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Ras analog in brain (Rab) proteins are small guanosine triphosphatases (GTPases) that belong to the Ras-like GTPase superfamily,
and they can regulate vesicle trafficking. Rab proteins alternate between an activated (GTP-bound) state and an inactivated (GDP-
bound) state. Early endosome marker Rab5 GTPase, a key member of the Rab family, plays a crucial role in endocytosis and
membrane transport. The activated-state Rab5 recruits its effectors and regulates the internalization and trafficking of membrane
receptors by regulating vesicle fusion and receptor sorting in the early endosomes. In this review, we summarize the role of small
Rab GTPases Rab5 in membrane receptor trafficking and the activation of signaling pathways, such as Ras/MAPK and PI3K/Akt,
which ultimately affect cell growth, apoptosis, tumorigenesis, and tumor development. This review may provide some insights for

our future research and novel therapeutic targets for diseases.

1. Introduction

Ras analog in brain (Rab) proteins, belonging to the largest
family of Ras superfamily, are small guanosine diphosphate
(GTP)- bound proteins that regulate intracellular trafficking
pathways [1]. There are more than 60 distinct proteins in
humans, which constitute 41 functional subfamilies with tissue
specificity. Rab proteins are similar to Ras and other GTP-
bound proteins in their structures. They are composed of
approximately 200 amino acids, and contain five highly con-
served regions necessary for binding GTP and hydrolysis. Rab
proteins are present in monomeric forms, and the amino acid
sequence similarity of Rab family members ranges from 35% to
80% [2]. Rab proteins with more than 75% of sequence
similarity can be identified as the same protein.

Rab5 is one of the most crucial members of the Rab
family, whose functions and mechanisms are well studied.
Rab5 transforms between the activated form, GTP-bound
Rab5 (GTP-Rab5), and the inactivated form, guanosine di-
phosphate (GDP)- bound Rab5 (GDP-Rab5) [3]. Activated
Rab5 interacts with its effectors and involves in vesicular
transport, membrane trafficking, and signaling pathways [4].

In this review, we discussed the structure and activation
of Rab5 and highlighted the recent advancements in the
Rab5 regulating membrane receptor trafficking and sig-
naling pathways, which will finally affect the occurrence and
development of diseases.

2. The Rab GTPase Proteins

The Rab GTPase proteins were first studied in yeast S. cer-
evisiae by Novick. It was found a series of genes are necessary
for the yeast secretion, which were named SEC (SECI, SEC2,
etc.) [5]. Subsequently, Gallwitz’s group found the genes
encoding the Ras-related YPTI protein in yeast S. cerevisiae
[6]. Further studies showed that the mutants of both SEC4
and YPTI could encode small GTP-bound proteins, and the
structural and functional analogues of SEC and YPT were
cloned from a rat brain library and named Rab [7].

Rab proteins share similar structures, generally con-
taining two cysteine residues at the carboxyl terminus
generally, which appear in the form of -CC, -CXC, -CCXX,
-CXXX, or -CCXXX (X represents any amino acid) and act
as the membrane localization signal [8]. The key structures
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of Rab GTPase proteins contain a highly conserved G do-
main that comprises six  sheets (51-f36), five o helixes
(al-a5), and five polypeptide rings; N- and C-terminals; and
the molecular switches I and II [2]. The N-terminus may be
involved in isoprene modification of the C-terminal cyste-
ine. Molecular switches I and II, and N- and C-terminals
determine the function of Rab GTPase proteins together.
Highly related Rab GTPase proteins may be expressed in the
same organelle, but exert different functions.

