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Abstract

Thirty years after initial publications of the concept of a chimeric antigen receptor (CAR), the U.S. 

Food and Drug Administration (FDA) approved the first anti-CD19 CAR T cell therapy. Unlike 

other immunotherapies such as immune checkpoint inhibitors and bispecific antibodies, CAR T 

cells are unique as they are “living drugs”, i.e. gene-edited killer cells that can recognize and kill 

cancer. During these 30 years of development, the CAR construct, the T cell manufacturing 

process, and the clinical patient management went through rounds of failures and successes that 

drove continuous improvement. Tisagenlecleucel was the first gene therapy to receive approval 

from the FDA for any indication. The initial approval was for relapsed or refractory (r/r) pediatric 

and young-adult B-cell acute lymphoblastic leukemia in August 2017 and in May 2018 for adult 

r/r diffuse large B cell lymphoma. Here we review the pre-clinical and clinical development of 

what began as CART19 at the University of Pennsylvania and later developed into 

tisagenlecleucel.
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Introduction

Chimeric antigen receptors (CAR) are proteins generated by the fusion of an antigen-

binding domain, typically an antibody-derived single-chain variable fragment (scFv) with 

the T cell receptor (TCR) signaling domain CD3ζ and improvements have included a 

selected costimulatory domain. The presence of a tumor-specific CAR makes T cells 

independent of major histocompatibility complex (MHC)-restriction and virtually any target 

expressed on the surface of cancer cells can be recognized. After CAR-mediated target 

recognition and transmission of the signal, the T cell-intrinsic cytotoxic machinery is 

unleashed. The so-called “first generation” CAR T cells (CART) signal solely by the CD3ζ 
domain. They were initially used to target HIV [1, 2] and solid tumors [3–7], but resulted in 

limited or no clinical effect. Costimulatory domains such as CD28 [8–11], 4-1BB [12, 13], 

and others [12] were added to the CAR construct to enhance anti-tumor efficacy and 

persistence, leading to “second-generation CARs”. The development of second-generation 

CART and the choice of CD19 as a tumor antigen significantly increased CART activity in 

preclinical studies [14, 15] that were eventually translated into unprecedented clinical results 

in B-cell acute lymphoblastic leukemia (B-ALL) and non-Hodgkin lymphomas (NHL) [16–

22]. In particular, CD19-targeted CARTs for B-ALL have since become the prime example 

of what can be achieved with CART with reported complete remission (CR) rates of 80-90% 

in r/r pediatric B-ALL, while response rates were 30-50% in chronic lymphocytic leukemia 

(CLL) and NHL [23–26]. Besides approvals in the US FDA [27, 28], tisagenlecleucel has 

also been approved in the European Union (EU) [29], Canada [30, 31], Switzerland [32], 

Australia [33], and Japan [34]. Axicabtagene ciloleucel, the second commercial CAR T cell 

therapy, is approved for r/r diffuse large B cell lymphoma (DLBCL) by the FDA as well as 

authorities in the EU [35], Canada [36], and Switzerland [37]. However, despite the clear 

clinical success, several aspects of CART treatment need to be improved. These include the 

lower response rates seen in DLBCL and CLL, CD19-negative escape, management of 

cytokine release syndrome (CRS), neurotoxicity, and the manufacturing cost of goods and 

services with implications for pricing and reimbursement. This review will describe the 

basic research, preclinical, and clinical studies that culminated in the FDA approval of 

tisagenlecleucel in 2017 [27] (key milestone events shown in Figure 1) and discuss current 

challenges and future perspectives.

Key initial discoveries

CART therapy, like other adoptive cell therapies (ACT), has its roots in allogeneic 

hematopoietic cell transplantation (allo-HCT) [38]. T cells play an essential role in the 

success of allo-HCT, as T-cell depletion from the graft, initially pursued to decrease the risk 

of graft versus host disease (GVHD), increases the risk of relapse [39]. Moreover, malignant 

cells can be eradicated, even using reduced chemotherapy conditioning regimens, 
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confirming the anti-tumor activity of donor T cells [40]. This notion is confirmed by the fact 

that post-allo-HCT donor lymphocyte infusions can bring relapsed subjects into a new 

remission [41]. The significant morbidity and mortality associated with allo-HCT, 

particularly the associated GVHD, and the risk of relapse gives a rationale for selective use 

of cancer-specific T cells.

Acknowledging the ability of T cells to reject cancer but also realizing the difficulties in 

generalizing treatments based on conventional TCR-MHC interaction led researchers to seek 

other ways of harnessing T cells to target cancer. Concomitantly, advancements in genetic 

engineering established viral vectors as a tool to manipulate mammalian cells, including T 

cells [42]. In the late 1980s, two groups were independently working on examining the 

function and structure of newly elucidated antigen receptors on lymphocytes, both B and T, 

by creating “chimeric receptors.” From these studies arose the concept of endowing T cells 

with “at-will” specificities by engineering T cells to recognize antigens in an MHC-

independent manner. Kurosawa and coworkers constructed chimeric genes attaching variable 

light chains (VL) or variable heavy chains (VH) of a monoclonal antibody to the TCR 

constant α or β chains in 1987 [43] (Figure 2). The VL and VH genes provided specificity 

for phosphorylcholine, a cell wall component of S. Pneumoniae. Exposure of transfected T 

cells to heat-killed S. Pneumoniae elicited an intracellular response in the form of calcium 

influx that was not MHC-restricted.

In 1989 in Israel, Zelig Eshhar and coworkers generated similar constructs recognizing 

2,4,6-trinitrophenyl, a hapten that was historically used to model antibody specificity (Figure 

2). Transfected cytotoxic T cell hybridoma cells were able to lyse target-bearing cells and 

produce IL-2 [44]. Both methods depended on the pairing of the α and β chain in order to 

obtain the combined specificity of the VL and VH chains. The “T-body” approach would 

later be refined by using an scFv, containing both VL and VH chains connected via a linker. 

