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Abstract 

Background:  Focal cortical dysplasia (FCD) is a neuronal migration disorder and is 
a major cause of drug-resistant epilepsy. However, many focal abnormalities remain 
undetected during routine visual inspection, and many patients with histologically 
confirmed FCD have normal fluid-attenuated inversion recovery (FLAIR-negative) 
images. The aim of this study was to quantitatively evaluate the changes in cortical 
thickness with magnetic resonance (MR) imaging of patients to identify FCD lesions 
from FLAIR-negative images.

Methods:  We first used the three-dimensional (3D) Laplace method to calculate the 
cortical thickness for individuals and obtained the cortical thickness mean image and 
cortical thickness standard deviation (SD) image based on all 32 healthy controls. Then, 
a cortical thickness extension map was computed by subtracting the cortical thickness 
mean image from the cortical thickness image of each patient and dividing the result 
by the cortical thickness SD image. Finally, clusters of voxels larger than three were 
defined as the FCD lesion area from the cortical thickness extension map.

Results:  The results showed that three of the four lesions that occurred in non-tempo-
ral areas were detected in three patients, but the detection failed in three patients with 
lesions that occurred in the temporal area. The quantitative analysis of the detected 
lesions in voxel-wise on images revealed the following: specificity (99.78%), accuracy 
(99.76%), recall (67.45%), precision (20.42%), Dice coefficient (30.01%), Youden index 
(67.23%) and area under the curve (AUC) (83.62%).

Conclusion:  Our studies demonstrate an effective method to localize lesions in non-
temporal lobe regions. This novel method automatically detected FCD lesions using 
only FLAIR-negative images from patients and was based only on cortical thickness 
feature. The method is noninvasive and more effective than a visual analysis for helping 
doctors make a diagnosis.
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Background
Focal cortical dysplasia (FCD) is a malformation of cortical development (MCD) and is 
also one of the most common causes of intractable epilepsy that was defined by Taylor 
et al. in 1971 [1]. In the clinical treatment of drug-resistant epilepsy, surgical resection is 
often used to remove the lesion area. Automated techniques for FCD detection can be of 
great assistance to the neuroradiologist. Therefore, the localization of epileptogenic foci 
before surgery plays an important role in the diagnosis, surgical evaluation, and progno-
sis of epilepsy.

Several conventional methods for the detection of epileptic foci include the voxel-
based morphometry algorithm (VBM) [2–5], the surface-based morphometry algorithm 
(SBM) [6, 7] and the postprocessing method [8, 9] based on voxel feature extraction. The 
VBM technique is mainly based on the image density, compared with the normal tem-
plate, and the abnormal area found in the image is taken as the lesion area. The SBM 
technique is mainly used to reconstruct the cerebral cortex, extract effective features, 
and use a machine learning method to classify and find the lesion area. The postprocess-
ing method is used to extract features, such as texture features and cortical thickness 
features, construct a computational model, and find the location of the lesion. At pre-
sent, there are two novel studies examining FCD lesion recognition and location using 
an advanced convolutional neural network (CNN), which have achieved effective results 
[10, 11].

Magnetic resonance imaging (MRI) is noninvasive and effective in the diagnosis and 
evaluation of epileptogenic foci before an operation. MRI features of FCD show focal 
cortical thickening, fuzziness between grey matter (GM) and white matter (WM), cor-
tical/subcortical WM hyperintensity on T2-weighted imaging (T2WI)/fluid-attenuated 
inversion recovery (FLAIR), widened gyri and abnormal sulci [12]. Cortical thickness is 
a kind of distance measurement between the inner and outer surfaces of the GM, and it 
is an important morphological index of the cerebral cortex. Among the MRI features, 
the increase in cortical thickness is the most obvious feature of cortical dysplasia, espe-
cially FCDs [13]. Studies have shown that increased cortical thickness occurs in 91% of 
patients [14]. The epileptogenic areas induced by FCD often show high signal and corti-
cal thickening or brain volume abnormalities [15] (atrophy or hypertrophy) on FLAIR 
images.