Rab GTPases can transform between the GTP-bound
activated form and GDP-bound inactivated form [8]. The
GTP-Rab is located on the plasma membrane, and GDP-
Rab is located in the cytoplasm. The transformation be-
tween the activated and inactivated forms requires three
crucial regulators: GDP dissociation inhibitor (GDI),
guanine nucleotide exchange factor (GEF), and GTPase
activating protein (GAP). As shown in Figure 1, GDI as a
circulating factor that regulates the binding and
unloading of Rab GTPases on the plasma membrane.
After being released by GDI, Rab is activated by GEF,
which catalyzes the conversion of GDP to GTP. Then,
Rab-GTP may perform its roles by recruiting the
downstream effectors. The inactivation of Rab GTPases
involves the following steps: GAP inactivates Rab
GTPases by catalyzing the hydrolysis of GTP. GDI binds
with inactivated Rab-GDP to form a complex, impeding
the interaction between Rab proteins and their effectors.
Then, inactivated Rab proteins are transferred from the
plasma membrane into the cytoplasm to start a new cycle
[9, 10]. Although with similar structure, Rab family
proteins perform different functions in membrane re-
ceptor trafficking and signaling pathways because they
bind to different effectors [4]. Rab GTPases play their roles
in organelles connection at different stages of vesicular
transport, including budding, transport, tethering,
docking, and fusion stages [11].

3. The Basic Information of Rab5

Rab5 is a key member of the Rab family, and Rab5A is its
most important subtype, with well-identified functions and
mechanisms. Rab5 is mentioned as Rab5A in most studies.
Rab5A is located at 3p24.3 and is composed of 215 amino
acids with a molecular weight of 23.658 kD [12]. The
protein structure of Rab5 is nearly spherical: 8 sheets and «
helixes are folded at the N terminus, and -CCXX structure
and p-loop structure are at the C-terminal. The -CCXX
structure is often modified by prenylation, contributing to
the location of Rab5 in the plasma membrane. P-loop
consists of three parts: (1) 27-34 residues induce the hy-
drolysis, binding, and dissociation of GTP in Rab5, (2)
49-51 residues act as switch I, and (3) 79-81 residues act as
switch II [13].

The present studies on the mutants of Rab5 focus on
S34N, Q79L, A30P, G781, N125I, N133I, D136N, and
C-terminal and N-terminal truncations. Wherein, Rab5-
S34N, a persistently inactive form of Rab5, is a guanylate-
bound deficient mutant, and preferable to bind GDP.
Overexpression of the dominant negative Rab5-S34N
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inhibits fusion of early endosomes and endocytosis of
transferring [14]. Rab5-Q79L is a GTP enzyme-deficient
mutant and can impede GTP hydrolysis, sustaining the
activation of Rab5. Overexpression of Rab5-Q79L induces
the fusion and expansion of endosomes and suppresses
lysosome generation [15].

Rab5 transforms between the activated form GTP-Rab5
and inactivated form of GDP-Rab5. The activation of Rab5 is
regulated by GEFs, and the inactivation is regulated by GAPs
[16]. GEFs contain the conserved Vps9 domains [17], which
may catalyze the transformation of Rab5 between GDP-
Rab5 and GTP-Rab5, such as Rabex-5 [18], RME-6 [19, 20],
RIN1 [21], and p85 [22-24]. GAPs regulate the activated
state of Rab5, such as Rab-GAP5 [25], tuberin [26], and
Armus/TBC-2 [27] (Table 1).

3.1. The Effectors of Rab5. Rabb recruits the effector proteins
via their GTP-dependent switch I and II to distinct sub-
cellular compartments to regulate membrane trafficking
events. The crucial effectors of Rab5 are early endosome
antigen-1 (EEAL) [28, 29], rabaptin-5 [30, 31, 37], rabe-
nosyn-5 [32, 38], APPL1/2 [33, 34], and ZFYVE21 [35]
(Table 1).

EEA1, a key effector of Rab5 with a molecular weight
of 162 kD, is a biomarker for early endosomes and has a
parallel coiled-coil homodimer structure. EEA1 contains
two binding sites for Rab5 : N-terminal C,H, zinc finger
structure and C-terminal domain [29], which can form
complexes with Rab5 and specifically binds to phospha-
tidylinositol 3-phosphate. Phosphatidylinositol 3-phos-
phate further enhances the stability of GTP-Rab5,
ensuring the recruitment of EEA1 to early endosomes
[39]. Then, Rab5 competes with soluble NSF attachment
protein receptors (SNAREs) [40] and fuses with the
C-terminal of EEA1, mediating the docking of Rab5 on
the membrane and regulating early endosome transport
[41].