In “first-generation” CARs, the scFv is connected to either a CD3ζ or the Fc receptor γ 
(FcRγ) activating domain, via a hinge sequence [45] (Figure 2). The use of an scFv reduces 

the likelihood of mispairing with the endogenous TCR chains and has remained the most 

frequently employed extracellular structure used for the design of CAR to this day. Although 

CARs would be first used experimentally for elucidating the function of the CD3ζ chain 

[46–48], the potential for cancer treatment was envisioned from the beginning as noted in 

the discussion of Dr. Eshhar’s 1989 paper: “Construction of cTcRs with anti-tumor 
specificity will enable testing of the feasibility of this approach in combating human tumors” 

[44].

Adoptive T Cell Therapy Paving the Way for CARTs

In 1988, Rosenberg and coworkers at the National Cancer Institute (NCI) published an ACT 

strategy involving isolation of tumor-infiltrating lymphocytes (TIL) from melanoma subjects 

and in vitro expansion using IL-2, which resulted in the regression of metastatic melanoma 

in a subset of patients [49]. In a first-in-human clinical study using genetically modified T 

cells, the Rosenberg group transduced TILs with replication-incompetent murine retrovirus 

encoding the neomycin resistance gene as a marker for the infused T cells [50]. Five cancer 

patients received autologous gene-modified TILs, which persisted in circulation for up to 
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two months and could be detected in tumor biopsies. No side effects related to gene 

transduction were observed and clinical effects were observed in three of five patients. 

Eshhar and Rosenberg would later collaborate to apply the T-body approach for cancer in 

research and pre-clinical studies. In 1993, the group transduced TILs with a CAR construct 

consisting of a folate receptor α (FRα)-specific scFv linked to FcRγ. CAR transduced TILs 

were able to lyse an ovarian carcinoma cell line (IGROV) in vitro [51], and in vivo [52]. 

Rosenberg’s group contributed another important principle to ACT by demonstrating that 

mild lymphodepletion improved the proliferation of adoptively transferred T cells and tumor 

regression in subjects treated with TILs for melanoma [53]. The group at the University of 

Pennsylvania showed that adoptive transfer of peripheral blood T cells induced 

lymphocytosis in the setting of autologous stem cell transplantation [54]. The effect created 

by lymphodepletion was later coined a “cytokine sink” referring to the increased availability 

of homeostatic cytokines for the adoptively transferred T cells [55]. Lymphodepletion is now 

a procedure included in most, though not all, CART therapy protocols [56].

This pioneering work inspired many other groups to study CART with multiple specificities, 

for example human epidermal growth factor receptor (HER) 2 [57], prostate-specific 

membrane antigen (PSMA) [58], tumor-associated glycoprotein 72 (TAG-72) [59], carboxy-

anhydrase-IX [60], carcinoembryonic antigen (CEA) [61], GD2 [11], CD19 [62, 63], CD20 

[64], CD30 [65], and CD171 [7], among others. Some CAR constructs would be a chimera 

between native molecules in the form of receptors or ligands linked to CD3ζ, for example, 

heregulin [66], IL13 [67], or CD4 (Figure 2) [47, 68], enabling CART to recognize HER3/4 

in breast cancer, IL13Rα2 in glioblastoma, and gp120 on HIV-infected cells, respectively.

Pioneering clinical trials with first-generation CART

Romeo and Seed first described specific lysis of HIVgp120/gp41 complex expressing cells 

by T cells transiently transduced with the CAR CD4-CD3ζ [47]. Margo Roberts and 

colleagues at Cell Genesys Inc. carried out in vitro studies showing that HIV-infected CD4+ 

T cells could be specifically lysed by CD8+ T cells stably expressing a CD4-CD3ζ CAR 

following retroviral transduction [68]. Based upon these observations, the first clinical CAR 

trials were initiated in the 1990s, in HIV-infected subjects [1, 2]. Kristen Hege, also at Cell 

Genesys Inc., led a concurrent clinical CAR trial targeting TAG-72 in colorectal cancer, the 

first initiated for cancer [3]. The CD4-CD3ζ CART demonstrated the overall safety of 

retroviral transduction of T cells with CAR constructs as well as prolonged in vivo 

persistence of CART [69]. In the TAG-72 CART trial, one patient showed clinical evidence 

of CRS and a 50 percent decrease in levels of CEA, but no positive clinical outcomes were 

obtained [3].

These trials also served as confirmation of the robustness of a new T cell clinical 

manufacturing protocol using anti-CD3 and anti-CD28 coated magnetic beads [70]. These 

beads yielded significantly more robust in vivo persistence than T cells expanded using anti-

CD3 antibody plus IL-2 [1, 71]. The first clinical use of CD3/CD28 activated T cells 

occurred in HIV+ subjects. Improvements in CD4 counts, CD4:CD8 ratios, and immune 

function were observed following dose escalation of their autologous polyclonal CD4+ T 
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cells [72, 73]. The bead-activation method would subsequently go on to be utilized in 

thousands of subjects enrolled in T cell engineering clinical trials, and for tisagenlecleucel.

The CD4-cD3ζ CART clinical trials, as well as other gene transfer trials up until the early 

2000s, had utilized murine gammaretroviral vectors (RV) for gene transfer. The first-in-

human use of a lentiviral vector (LV) for gene transfer occurred in a clinical trial of 

autologous CD4+ T cells carrying an anti-sense to the HIV envelope gene in HIV+ subjects 

who had developed resistance to antiviral drugs [74]. The advent of third-generation LV 

further increased the safety profile of this vector [75]. Replication-competent LV and RV 

have not been detected in vector products and vector-transduced cells from numerous 

clinical trials [76–79]. Nor have there been any reports of oncogenic insertional mutagenesis 

from clinical trials involving mature T cells using either LV or RV, although oncogenic 

transformation of mature T cells has been reported in mice using RV [80]. T cell lymphomas 

due to insertional oncogenesis occurred in non-human primates when a RV contaminated 

with replication-competent virus was used in a hematopoietic stem cell transplant 

experiments [81].