Cortical thickness is a precise and reliable measurement for subtle and focal changes 
in MR images, and it has mainly been used as the feature in the image to identify the 
lesion area. In 2001, Bernasconi used run-length coding (RLC) to measure the thickness 
of GM as a feature to detect FCD lesions [8]. When using RLC to calculate the midline 
area of the brain, especially the cingulate gyrus, it is easy to make many errors. Antel 
used Jones’ Laplace method to calculate the cortical thickness in the image as the fea-
ture, which was better than RLC in the recognition of lesions [9]. The cortical thickness 
measured by the automated segmentation with proximities (ASP)/constrained Lapla-
cian-based ASP (CLASP) methods has been used to classify schizophrenic patients and 
normal people. The results showed that cortical thickness is a reliable quantitative fea-
ture for pattern classification [16]. Alzheimer’s disease patients and normal people have 
also been studied through cortical thickness [17]. In a recent study, using the cortical 
thickness extracted based on SBM as a feature, this method determined 92% of cortical 
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lesions (sensitivity) and few false positives (96% specificity), thereby successfully distin-
guishing patients from normal people [13].

At present, there are two main methods to measure the cortical thickness of the cor-
tex. One is based on VBM, which depends solely on image intensities to determine the 
inner and outer surface of the cortex and then calculates the thickness of the cortex 
[18, 19]. The other is based on SBM, which deforms the inner and outer cortical sur-
faces and then calculates the thickness between these cortical surfaces [20, 21]. Other 
common methods for cortical thickness measurement include projection-based thick-
ness (PBT) [22], minimum line integrals on soft-classified tissue [23] based on minimiz-
ing line integrals over the probability map of the GM in the MRI volume, voxel-based 
cortical thickness (VBCT) maps [24], and measurement of cortical thickness based on 
differential homeomorphism [25]. The most common cortical thickness measurement 
tools are Automatic Regional Cortical ThICkness (ARCTIC) [26, 27] a plug-in for 3D 
Slicer, Civet-CLASP [28, 29], and FreeSurfer [20]. Using VBM to calculate the cortical 
thickness is fast, it does not need to build an accurate surface topology structure, and 
it is more convenient to combine with other images to identify the lesion area. A study 
examined the precision of cortical thickness measurements and compared six different 
cortical thickness metrics, showing that the Laplace metric precisely measures cortical 
thickness [30]. Additional research has indicated that Laplace is effective [31].

Although these currently available techniques for the detection of FCD lesions have 
shown good performance, these techniques are sensitive to artefacts and have high com-
putational complexity. In addition, the current research has mainly focused on either 
T1-weighted images (T1WI) or T2WI, or researchers have combined FLAIR images 
with T1WI or T2WI to study epilepsy. Although T1W images are superior for measur-
ing cortical thickness and identifying the interface between GM and WM, FLAIR images 
are more sensitive in detecting cortical and subcortical hyperintensities than T1WI and 
are more sensitive in identifying subtle lesions. The increase in cortical thickness is the 
most obvious feature of cortical dysplasia, and an assessment of increased cortical thick-
ness can provide valuable information for lesion location. Therefore, we consider using 
the Laplace method to calculate the cortical thickness as an important feature to identify 
lesions in FLAIR-negative images. We are working towards a novel automated method 
that is able to effectively detect FCD lesions automatically from FLAIR-negative images 
based on comparison between the cortical thickness of the individual and that of the 
normal template. This technique is focused on improving the visualization of lesions 
based only on the cortical thickness in FLAIR-negative images. It is meaningful for doc-
tors to improve the detection of FCD lesion areas in epileptic patients who were patho-
logically confirmed to have FCD lesions but with normal FLAIR images (herein called 
FLAIR-negative images) instead of FLAIR-positive images.

Results
Three of the four lesions in three patients with non-temporal lobe epilepsy were 
detected. The detection results in the three patients are shown in row A in Fig. 1. We 
also used an extension map based on GM density in the morphometric analysis program 
(MAP) algorithm [5] to locate the lesion area, as shown in row B in Fig. 1.
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For the detected image, if the value of the cortical thickness extension map was greater 
than three, we considered the voxel as a lesion voxel. The quantitative evaluation of the 
three patients with the detected lesion is shown in Table 1.