Rabaptin-5 is another Rab5 effector that plays a crucial
role in membrane docking [30]. Rab5 interacts with the
C-terminus of rabaptin-5 to form a complex, with its
binding affinity reflecting the Rab5 activation level. The
remaining structures of rabaptin-5 interact with other
molecules, such as Rab4 and Rabll, to regulate the recir-
culation of receptors [37]. Knockdown of rabaptin-5 pro-
motes the formation of extracellular circulating vesicles, and
overexpression of rabaptin-5 exerts inhibitory effects, which
reveals that rabaptin-5 maintains the balance of the re-
ceptors on the plasma membrane [31, 42].

There is close interaction among GEFs, Rab5, and Rab5
effectors. For example, after activation by Rabex-5, Rab5
recruits its effector Vpsl5 to interact with phosphatidyli-
nositol 3-kinase (PI3K). Then, PI3K generates phosphati-
dylinositol 3-phosphate, which further recruit more effectors
to interact with Rab5. Moreover, activated Rab5 interacts
with its effector rabaptin-5 to form a complex. Rabaptin-5
further promotes the activity of Rabex-5 to facilitate the
positive feedback from GTP-Rab5 and the binding of Rab5
to its downstream effectors [43].
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F1GURE 1: Transformation of Rab proteins between the activated and inactivated forms. GAP catalyzes the hydrolysis of GTP and inactivates
the Rab proteins. GDI stabilizes GDP-Rab. GEF removes GDP via guanine exchange, allowing Rab binding to GTP and further interacting

with downstream effectors.

TaBLE 1: Summary of Rab5 regulator and effectors.

Key structures Functions References
Rabex-5 Ublqu‘ltln.-l.alnfhng domalp, £3 Activation of Rab5 GTPases during endocytosis [18]
ubiquitin ligase domain
RME-6 Vps9-domain Regul.atlon of clathrlg—coated vesicle uncoating and [19, 20]
GEFs delivery of endocytic cargo to early endosomes
A . . Internalization, trafficking and degradation of
RINT Proline-rich domain, tyrosine 36 activated receptors, cytoskeleton remodeling [21]
Regulators P85 C-terminal anq N-terminal Activation of 'Rab5' GTPases during endocytosis, [22-24]
domains migration of cancer cells
Rab-GAP5 Tre2/Bub2/Cdel16 domain Inactivation of Rab5 GTPase§ during endocytosis and [25]
trafficking
GAPs  Tuberin C-terminal domain Inactivation of Rab5 GTPase§ during endocytosis and [26]
trafficking
Armus/ PH domain Inactivation of Rab5 to promote Rab5 to Rab7 [27]
TBC-2 conversion during endosome maturation
C-terminal and N-terminal
EEA1 domains, C,H, zinc finger Fusion, docking and sorting of the early endosome  [28, 29]
domain
Rabaptin-5 C-terminal domain Fusion, docking and sorting of the early endosome  [30, 31]
N-terminal domain, C,H, zinc . . .
Rabenosyn-5 finger domain, and FYVE finger Regulation of macr9p1nocytos1s, 1n1t1at19n of tubular (32, 33]
domain endocytosis and surface flattening
Effectors APPL1/2 PH domain, PTB domain, and  Stable cargo-sorting compartments, membrane traffic/ 33, 34]
leucine zipper motif signaling, cell proliferation ’
Phosphoinositide remodeling of early endosome
ZFYVE21 FYVE-finger domain membranes to mediate signal activation and tissue [35]
inflammation
Rabankyrin-  FYVE finger domain, ankyrin ~ Formation of endosomes and remodeling of the apical (36]
5 repeats plasma membrane

4. The Function of Rab5 in Membrane Receptor
Trafficking and Signal Transduction

Rab5 affects the internalization and intracellular transport of
receptors, such as receptor tyrosine kinases (RTKs), G
protein-coupled receptors (GPCRs), and antigen recogni-
tion receptors by recruiting Rab5 effectors. The signal
transduction of receptors occurs in early endosomes, further
affecting gene transcription and ultimately affecting cell

morphology, growth, differentiation, apoptosis, and disease
development as shown in Figure 2.