Costimulation takes CART to the next level

The importance of costimulation in T cell activation was unfolding in the wake of the 

generally disappointing results of phase I trials with first-generation CARTs [3, 4, 82]. The 

two signal hypothesis proposed in 1970 by Bretscher and Cohn [83] stated that in order to 

obtain optimal activation a lymphocyte needs an antigen-specific signal delivered through its 

antigen receptor and an unspecific signal, delivered via costimulatory ligand-receptor 

interaction. Several early observations highlighted the potential significance of costimulation 

in the CART context. First, the inability of tumor-reactive T cells to reject malignant cells 

could be reverted by engineering the malignant cells to express B7/CD80 [84, 85]. Secondly, 

the function and proliferation of first-generation CARTs were enhanced by stimulation with 

artificial antigen-presenting cells (aAPC) co-expressing CD80 as well as target antigen [58, 

62]. Additionally, EBV-specific T cells transduced with CAR most likely received 

costimulation from autologous antigen-presenting cells when reintroduced in the host, 

improving CART function and persistence [6]. The first publications of a second-generation 

CAR construct can be attributed to two independent groups. Margo Roberts, at Cell Genesys 

Inc., was the first to patent the concept of integrating a costimulatory domain in the CAR 

construct, the costimulatory domain being either CD2 or CD28 (patent filed February 1995) 

(Figure 2) [8]. Finney and colleagues at Celltech Therapeutics Ltd. filed a similar patent 

December 1996 and published their findings in 1998 [9, 10] describing a construct of an 

scFv recognizing CD33 and a CD28 costimulatory domain inserted proximally to CD3ζ. 

Jurkat cells transduced with the novel construct generated a twenty-fold stronger IL-2 

response compared to an scFV-CD3ζ construct [10]. Sadelain and coworkers described an 

scFV-CD28 construct, which did not include a CD3ζ-domain, inducing enhanced anti-

apoptotic and proliferation of transduced T cells upon recognition of the cognate antigen of 

the scFV [11]. Subsequently an scFV-CD28-CD3ζ CAR with the scFV being specific for 

PSMA was developed [86]. Then followed multiple reports by several groups on in vitro 
models using CAR against other antigen specificities and costimulatory molecules [12, 13, 

86, 87]. Thus, while the first publications on CARs originated in academia (Kurosawa, 
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Eshhar) both the first clinical trials of CARTs (Cell Genesys) and the first costimulatory 

CARs described and patented (Cell Genesys, Celltech) originated in industry laboratories.

The making of CART19

By the first decade of the 2000s, multiple groups were focusing on CD19 as a target for 

CART [13–15, 62, 88–90], with early preclinical work showing in vivo activity of a first-

generation CAR when facilitated by CD80 stimulation from aAPCs and tumor cells [62]. 

CD19 is an attractive tumor antigen as it is restricted to malignant B cells as well as B-cell 

committed progenitors and mature B cells and to date it is the most successful tumor antigen 

for CART therapy [91]. Importantly, the expected on-target off-tumor toxicity, i.e. B cell 

aplasia, can be managed with repeated immunoglobulin infusions.

Following the observation that aAPC with 4-1BB ligand were able to augment CD8 T cell 

growth and function beyond what had been observed for CD80-CD28 interaction [92–94], 

preclinical studies began using a lentivirally encoded 4-1BB-CD3ζ, CD19-targeted CAR 

(Figure 2). The 4-1BB-CD3ζ, CD19-targeted CAR construct had been initially developed in 

a retroviral vector system [13] and subsequently improved by the insertion of a different 

promoter, elongation factor 1α (EF-1α), and inclusion in a lentiviral vector [15]. In an in 
vivo model of primary B-ALL, injection of 4-1BB-CD3ζ CD19-targeted CAR T cells 

resulted in improved survival of T cells compared to CD28-CD3ζ CD19-targeted CAR T 

cells [15]. Importantly longer leukemia-free survival of animals was observed when using a 

4-1 BB second-generation CAR consistent with longer persistence of 4-1BB-stimulated 

CART. In addition, different promoters in the CAR vector were tested, providing evidence 

that EF-1α resulted in the highest and most stable CAR expression in both CD4+ and CD8+ 

T cells. This was the prototype of the CD19-targeted CAR that would start as CART19, later 

become CTL019 in clinical trials, and finally, tisagenlecleucel, the first FDA approved gene 

therapy.

Clinical evidence of potent and durable CART anti-tumor activity

Promising activity targeting CD19 was reported by the NCI in one subject with follicular 

lymphoma (FL) who obtained minimal residual disease (MRD) negativity of bone marrow 

and PR in lymph nodes [16]. In 2010 the University of Pennsylvania launched a CART19 

phase I trial () recruiting adult subjects with r/r CD19+ B cell leukemia and lymphomas (key 

trials and publications leading to tisagenlecleucel approval are summarized in Table 1). 

Initially, three CLL subjects were infused. All demonstrated clinical responses to CART19, 

two obtaining CR, and one obtaining partial remission (PR) [17, 95]. Between 2.9 and 7.8 

pounds of leukemia were destroyed in a few weeks by the engineered CAR T cells [95]. 