We quantitatively analysed the comparison between the proposed method and the 
existing techniques, as shown in Table  2. The detection results of the FLAIR-negative 
image in this study using the MAP algorithm are shown in row five of Table 2.

We counted FCD lesion volumes, which were manually segmented, and these values 
ranged from 1545.75 to 9412.88  mm3. We divided the patients into two groups: one 
group was those with non-temporal lobe epilepsy (non-TLE), which included epilep-
tic patients whose lesions occurred in an area outside the temporal lobe, and the other 
group was those with temporal lobe epilepsy (TLE), which included epileptic patients 
whose lesions occurred in the area of the temporal lobe. We calculated the average 
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Fig. 1  Detection results with three patients. The first column is the original image. The second column is the 
image of the manually marked lesion area. The third to fifth columns are the detection results in the sagittal 
plane, coronal plane and horizontal plane, respectively, and the cross-hairs indicate the recognized position. 
In these columns, row A represents the results of the proposed method, while row B represents the extension 
map detected by MAP. The sixth column is the image of the postoperative image, and the cross-hairs indicate 
the position after the operation
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cortical thickness in different regions in different images. The comparison between the 
cortical thickness of the lesion area of the patient and that of the healthy controls (HCs) 
is shown in Table 3. The FCD lesion refers to the manually segmented lesion area. The 
contralateral area of the FCD was the symmetrical area of the midsagittal plane (MSP) 
of the brain in this patient. The corresponding area of the FCD in the mean image and 
standard deviation (SD) image refers to the corresponding regions in the patient in the 
manually segmented FCD region in the HCs.

We also calculated the mean and SD of different anatomical areas of the cortical thick-
ness mean image according to the labels provided by Neuromorphometrics. Table  4 

Table 1  Quantitative results of the detected lesions (%)

Metrics P1 P2 P3 Mean ± SD

Specificity 99.86 99.54 99.94 99.78 ± 0.21

Accuracy 99.85 99.52 99.93 99.76 ± 0.21

Recall 74.34 67.71 60.32 67.45 ± 7.01

Precision 18 11.13 32.13 20.42 ± 10.70

Dice coefficient 28.98 19.12 41.93 30.01 ± 11.43

Youden index 74.2 67.25 60.26 67.23 ± 6.97

AUC​ 87.1 83.63 80.13 83.62 ± 3.48

Table 2  Performance comparison with existing techniques

Related work Method Data type Patient-wise Voxel-wise

Recall Recall Precision Dice coefficient

Wong-Kisiel et al. [4] VBM T1-weighted 64 – – –

Ahmed et al. [6] SBM T1-positive 85 20.14 – 22.36

T1-negative 58 2.47 – 3.68

Bijay Dev et al. [10] CNN FLAIR 82.5 40.1 80.69 52.47

Wagner et al. [5] VBM FLAIR-negative images 
from this study were 
used

50 19.47 10.27 13.36

Proposed method VBM FLAIR-negative 50 67.45 20.42 30.01

Table 3  The statistical average cortical thickness in different regions

Type P Patients Healthy controls

FCD area Contralateral 
area of FCD

Corresponding area 
of FCD in mean image

Corresponding area 
of FCD in SD image

Non-TLE P1 10.80 6.14 2.77 2.54

10.12 7.90 6.03 3.30

P2 6.28 4.84 3.01 2.63

P3 7.73 4.04 3.57 2.51

Mean ± SD 8.73 ± 2.10 5.73 ± 1.69 3.84 ± 1.49 2.75 ± 0.37

TLE P4 8.24 8.21 9.65 2.68

P5 9.22 8.69 9.87 2.90

P6 9.55 10.16 9.82 2.79

Mean ± SD 9.00 ± 0.68 9.02 ± 1.02 9.78 ± 0.12 2.79 ± 0.11
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shows some selected areas with a mean cortical thickness greater than 4.5 mm. The label 
numbers in the first column and the names of the anatomical area in the second column 
were defined by the labels provided by Neuromorphometrics.

Patient P1 had two lesions. One of the lesions was detected, as shown in row A in 
Fig. 1, and the other was missed, as shown in Fig. 2.