4.1. Rab5 and RTKs. RTKs are a large superfamily of re-
ceptors that can bind with ligands and phosphorylate ty-
rosine residues of the target proteins through tyrosine kinase
domains. They have similar structures, including the ex-
tracellular glycosylated peptides, which are responsible for
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FIGURE 2: Roles of Rab5 in the internalization of receptors and signaling pathways. The receptors are sorted through the early endosome. The
GTP-Rab5 recruits GEF Rabex5, which stabilizes Rab5, and Vps34 regenerates phosphatidylinositol 3-phosphate. Most of the receptor enter
into the late endosomes and then degrade after reaching the lysosomes, and some recycle to the cell membrane via Rab4 and Rab11. Rab5
involves numerous signaling pathways, which may influence the cell progress and disease development (see the text for further details).

binding to ligands, hydrophobic transmembrane domain,
and the intracellular region with tyrosine kinase activity
[44, 45]. RTKs have important physiological functions,
regulating cell proliferation, cell differentiation, tumori-
genesis, and tumor development [46, 47]. These receptors
are categorized into several families according to the sim-
ilarity of their peptide sequences and other structural
characteristics, mainly including the epidermal growth
factor (EGF) receptor family, platelet-derived growth factor
(PDGF) receptor family, nerve growth factor receptor
family, fibroblast growth factor receptor family, vascular
endothelial growth factor (VEGF) receptor family, and
hepatocyte growth factor receptor (c-MET) family.
Endocytosis of RTKs includes internalization, trans-
port, sorting, and degradation [48, 49], which stimulates
downstream signals and regulates cellular processes, such
as cell proliferation, migration, and morphological
changes. The internalization of RTKs mainly depends on
clathrin. After stimulation by the ligands, cell surface in-
vaginates and the adapter molecules recruit RTKs to cla-
thrin-coated pits [50], which then enter into the cell. With
catalyzation by dynamin [51], RTKs are transported into
the cytoplasm to form clathrin vesicles and fuse with early
endosomes (mainly Rab5/EEA1-positive early endosomes).
Then, RTKs are transported to the late endosomes together
with the early endosomes, promoting the formation of the
multivesicular body. Subsequently, the multivesicular body
enters into the late endosomes and finally degraded after

reaching the lysosomes via the endosomal sorting complex
required for transport to terminate the RTK signal [52].
RTKs, sorted through the early endosome, can be also
recycled to the cell membrane via Rab4- and Rabl1-pos-
itive endosomes [53].

The EGF receptor is the most widely studied molecules
among RTKs. The extracellular region of the EGF receptor
consists of 622 amino acid residues, which bind multiple
kinds of ligands including EGF and TGF« [54]. In addition
to the important function of Rab5 in the clathrin vesicle
formation, Rab5 promotes the formation of the early
endosomes by regulating vesicle fusion [55]. Knockdown of
Rab5 inhibits EGF receptor internalization and trafficking,
resulting in decreased EGF receptor degradation and sus-
tained signaling transduction. In addition, Rab5-Q79L or the
EGF receptor kinase inhibitor, AG1478, may inhibit the
formation of Rab5-positive early endosomes, reduce the
colocalization of the EGF receptor and Rab5, and further
suppress endosome fusion. Rab5 GEF Rinl restores the
inhibitory effect of the AG1478 or Rab5-Q79L mutant on
endosome fusion to a certain extent [56].

GEFs or interacting proteins of Rab5, such as phos-
pholipase D (PLD), hypoxia inducible factor (HIF), neu-
ropilin-2 (NRP2)/WDFY1 axis, and leucine-rich repeat
kinase 2 (LRRK2), may also regulate the internalization,
transport, and downstream signaling pathways of the EGF
receptor [57]. In addition, our previous study found that
CMTM3, a tumor suppressor gene, decreased EGF receptor
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expression and EGF-mediated tumorigenicity by promoting
Rab5 activity in gastric cancer [58].