Absence of funding to treat more than three patients led to a delay in subsequent enrollments 

until the end of 2011 [96]. However, the publications attracted interest in licensing CART19 

technology. In August 2012, the establishment of a research and development alliance 

between Novartis and the University of Pennsylvania was announced [97]. Several months 

later, Kite Pharma partnered with the NCI to develop engineered cellular therapies [98].
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In total, the first University of Pennsylvania CART19 trial () infused 14 subjects with CLL 

[99]. Four subjects obtained CR and 4 obtained PR. Hence, following the first three subjects, 

this first CLL trial cohort clinical response rate was disappointing, though confirmed by 

observations at Memorial Sloan Kettering Cancer Center and NCI [18, 19]. While bed to 

bench investigations to improve the consistency and potency of CART products from CLL 

subjects were initiated, a shift was made to focus clinical efforts in pediatric ALL [21, 23, 

100]. Results of the first two subjects treated on the University of Pennsylvania/Children’s 

Hospital of Philadelphia pediatric trial of CART19 in B-ALL (), were published in 2013 

[21]. Both subjects obtained CR, though one subject later relapsed with CD19 negative 

disease [21]. This was also the first publication on the successful use of the anti-IL-6 

receptor blocking antibody tocilizumab to treat CRS. Seventy-two percent of pediatric 

subjects receiving CART19 had previously been treated with allo-HCT, and 88% had had 

two or more relapses. Given the extremely poor prognosis in r/r B-ALL, the observation that 

90% of CART19-treated subjects (25 pediatric subjects and five adults subjects with r/r B-

ALL enrolled in and ) went into CR following CART19 was unexpected and stimulated 

accelerated development [100]. Of note, the discovery that tocilizumab can successfully treat 

CRS, drastically changed the feasibility of CART19 leading to even greater interest from 

both academia and pharma.

From single center trials to global clinical studies

The clinical development that followed for pediatric/young adult B-ALL subjects was the 

initiation of two multi-center studies. A phase II multi-center trial at sites within the United 

States () enrolled pediatric and young adults (three to 21 years of age) with r/r B-ALL. 

Results of interim clinical and pharmacokinetic analyses have been published [101–103]. 

Twenty-nine of 35 subjects enrolled (83%) were infused with CART19, by then referred to 

as CTL019. The overall remission rate (ORR) at 6 months, defined as CR or CR with 

incomplete hematologic recovery, was 69% in infused subjects and relapse-free survival 

(RFS) was 66%. Ninety percent of subjects experienced CRS and grade 3 or 4 CRS was 

observed in 38% of the subjects [101]. The second trial, a Novartis global trial with 25 

enrollment centers in 11 countries on four continents, called ELIANA () enrolled pediatric 

and adult subjects up to 30 years of age with r/r B-ALL. Of 92 enrolled subjects, 75 

underwent infusion. At an interim analysis, ORR was 81%, and RFS among subjects was 

80% at six months and 59% at 12 months. Seventy-seven percent experienced CRS, and 

46% had grade 3-4 CRS [23]. Collectively, these data demonstrated the durable induction of 

clinical responses in the r/r B-ALL cohort.

CTL019 was also evaluated in a phase IIa trial for r/r DLBCL, FL, and mantle cell 

lymphoma () at the University of Pennsylvania starting 2014. In 28 subjects treated, CR was 

obtained in 6/14 DLBCL subjects and 10/14 subjects with FL at six months [104]. 

Importantly, all subjects in CR by six months remained in remission at a median follow-up 

of 29.3 months. Overall, severe adverse events were lower than what has been observed in 

B-ALL subjects; 18% developed grade 3 or higher CRS and 11% developed grade 3 or 

higher neurotoxic events. A Novartis multi-national phase II trial, JULIET (), was initiated 

and results published [105]. Ninety-three adult subjects with r/r DLBCL received CTL019. 
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Forty percent obtained CR, and 12% obtained PR. The estimated probability of survival at 

12 months among subjects in CR was 90%.

Regulatory Approval for CAR T Cells In the United States and 

Internationally

Prior to the initiation of the ELIANA trials Novartis had submitted a special protocol 

assessment (SPA) in March 2014, which was accepted by the FDA [106]. SPA agreements 

indicate that the FDA accepts the overall trial designs which may support later drug 

application to the FDA. Shortly after Novartis filed for Breakthrough Therapy Designation 

of CTL019 in r/r adult and pediatric B-ALL, which was granted by the FDA in July 2014 

[107]. This designation is intended to expedite the development and review of new 

medicines – both drugs and biologic agents – that treat serious or life-threatening conditions 

if the therapy has demonstrated substantial improvement over available therapies. The FDA 

had previously granted Breakthrough Therapy Designation to only four other biologic 

agents, and CTL019 was the first personalized cellular therapy for the treatment of cancer to 

receive this. With data from the phase II results of the ELIANA trial and supported by the 

previous University of Pennsylvania/Children’s Hospital of Philadelphia clinical trials, 

Novartis filed a Biologies License Application with the FDA in early 2017. Priority review 

designation was granted March 2017. In July 2017, the FDA Oncologic Drugs Advisory 

Committee, which reviews and recommends investigational human drug products for cancer 

treatment, gave a unanimous 10-0 vote recommending tisagenlecleucel to treat pediatric and 

young adult r/r B-ALL [108].

On August 30, 2017, tisagenlecleucel (formerly CTL019), was approved by the FDA for the 

treatment of subjects up to 25 years of age with B-ALL [27], as the first FDA approved gene 

therapy and marking a historic date for genetically-engineered cellular therapies for cancer. 

Kite Pharma’s KTE-C19 received Breakthrough Therapy Designation for r/r aggressive 

NHL December, 2015 [109], October 2017, the FDA approved axicabtagene ciloleucel 

(formerly KTE-C19) for adult patients with large B-cell lymphoma failing at least two other 

kinds of treatment, including DLBCL, primary mediastinal large B-cell lymphoma, high-

grade B-cell lymphoma and DLBCL arising from FL [110]. In April 2017 Breakthrough 

Therapy Designation was granted by the FDA for the use of CTL019 in r/r DLBCL. This 

was followed by the FDA approval of tisagenlecleucel for DLBCL in May 2018 [28].