Discussion
This method is effective in detecting epilepsy in non-temporal lobe areas. Three of the 
four lesions in the non-temporal areas of FLAIR-negative images from three patients 
were detected, as shown in Fig.  1. We observed that the cortical thickness extension 
maps showed an increase in the lesion area. At present, many algorithms can find FCD II 
lesions in MR images, but it is difficult to detect FCD I lesions. In this study, for patients 
P1 and P2 with FCD Ib lesions, the localization results were better. However, no lesions 
were detected for TLE.

Comparing the detection results of the proposed method and MAP [5] in Fig.  1 
and Table  2, we can conclude that the proposed method was better. Although the 
MAP method can also detect FCD lesions, there were too many false-positive areas 
detected. This is because the MAP method is mainly based on the density of images, 
where the extension map of MAP identifies abnormal extension of GM into WM and 
the junction map of MAP is sensitive to the blurry area at the GM-WM junction. 

Table 4  Mean and SD cortical thickness (in mm) for thicknesses greater than 4.5 mm

Label Anatomical area Cortical thickness (right/left) (mm)

Mean SD

23/30 Accumbens area 9.98/10.47 1.77/1.99

31/32 Amygdala 12.51/12.56 2.50/2.28

36/37 Caudate 5.89/5.97 2.49/2.47

47/48 Hippocampus 7.71/7.78 2.43/2.34

57/58 Putamen 11.52/11.76 4.20/4.46

75/76 Basal forebrain 5.91/5.79 2.99/3.02

100/101 ACgG anterior cingulate gyrus 5.85/5.88 2.91/2.93

102/103 AIns anterior insula 6.83/6.77 3.12/3.12

104/105 AOrG anterior orbital gyrus 4.63/4.71 2.64/2.53

116/117 Ent entorhinal area 9/9.13 2.91/3.22

118/119 FO frontal operculum 4.71/4.65 3.03/2.84

122/123 FuG fusiform gyrus 6.07/6.44 3.24/3.31

132/133 ITG inferior temporal gyrus 5.48/5.62 3.37/3.47

138/139 MCgG middle cingulate gyrus 4.56/4.49 2.77/2.79

140/141 MFC medial frontal cortex 5.47/5.35 2.76/2.73

146/147 MOrG medial orbital gyrus 4.80/4.54 2.61/2.58

154/155 MTG middle temporal gyrus 5.43/5.26 3.47/3.44

170/171 PHG parahippocampal gyrus 4.75/4.49 2.35/2.40

172/173 PIns posterior insula 5.64/5.67 2.62/2.77

178/179 POrG posterior orbital gyrus 5.01/4.92 2.68/2.71

186/187 SCA subcallosal area 5.00/5.16 2.60/2.56

200/201 STG superior temporal gyrus 4.81/4.68 3.37/3.34

202/203 TMP temporal pole 5.32/5.31 2.87/2.88
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However, the densities of GM and WM in the FLAIR image are very close, and the 
boundary is very unclear.

The voxel-wise analysis of the results of the quantitative detection of lesions with 
the proposed method is reported in Table 1, in which the specificity and accuracy are 
relatively high, mainly due to class imbalance in that a large number of voxels belong 
to healthy voxels. The recall was 67.45%, which indicated the percentage of voxels in 
the manual segmentation label that were classified as a lesion voxel. It can be seen 
that a large number of lesion voxels were recognized. The Dice coefficient was 30.01%, 
which reflects the correlation accuracy of the segmentation, and this method balances 
recall and precision. In addition, the area under the receiver operating characteristic 
(ROC) curve (AUC) was 83.62%, which indicated a good classification performance of 
the proposed method.