PLD can directly affect the upstream molecules of the
EGF receptor and interact with GAP proteins, during which,
Rab5 regulates EGF receptor endocytosis, clathrin vesicles
formation, and finally affects EGF receptor function [31]. By
downregulating the expression of Rab5 effector rabaptin-5,
HIF inhibits EGF receptor degradation, resulting in pro-
longing EGF receptor signaling and promoting cell prolif-
eration and survival. Pleckstrin homology (PH) domain of
PLD1 may be associated with HIF and restore the decreased
rabaptin-5 expression and the inhibited EGF receptor
degradation [31, 59]. WDFY1, a downstream molecule of
NRP2 colocalizes with EEA1 and promotes the maturation
of endosomes, which affect the transport and degradation of
the EGF receptor. NRP2 deletion results in a large accu-
mulation of EEA1/Rab5 in early endosomes, downregulating
late endosomes marker Rab7, delaying the maturation
process of early endosomes to late endosomes, and finally
inhibiting the formation of lysosomes. Moreover, NRP2/
WDFY1 axis plays an important role in cancer cell endo-
cytosis. In cancer cells, the expression of NRP2 is negatively
correlated with WDFY1. NRP2 deletion leads to abnormal
activation of Erk signaling pathway and causes cell death
[60]. LRRK2 interacts with Rab5 to coregulate vesicle for-
mation, during which, LRRK2 phosphorylates Thr6 of Rab5
enhances Rab5 activity and promotes EGF receptor deg-
radation [61].

C-MET is the receptor for HGF, which is involved in cell
proliferation, differentiation, and signal transduction and
regulation of cytoskeleton rearrangement. C-MET is closely
associated with tumorigenesis and development of various
cancers. Rab5 is also involved in the transport and signal
transduction of c-MET. PTP1B interacts with c-MET, EGF,
and PDGF receptors, affecting their internalization. Deletion
of PTP1B promotes the phosphorylation of NSF and reduces
the formation of phosphatidylinositol 3-phosphate-positive
early endosomes and the activation of Rab5, resulting in
inhibition of ¢-MET and EGF receptor transport and deg-
radation [62]. Knockdown of NSF influences signal trans-
duction and recirculation of c-MET, EGF receptor, integrin,
and IGF-1 receptor, leading to restraining of the receptors in
vesicles instead of entering the nucleus and an ultimately
sustained activation of c-MET/MEK1/2 and EGF receptor/
MEKI1/2 signaling pathways [63, 64].

In addition, Rab5 plays a role in PDGF receptor inter-
nalization and trafficking [65]. P85, a subunit of phospha-
tidylinositol 3-phosphate with GAP activity [22], regulates
the endosome transport, recirculation, and downstream
signal activation of receptors and maintains the balance of
the receptors [66]. The p85 mutant p85-R274 reverses p85
activity, inducing the accumulation of Rab5 in the cytoplasm
and promoting the internalization of the PDGF receptor in a
Rab5-dependent manner. Stable overexpression of p85-
R274 in NIH3T3 cells reduces Rab5 activity, inhibits the
degradation of the PDGF receptor, and activates down-
stream PI3K/Akt signaling pathway, resulting in changing in
the cell morphology, promoting cell proliferation, and in-
crease in the risk of cancer [23, 67]. However, overexpression

of Rab5-S34N mutant can reverse these effect [23]. The
classic Rho GTPases family member RhoD is located in early
endosomes and recycling endosomes and is an interaction
protein of rabankyrin-5 (a Rab5 effector) [36]. RhoD is
involved in the transport of the endosome and affects PDGF
receptor internalization and its downstream PLC and Akt
signaling pathways [65].

Rab5 affects the internalization, trafficking, and signal
transduction of the VEGF receptor and colony-stimulating
factor 1 receptor. Overexpression of Rab5-Q79L in endo-
thelial cells increases the size of early endosomes and induces
the colocalization of EEA1 and VEGF receptors in endo-
somes, while knockdown of Rab5 enhances the activation of
VEGEF receptor (Y1175)/MAPK p42/44 signaling pathway
[68]. Colony-stimulating factor 1 receptor colocalizes with
Rab5 in macrophages. Knockdown of Rab5 inactivates
pl10J (a catalytic subunit of Class I PI3K) and inhibits
colony-stimulating factor 1 receptor downstream Akt sig-
naling pathway, ultimately affecting the function of mac-
rophages [69].