Tisagenlecleucel was later authorized for clinical use in the EU by the European Medicines 

Agency for the treatment of r/r B-ALL and DLBCL in August 2018 [29], and also in Canada 

[30, 31], Switzerland [32], Australia [33], and Japan [34] for the same indications. As of 

September 28th, 2019, 101 tisagenlecleucel treatment centers have been established in the 

US [111]. Axicabtagene ciloleucel is also approved by the European Medicines Agency 

[35], Health Canada [36], and Switzerland [37], and as of September 28th, 2019, is available 

at 83 centers in the US [112]. Thus, these two novel CD19-directed CART therapies, out of 

all cell therapies approved by national health authorities, are available in the largest number 

of countries [113].
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Current concepts of tisagenlecleucel treatment failure

While striking clinical responses following CAR T cell treatment are observed in otherwise 

untreatable r/r CD19+ B cell malignancies, not all subjects respond to treatment, specifically 

10-20% of pediatric and young adult B-ALL and 50-60% of adult DLBCL. Moreover, a 

significant portion of subjects are either not eligible for the treatment or may not survive 

during the time needed to schedule, manufacture, and deliver their CAR T cell product. 

Lastly, a significant subset of subjects (40-50%) relapses within one year after reaching a 

CR in B-ALL [23, 24, 114].

A deep understanding of the mechanisms leading to relapse is needed to increase response 

rates and reduce relapses. Two major mechanisms of relapse are observed amongst subjects 

treated with CART targeting CD19 for CD19+ B-ALL, irrespective of the type of 

costimulatory domain [115, 116]. One is the relapse of CD19+ B-ALL, typically due to 

inadequate expansion and persistence of CART [100, 102, 103, 117]. The second major 

mechanism of relapse involves the emergence of CD19-negative B-ALL [100, 102, 118]. In 

DLBCL CD19-negative relapses are less frequent although they have been described [119–

121]. Therefore, strategies that, from one side, avoid antigen-escape, and on the other 

increase CART activity and persistence are being pursued. One avenue of preventing CD19-

negative relapse is through the use of CAR T cells targeting multiple tumor targets. For 

example, CD19 and CD123 [122] or more commonly CD19 and CD22 [123, 124] have been 

proposed as targets for dual-targeted CART therapy. A plethora of multi-targeted clinical 

CART trials has now been initiated (Table 3). Multiple factors influence the activity and 

persistence of CART, such as T cell subtypes [125], exhaustion, and interaction with the 

tumor microenvironment [126]. It is likely the tumor microenvironment of lymphomas and 

CLL, not unlike that of solid tumors, is challenging for T cells and at least partially explains 

the lower response rates observed in DLBCL and CLL as compared to B-ALL. In addition, 

age differences between B-ALL and DLBCL/CLL subjects could play a role as increasing 

age is known to affect general T cell fitness [127]. Indeed, T cell fitness has been shown to 

be a determinant of response to CART therapy in CLL [125]. Moreover T cells of CLL 

subjects may have proliferative defects even when compared to age-matched subjects with 

other hematological diseases [128]. New strategies being tested to improve CART function 

include the concomitant treatment with small molecule inhibitors [129]. Ibrutinib is a small 

molecule inhibitor targeting Bruton’s tyrosine kinase (BTK) that improved CART19 

function in a preclinical model [128, 130]. A recent interim analysis of a pilot trial with 

humanized CART19 (CTL119) and ibrutinib in CLL revealed MRD negativity in the bone 

marrow at three months in 14 of 18 evaluable subjects, supporting a synergistic effect of 

dual therapy [131].

Another strategy to increase CART function and reduce immunosuppression is direct 

checkpoint inhibition of the programmed cell death protein 1 (PD-1)/programmed death-

ligand 1 (PD-L1) axis. In a recently published case report the PD-1 blocking antibody 

pembrolizumab was administered to a subject who had progressive DLBCL despite 

tisagenlecleucel therapy [132]. Following administration of pembrolizumab, CART19 

expanded, and PD-1/Eomes co-expression was decreased. Clinically the subject’s enlarged 

lymph nodes shrank. A clinical trial () has been initiated testing pembrolizumab 
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administration in subjects with relapsed or progressive disease following tisagenlecleucel or 

CTL119 therapy and results have recently been published [133]. In children with B-ALL or 

B lymphoblastic lymphoma with early B cell recovery, residual bulky disease, or 

unresponsiveness to therapy pembrolizumab or nivolumab was administered early after 

tisagenlecleucel or CTL119 therapy [134]. In three of six subjects with early B cell recovery, 

B cell aplasia was reestablished. In four subjects treated for bulky disease, two subjects 

obtained PR and two obtained CR. PORTIA is an active clinical trial () testing 

pembrolizumab in combination with tisagenlecleucel in r/r DLBCL subjects. Similarly, 

atezolizumab, a PD-L1 inhibitor is being studied as combination therapy with axicabtagene 

ciloleucel for subjects with refractory DLBCL (). Table 2 summarizes past, current, and 

projected tisagenlecleucel trials. Pivotal trials leading to tisagenlecleucel approval are 

summarized in Table 1.

Future perspectives

Propelled by the approvals of the first CART therapies, there has been an exponential growth 

of clinical trials involving CART and other cellular therapies for cancer [135]. More than 

1,000 cell therapies are currently in the pipeline, and CAR T cell products make up more 

than half of these [135].

While tisagenlecleucel is available in ~150 clinical centers worldwide, production of CART 

is extraordinarily complex and takes place in a few specialized GMP facilities in the US and 

EU. Collection, manufacturing, logistics, and transportation of CART are critical factors that 

are essential considerations in the continuum of this therapy [136]. Thus, improvements to 

manufacturing protocols, to analytics methods, and more seamless logistics, will allow more 

potent products to reach patients in need more quickly and potentially also reduce patient-to-

patient variation [137–139]. Off-the-shelf, allogeneic CART products from several 

companies and academic centers are in early phase clinical trials and have the obvious 

benefit of eliminating time-delay for manufacturing as well as being a source when 

sufficient CAR T cell numbers cannot be generated [140–146]. The limitations of allogeneic 

CART are the risk of GVHD as well as host versus graft elimination of CART. Current trials 

( and ) of a CD19-directed allogeneic CART (UCART19) in B-ALL use CART as a bridge 

to subsequent allo-HCT [140].

