tional steps are performed to merge close clusters and 
to detect and remove anomalies. Details are given in 
Algorithm 3.

In step 1 (‘Merging Clusters’), two clusters with mean 
µi = [µi,r ,µi,g ,µi,b]

T and µj = [µj,r ,µj,g ,µj,b]
T are 

merged into a single cluster if the Euclidean distance 
between the two means, D(µi,µj) = �µi − µj� , is less 
than a predefined threshold ǫm , where ‖a‖ is the ℓ2-norm 
of the vector a . In this paper ǫm = 0.1 has been used. The 
mean of the merged cluster is calculated as the weighted 
average of µi and µj . This step deals with different illumi-
nation conditions assuming a class gets classified in two 
or more different classes because of illumination.

In step 2 (‘Anomaly Detection’), cluster i is classi-
fied as anomaly if the total mean across all three chan-
nels, mi =

∑

j∈{r,g ,b} µi,j , is above a predefined threshold 
≥ ǫa . In this paper, ǫa = 0.9 has been used for anomaly 
detection.
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Appendix
Derivations of full conditional posteriori distributions
Detailed derivations of the full conditional posterior dis-
tributions in (14)–(17) are given in this appendix.

Posterior distribution of q
Based on the assumption of Dirichlet prior, using Bayes’ 
rule, the posterior distribution of q can be written as

where nj is the number of pixels labeled in the j-th cat-
egory. As can be seen from the equation, the posterior 
distribution of q also follows Dirichlet distribution as

Posterior distribution of �j (non‑informative prior)
For all the following proofs it is assumed that prior dis-
tributions π(µj) and π(�j) are independent. Hence, 
π(µj ,�j) = π(µj)π(�j) . Assume π(�j) ∝ |�j|

p+1
2  , then

where Sj =
∑

i∈Sj
(xi − µj)(xi − µj)

T . Thus

a p-variate Wishart distribution with nj 
degrees-of-freedom.

Posterior distribution of µj

The posterior distribution of µj can be calculated as

f (q|z) =
f (z|q) · π(q)

f (z)
∝

k
∏

j=1

q
nj
j

k
∏

j=1

q
αj−1

j

∝

k
∏

j=1

q
αj+nj−1

j ,

π(q|z) = Dir([α1 + n1,α2 + n2, . . . ,αk + nk ]
T )

= Dir(α + n).

f
�

�j

�

�µj ,Xj

�

∝ f
�

Xj

�

�µj ,�j

�

π
�

�j

�

∝
�

��j

�

�

nj
2 exp







−
1

2

�

i∈Sj

�

xi − µj

�T
�j

�

xi − µj

�







×
�

��j

�

�

n + 1
2

∝
�

��j

�

�

nj+p+1

2 exp

�

−
1

2
tr
�

Sj�j

�

�

�j|(µj ,X j) ∼ Wp(S
−1
j , nj),

where �∗
j = nj�j +�j and A = nj�j x̄j +�jτ j . Hence,

where τ ∗j = �∗−1
j (nj�j x̄j +�jτ j).

Posterior distribution of zj
The posteriori distribution in (17) can be directly 
obtained by applying the Bayes’ rule.
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