4.2.Rab5 and GPCRs. GPCR family, the largest and the most
important membrane receptor superfamily in human, has
more than 2000 members and is involved in virtually all life
activities. The structure of GPCRs includes extracellular
N-terminal domain, seven transmembrane helices (TM1-
TM7) [70], intracellular C-terminal domain, three extra-
cellular loops (ECL1-ECL3), and three or four intracellular
loops (ICL1-ICL4). The amino acids of the transmembrane
helical region of GPCRs are relatively conservative, while the
amino acids of C-terminal, N-terminal, and loop regions are
various. The abnormal expression of GPCRs may cause
many diseases, such as Alzheimer’s disease, Parkinson’s
disease, dwarfism, and color blindness, and it may affect
tumorigenesis and tumor development [71].

Upon ligands stimulation, GPCRs are phosphorylated
rapidly by GPCR kinases, and they bind to adapter protein
p-arrestins to (1) inhibit the interaction of GPC receptors
with G proteins, resulting in signal termination and (2)
promoting endocytosis of GPC receptors, most of which are
mediated by clathrin and catalyzed by dynamin [72, 73]. The
endocytosis, trafficking, and functions of GPCRs are regu-
lated by Rab GTPases. -Arrestin induces the trafficking of
GPCRs to the coated pits via f2-adaptin and clathrin [74].
After internalization, GPCRs are dephosphorylated in
endosomes and then recycled to the cell membrane or stay in
the early endosomes, followed by transporting into late
endosomes and lysosomes for degradation [75, 76].

Rab5 is involved in the internalization and trafficking of
GPCRs by regulating vesicle fusion and receptor sorting in
early endosomes [77]. The transport of NK1R is regulated by
Rab5, which promotes the accumulation of NKIR in the
perinuclear early endosomes. Next, NKIR enters into the
late endosomes and lysosomes. However, Rab5-S34N in-
duces the retention of NKIR in early endosomes on the
membrane [78]. Blocking NKIR suppresses the phosphor-
ylation of p70S6K and 4E-BP1/2, resulting in inhibition of
classical Wnt signaling pathway, which ultimately inhibits



cell proliferation [79]. These findings illustrate that Rab5 not
only plays a key role in the regulation of NK1R transport but
also affects the related signaling pathways to make a con-
tribution to tumorigenesis and tumor development.

Lysophosphatidic acid (LPA) is involved in metabolism,
signal transduction, regulation of organ function, and is
associated with inflammation [80, 81] and cancer [82, 83].
Rab5-S34N inhibits the internalization of the LPA receptor
and the activation of serum response factor that is dependent
on LPA [84], which further suppresses downstream sig-
naling pathways and inhibits tumor cell motility and mi-
gration [85]. CB2 is phosphorylated via ligand stimulation
[86], which promotes cell proliferation [87, 88]. Over-
expression of Rab5-S34N inhibits the internalization of CB2,
but has no obvious effect on CB2 recycling [89]. Leucine-
rich repeat-containing G protein-coupled receptor 5 (LGR5)
is involved in Wnt signaling pathway and plays an important
role in a variety of tissue stem cells. After internalization,
LGR5 migrates from clathrin-coated pits, enters rapidly into
EEA1/Rab5-positive early endosomes, and colocalizes with
Rab5. After binding with R-spondins, LGR activates Wnt/
p-catenin signaling pathway and affects disease development
[90, 91].

In addition, Rab5 colocalizes with the oxytocin receptor
[92], CXCR2 [93], and other various GPCRs. The study of its
mechanism will help us understand the occurrence of dis-
ease and provide new ideas for disease treatment.

4.3. Rab5 and Antigen Recognition Receptors. In addition to
the aforementioned receptors, Rab5 is involved in the
transport and signal transduction of antigen recognition
receptors, such as pattern-recognition receptors (PRRs) in
innate immune cells, T-cell receptor (TCR), and B-cell re-
ceptor (BCR) in adaptive immune cells.