Several strategies are addressing the challenges of increasing persistence and potency or 

fine-tuning CAR trafficking. Optimizing spacer length between the CAR domains [147], 

incorporating additional costimulatory domains (“third-generation” CAR) [148], and the 

inclusion of a cytokine expression cassette (so-called TRUCKS) [149] have been explored as 

means to improve CART potency. Gene editing by CRISPR-Cas9 or other modalities is 

being used increasingly to fashion CARTs for specific purposes (allogeneic) or augment 

potency. In a murine model, T cell persistence improved following knockout of PD-1 [145]. 

CRISPR-Cas9 has also been used in a preclinical model to knock out CD33 on 

hematopoietic stem cells, imparting resistance to CD33-targeted CART [150]. This strategy 

allows CD33-targeted CART therapy of AML without killing myeloid progenitor cells.
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Several other methods are being explored to reduce the short-term toxicity of CART therapy. 

Examples are options that permit the elimination of CART after infusion (e.g., inducible 

apoptosis systems [151] or co-expression of depletion markers [152]). Conditional CAR 

systems explore strategies for controlling CAR-mediated activation. Wu and coauthors 

developed “remote-control CARs” which are split CAR designs that require a small 

molecule in order for the extracellular antigen-binding domain to associate with the 

intracellular signaling domain, an “On-switch” [153]. Small molecule-dependent systems 

can also be used as an “Off-switch” of CAR transgene expression [154]. Combinatorial 

antigen-sensing circuits or “switchable CARs” are elegant solutions that allow for both 

safety in terms of controlled CART activation and versatility in terms of broad applicability 

against multiple antigens [155]. In the model explored by Rodgers and coauthors, T cells 

were transduced with a CAR recognizing a non-human neoepitope, in turn, the neo-epitope 

is engrafted on an antigen-binding fragment (Fab) recognizing a tumor antigen. Addition of 

Fab can thus redirect CART to tumor cells [155].

In extending CART therapy to other malignancies, alternative approaches to circumvent the 

absence of truly tumor-specific antigens have been proposed [116]. Among others, these 

involve scFv affinity and CAR density modulation [156], a combination of VL and VH 

chains from different antibodies recognizing the same antigen [157, 158], and establishing 

micro-circuitry systems to enable CART activation only when the right combination of 

antigens are present [159–161]. Targeting supportive cells in the tumor microenvironment, 

as shown by targeting CD123 on tumor-associated macrophages in Hodgkin lymphoma, 

may be a solution for improved disease control [162]. Unlike the clinical responses seen in 

hematological malignancies, attempts at treating solid tumors with CART have so far 

achieved limited results. The ability of CART therapy to overcome the tumor 

microenvironment of solid tumors and with acceptable on-target off-tumor toxicities will 

require more sophisticated potency-enhancing strategies.

Tisagenlecleucel was the most expensive cancer therapy to have been approved in the US, 

which rightfully raises questions of the cost effectiveness of therapy. Recent studies suggest 

that comparable healthcare costs of allo-HCT for relapsed pediatric ALL and DLBCL 

remain high in the years following allo-HCT in large part due to complications and relapse 

[163, 164]. Conventional treatment for childhood cancers carries significant long-term 

toxicities [165]. In comparison, CART can induce durable responses in subjects with CD19+ 

malignancies that have no other treatment options with only short-term manageable 

toxicities. Justification and value of tisagenlecleucel will ultimately depend on the fraction 

of patients that achieve long-term remission as well as the frequency of morbidity related to 

treatment [166].

The growing number of trials now registered for tisagenlecleucel (Table 2) and for CART 

therapy, in general, attests to the investment both from industry and academia in this novel 

therapy [135, 167]. Interestingly, CTL119 is now being tested in a clinical trial in the first 

line setting in pediatric B-ALL () and axicabtagene ciloleucel is being tested against 

standard of care second-line therapy in r/r DLBCL (); the results of these trials could 

drastically change the treatment algorithm for r/r B-ALL and lymphoma. Moreover, the role 

of allogeneic transplant, especially in B-ALL, will be redefined potentially allowing for the 
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optimization of its safety and efficacy profile [168]. Many other industry players have 

ventured into CART development since Novartis and Kite Pharma/Gilead’s original 

partnerships [97, 98, 169, 170]. The clinical approval of tisagenlecleucel in several countries 

all around the world is a landmark in cellular immunotherapy and genetic engineering for 

cancer. There are multiple avenues to pursue in order to increase efficacy and safety of CAR 

T cell therapy, spawning hope of further improvements in a near future that will enable more 

patients to be successfully treated with these new medicines.
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Figure 1. Similar trajectories led to FDA approval of first two gene-edited cellular therapies for 
cancer.
Above timeline (blue): landmarks of tisagenlecleucel road to approval. Below timeline (red): 

landmarks leading to axicabtagene ciloleucel approval. UPENN, University of Pennsylvania. 

CART, chimeric antigen receptor T cell. CLL, chronic lymphocytic leukemia. FL, follicular 

lymphoma. NCI, National Cancer Institute. B-ALL, B-cell acute lymphoblastic leukemia. 

DLBCL, diffuse large B cell lymphoma. FDA, US Food and Drug Administration. R/R, 

relapsed-refractory. EU, European Union. Axi-cel, axicabtagene ciloleucel.
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Figure 2. Evolution of chimeric antigen receptors.
CAR, chimeric antigen receptor. a. First concept of chimeric gene constructs of T cell 

receptor (TCR) constant regions (Cα and Cβ) fused to immunoglobulin (Ig) variable regions, 

VH and VL. In the “pre-CAR” concept formation of the antigen recognizing domain VH-VL 

required pairing of two individual constructs. b. Chimeras of CD4 and other surface 

molecules are engrafted onto the CD3ζ or Fcγ signaling domains originally with the 

purpose of elucidating the function of CD3ζ and Fcγ. c. The ”T-body” as proposed by Dr. 