PRRs can recognize pathogen-associated molecular
patterns, which can activate a series of signaling pathways
and trigger innate immune responses. PRRs include toll-like
receptors (TLRs), C-type lectin receptors, NOD-like re-
ceptors, RIG-I-like receptor, and DNA-sensing molecules in
the cytoplasm [94].

By binding with TLR4, lipopolysaccharide activates in-
flammatory-related cells and leads to inflammation [95]. The
colocalization of TLR4 and Rab5 can be observed in bone
marrow-derived macrophages and hematopoietic stem cells,
and progenitor cells upon lipopolysaccharide stimulation
[96]. Rab5 affects both TLR4 downstream NF-kB signaling
and the downstream of target genes, such as Hif-1 and CCL2,
ultimately promoting the amplification of bone marrow-
derived multifunctional hematopoietic stem cells [97].

Mannose and scavenger receptors are macrophage
surface receptors, which participate in pathogen recognition,
antigens presentation, and maintain homeostasis [98, 99].
Both mannose and scavenger receptors colocalize with Rab5
[100-102]. IL4/PGE2 stimulation significantly upregulates
the expression of the mannose receptor, Rab5, and Rab5
GEF Rinl in mouse bone marrow-derived macrophages,
eventually promoting phagocytosis of mouse bone marrow-
derived macrophages [103].
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In addition, Rab5 is involved in the transport and signal
transduction of TCR and BCR. TCR forms complex with Rab5
in early endosomes and accumulates in Rab5-positive early
endosomes [104]. The reduced activity of Rab5 inhibits TCR
degradation and enhances TCR signaling pathways. In mouse
Th2 cells, knockdown of Rab5 selectively affects TCR down-
stream signaling and promotes the production of the corre-
sponding cytokines [105]. It was reported that the number of
CD4"CD8" thymocytes is obviously reduced in T-cell-specific
Rab5-N133I transgenic mice, suggesting that Rab5 plays a key
role in TCR transport and signal transduction [106].

The internalization of BCR and BCR-mediated signal
transduction establish a series of checkpoints in B cells to
ensure B-cell maturation, BCR receptor formation, and
humoral immune response generation [107]. Upon antigen
stimulation, BCR transmits signals to extend cell mor-
phology, and the clathrin-coated pits are generated in BCR-
antigen clusters [108]. Rab5 promotes the formation of early
endosomes in the internalized vesicle fusion and triggers
Erk, p38, JNK, and Akt signal to affect further the life
processes of cells.

Overall, there are two methods we suggest to treat
diseases according to the current Rab5-related studies. First,
a direct interaction with Rab5, such as Rab5-targeted
therapies, that can transform the activation of Rab5 and
influence receptor internalization and trafficking, leading to
physiological changes of patients. Second, an indirect way to
regulate Rab5 by influencing Rab5 effectors, GEFs, or GAPs
is another potential strategy via influencing the aberrant
expression, internalization, trafficking, and degradation of
receptors. At present, the clinical cancer treatment, for in-
stance, is difficult to achieve satisfactory prognosis of cancer
patients because of the high recurrence and metastasis
tendency after surgery, and the resistance to radiotherapy
and chemotherapy. Thus, regulation of the Rab5 strategy
may relieve the cancer patient’s distress and provide us a
novel idea for cancer therapy.

5. Conclusions

Rab5 is a key factor in regulating early endocytosis. Rab5s,
recruits its effectors to early endosomes, is involved in the
transport of endosomes, and affects membrane receptor
internalization, trafficking, and related signaling pathways,
which contribute to gene transcription and the biological
processes of cells. The mutation of Rab5 can cause abnormal
cell morphology and function, suggesting that the structure
of Rab5 is closely related to its function and occurrence and
development of diseases. However, the mechanisms of Rab5
in diseases are not fully understood and need further
investigation.

In summary, the study of Rab5 will help us understand
the regulation mechanisms of receptor internalization and
trafficking and provide new ideas and targets for the
treatment of related diseases.
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