Eshhar. The variable antibody domains VL and VH are put in serial connection via a linker 

creating a single chain variable fragment (scFv). The scFv is connected via a hinge to either 

a CD3ζ or the Fc receptor γ (FcRγ) activating domain. d. and e. Addition of a 

costimulatory molecule (e.g. CD28 or 4-1BB as shown in figure) established “second-

generation CARs”.
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Table 1.

Tisagenlecleucel: pivotal clinical trials leading to approval.

Disease
Primary 

study 
population

Reference Sponsor
Clinical 

trial 
identifier

Alias Design Location Phase
No. of 

patients 
infused

CR/CRi 
at 3 

months 
(%)

R/R CLL Adult [17, 95, 
99] UPENN Single 

center ACC/UPENN Pilot/I 14 29

R/R B-
ALL

Children [100] UPENN Single 
center

CHOP/
UPENN I/IIa 30 90

Children [101] Novartis Multicenter United States II 29 69

Children [23] Novartis ELIANA Multicenter Multinational II 75 81

R/R 
DLBCL

Adult [104] UPENN Single 
center ACC/UPENN IIa 14 43*

Adult [105] Novartis JULIET Multicenter Multinational II 93 40

CR, complete remission. CRi, complete remission with incomplete hematologic recovery. R/R, relapsed/refractory. CLL, chronic lymphocytic 
leukemia. B-ALL, B-cell acute lymphoblastic leukemia. DLBCL, diffuse large B cell lymphoma. UPENN, University of Pennsylvania. CHOP, 
Childrens Hospital of Philadelphia. ACC, Abramson Cancer Center.

*
Percent of patients in CR by month 6.
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Table 2.

Tisagenlecleucel: past, current, and projected trials (pivotal trials leading to approval are shown in Table 1).

Primary 
disease

Primary 
study 
population

Description Publication Main 
sponsor

Clinical 
trial 
identifier

Alias Design Location Phase Actual or 
estimated 
enrollment

Status

B-ALL

R/R B-
ALL

Adult Randomized 
comparison 
blinatumomab 
and 
inotuzumab

Novartis OBERON Multicenter Multinational III 220 NYR

B-ALL Pediatric tisagenlecleu 
cel if MRD+ 
following first 
line treatment

Novartis CASSI 
OPEIA

Single 
center

UPENN/
CHOP

II 140 R

R/R B-
ALL

Pediatric Optimization 
study of 
tocilizumab 
for CRS

UPENN Single 
center

UPENN/
CHOP

Pilot 80 ANR

R/R B-
ALL

Pediatric Expanded 
access/
compassionate 
use

Novartis Multicenter Multinational II

R/R B-
ALL & 
DLBCL

Adult & 
pediatric

tisagenlecleu 
cel-
axicabtagene 
ciloleucel 
head-to-head 
in DLBCL

MCC Single 
center

MCC II 120 R

R/R B-
ALL & 
DLBCL

Pediatric CTL119 UPENN Single 
center

ACC/
UPENN

B-ALL & 
DLBCL

Adult & 
pediatric

managed 
access 
program

Novartis Multicenter United States NA NA NA

R/R B-
ALL

Adult Allogeneic 
CART19

UPENN Single 
center

ACC/
UPENN

I 2 Completed

R/R B-
ALL

Adult UPENN Single 
center

ACC/
UPENN

II 30 Completed

R/R B-
ALL

Pediatric CTL119 for 
very high risk 
subsets of 
pediatric B-
ALL

UPENN Single 
center

UPENN/
CHOP

II 85 R

R/R B-
ALL

Adult CART22 alone 
or in 
combination 
with CTL119

UPENN Single 
center

UPENN I 18 R

Lymphoma

R/R NHL Pediatric Novartis BIANCA Multicenter United States 
& Spain

II 35 R

R/R NHL Adult Novartis BELINDA NA NA III 318 NYR

R/R 
DLBCL

Adult tisagenlecleu 
cel-ibrutinib 
combination 
therapy

Novartis Single 
center

UPENN Ib 40 NYR

R/R NHL Adult Pembrolizum 
ab to subjects 
failing or 
relapsing post-

[133] UPENN Single 
center

ACC/UP I/II 12 NA
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Primary 
disease

Primary 
study 
population

Description Publication Main 
sponsor

Clinical 
trial 
identifier

Alias Design Location Phase Actual or 
estimated 
enrollment

Status

tisagenlecleu 
cel

R/R NHL Adult FDG-PET 
response post-
CART19

UPENN Single 
center

ACC/UP 
ENN

I 9 Completed

R/R 
DLBCL

Adult tisagenlecleu 
cel-
pembrolizum 
ab 
combination 
therapy

Novartis PORTIA Multicenter United States 
& Austria

Ib 32 R

R/R FL Adult Novartis ELARA Multicenter United States 
& Australia

II 113 R

CLL

R/R CLL Adult CTL119 + 
ibrutinib

[131] UPENN Single 
center

ACC/
UPENN

Pilot 20 ANR

R/R 
CLL/SLL

Adult Randomization 
between two 
different doses

[128, 171] UPENN Single 
center

ACC/
UPENN

II Completed

B cell malignancies (all kinds)

R/R All ages Determine 
safety and 
maximum 
tolerated dose 
of 
tisagenlecleu 
cel

MDA/N
CI

Single 
center

MDA I 26 ANR

All ages Long term 
follow up All 
ages CD19-
directed CART

Novartis Multicenter Global NA 620 R

Multiple myeloma

Adult CART19 day 2 
post-ASCT 
following 
early relapse

[172, 173] UPENN Single 
center

ACC/
UPENN

I 13 Completed

Adult CART19 day 
60 post-ASCT

UPENN Single 
center

UPENN/AC
C

II 5 Terminated

Relapsed Adult Up-front 
BCMA-CART 
alone or with 
CTL119

UPENN Single 
center

UPENN I 39 R

Solid 
cancer

Pancreatic 
cancer

Adult tisagenlecleu 
cel to prolong 
meso-specific 
CART 
response

UPENN/
UCSF

Single 
center

UCSF I 4 Completed

R/R, relapsed/refractory. CLL, chronic lymphocytic leukemia. B-ALL, B-cell acute lymphoblastic leukemia. DLBCL, diffuse large B cell 
lymphoma. FL, follicular lymphoma. MM, multiple myeloma. NHL, non-Hodgkin lymphoma. MRD, minimal residual disease. UPENN, 
University of Pennsylvania. CHOP, Childrens Hospital of Philadelphia. ACC, Abramson Cancer Center. ASCT, autologous stem cell transplant. 
MCC, Masonic Cancer Center, University of Minnesota. MDA, MD Anderson Cancer center. NCI, National Cancer Institute. UCSF, University of 
California - San Francisco. NA, not available/not applicable. NYR, not yet recruiting. R, recruiting, ANR, active, not recruiting. CART, chimeric 
antigen receptor T cell.

Novel information added
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Table 3.

Multi-targeted clinical CAR T cell trials.

Antigens Sponsor / Collaborator Location Disease

Clinical 
trial 
reference 
number

CD19 & CD22 University of Pennsylvania United States B-ALL

Crystal Mackall / Lucile Packard Children’s Hospital / 
Stanford University / National Cancer Institute

United States B-ALL

Seattle Children’s Hospital / Children’s National 
Medical Center Washington

United States B-ALL

Crystal Mackall / California Institute for Regenerative 
Medicine / Stanford University

United States B-ALL & DLBCL

National Cancer Institute United States B-ALL, CLL, NHL, & 
lymphosarcoma

Autolus Limited / Great Ormond Street Hospital / 
University College London Hospitals / Royal 
Manchester Children’s Hospital

United Kingdom B-ALL

Autolus Limited / University College London 
Hospitals / Manchester University / Freeman Hospital, 
The Newcastle upon Tyne Hospitals

United Kingdom DLBCL

Xuzhou Medical University China B cell malignancies

CD19 & CD20 Medical College of Wisconsin / Children’s Hospital and 
Health System Foundation, Wisconsin

United States NHL & CLL

Miltenvi Biotec / ICON plc / University Hospital of 
Cologne

Germany NHL & CLL

CD10, CD20, & 
CD22

Southern Medical University, Zhujiang Hospital China B-ALL

CD22, CD123, 
CD38, CD10, CD20, 
TSLPR

Shenzhen Geno-Immune Medical Institute China B-ALL

CD19, CD20, CD22, 
CD30, CD38, CD70, 
CD123

Shenzhen Geno-Immune Medical Institute China B cell malignancies

BCMA, CD19 University of Pennsylvania / Novartis United States multiple myeloma

The First Affiliated Hospital of Soochow University China multiple myeloma

Peng Liu / Hrain Biotechnology / Shanghai East 
Hospital

China multiple myeloma

Shenzhen Second People’s Hospital China multiple myeloma

BCMA, CD38 Chinese PLA General Hospital China multiple myeloma

BCMA, TACI Autolus Limited / VU University Medical Centre 
Amsterdam / University College London Hospitals / 
The Christie / Freeman Hospital

UK & 
Netherlands

multiple myeloma

BCMA, CD19, CD38 The First Affiliated Hospital of Soochow University China multiple myeloma

BCMA, CD38, 
CD56, CD138

Shenzhen Geno-Immune Medical Institute China multiple myeloma

Zhujiang Hospital / Nanfang Hospital of Southern 
Medical University / The Third Affiliated Hospital of 

China multiple myeloma
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Antigens Sponsor / Collaborator Location Disease

Clinical 
trial 
reference 
number

Southern Medical University / Sun Yat-Sen Memorial 
Hospital of Sun Yat-Sen University

Integrin β7, BCMA, 
CS1, CD38, CD138

The Sixth Affiliated Hospital of Wenzhou Medical 
University

China multiple myeloma

CD33, CD123 or 
CLL-1

Shenzhen Geno-Immune Medical Institute China AML

MUC1, CLL1, 
CD33, CD38, CD56, 
CD123

Shenzhen Geno-Immune Medical Institute / Zhujiang 
Hospital, Southern Medical University / The Cancer 
Hospital of Yunnan

China AML

CD33, CD38, CD56, 
CD123, CD117, 
CD133, CD34, 
MUC1

Zhujiang Hospital / Nanfang Hospital of Southern 
Medical University / The Third Affiliated Hospital of 
Southern Medical University / Sun Yat-Sen Memorial 
Hospital of Sun Yat-Sen University

China AML

EGFRvIII/DR5/NY-
ESO-1/Mesothelin

Shenzhen BinDeBio Ltd. / Henan Provincial Hospital China Solid Malignancies

HER2, Mesothelin, 
PSCA, MUC1, 
Lewis-Y, CD80/86

Second Affiliated Hospital of Guangzhou Medical 
University / Hunan Zhaotai Yongren Medical 
Innovation Co. Ltd. / Guangdong Zhaotai InVivo 
Biomedicine Co. Ltd. / First Affiliated Hospital, Sun 
Yat-Sen University

China Solid Malignancies

TSLPR, thymic stromal lymphopoietin receptor. BCMA, B cell maturation antigen. TACI, Transmembrane activator and calcium modulator and 
cyclophilin ligand interactor. CS1, CD319 or SLAMF7. CLL-1, C-type lectin domain family 12 member A. MUC1, Mucin 1 cell surface 
associated. EGFRvIII, Epidermal growth factor receptor variant III. DR5, Death receptor 5. NY-ESO-1, Cancer testis antigen 1B. HER2, human 
epidermal growth factor receptor 2. PSCA, Prostate stem cell antigen. Lewis-Y, Lewis-Y antigen.
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