Table 2 shows the performance comparison with existing techniques and provides 
some results with VBM, SBM, and CNN. The current VBM method is mainly to 
enhance the FCD lesion area, and its results are mainly patient-wise, and therefore 
lacks voxel-wise measurement results. Ahmed et  al. used the SBM method to ana-
lyse T1-positive and T1-negative images, and T1-positive images had good results. 
Bijay Dev et al. first used a CNN model to automatically segment FCD lesions with 
only FLAIR images. This method achieved the best segmentation results, mainly 
because the purpose of the study was to perform segmentation, there was no mention 
of whether the FLAIR image was positive or negative. Indeed, CNN technology has 
achieved good results in the field of image recognition and location. The comparison 

P1

Healthy controls

Fig. 2  The first row is the cortical thickness image for patient P1, and the cross-hairs indicate the actual 
location of the lesion. The second row shows the cortical thickness features of healthy controls
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of two VBM techniques for the detection of FLAIR-negative images also showed that 
the proposed technique can provide higher detection and segmentation accuracy.

Detection of epilepsy in the temporal lobe

Previous studies have shown that the cortical thickness in the human brain varies con-
siderably, from approximately 2 mm in the calcarine sulcus to approximately 4 mm in 
the precentral gyrus, with an average of approximately 3  mm [32–35]. In this study, 
the average cortical thickness of the different anatomical areas of HCs was calculated 
according to the labels provided by Neuromorphometrics. The thickness of most areas 
was in the range of 2 to 4 mm, which was consistent with previous studies.

The detection results of lesions that occurred in the non-temporal areas were posi-
tive, but for the three patients whose lesions occurred in the temporal lobe area, the 
detection results were not ideal. In Table 3, the average cortical thickness in those with 
non-TLE lesions was larger than that in the HCs, but the difference in average cortical 
thickness was very small between the HCs and the patients with TLE lesions. For exam-
ple, the average cortical thickness of the lesions in patient P6 was 9.55 and the average 
cortical thickness in HCs was 9.82. They were very similar, and the final z-score values 
were very small, so it was very difficult to accurately locate the FCD lesions in the tem-
poral lobe based only on cortical thickness. Table 4 shows that the cortical thickness of 
the anatomical structural cortex near the temporal lobe on the left and right sides was 
relatively thick. This in itself increased the difficulty for localizing lesions in the region.

Patient P1 had two lesions

Patient P1 had two lesions, one of which was detected and the other was missed. How-
ever, the missed lesion was confirmed as actual epileptic foci by cortical electroencepha-
logram (ECoG). Table 4 shows that the missed lesion in patient P1 was located in the 
anterior cingulate gyrus. The mean cortical thicknesses of the left and right sides for this 
area were 5.85 and 5.88, respectively, and the SDs were 2.91 and 2.93, respectively. As 
shown in Table 3, the average cortical thickness of the lesion not detected in patient P1 
was 10.12 mm, and the average cortical thickness in HCs in this area was 6.03, and the 
SD was 3.30. The z-score value of the lesion not detected in patient P1 was 1.24, and 
because the threshold was three, this lesion was ignored. The smooth cortical thickness 
for patient P1 and the cortical thickness mean image for HCs are shown in Fig. 2. The 
area in the normal template image corresponding to patient P1’s undetected lesion also 
had a slightly thick cortex, as shown in the second row of Fig. 2. Therefore, if the cortex 
of the patient and that in the normal template in a certain area are both relatively thick, 
the lesion area may be missed during the comparison process.

Limitations

The accuracy of the location in patient P2 was slightly lower, which was mainly caused 
by the GM segmentation. Because the boundary of the GM and WM in the FLAIR image 
was not clear, the detection accuracy for lesions depends on the correct segmentation of 
the cortex. At the same time, the lesions marked by doctors by hand may not be par-
ticularly accurate, which may have reduced the performance of the quantitative analysis. 
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Therefore, the subsequent GM segmentation and manual labelling of lesions need to be 
further optimized.

Although our recognition results are good, there were still false-positive areas. If the 
threshold of the cortical thickness extension map was reduced from three to two, all the 
lesions can be identified, but the number of false-positive areas would increase. The fol-
low-up study can use the present method in combination with other effective features to 
locate the lesion area and remove more false-positive areas.

Conclusion
We presented a normalized mean cortical thickness map of the brain, and then based on 
this map, we located abnormal cortical areas of the brain from FLAIR-negative images. 
FCD lesions can be found by comparing cortical thickness in patients to normal con-
trols. This method was effective for locating the lesions in the non-temporal lobe areas. 
This method can be used not only for any modal image, but also for any disease related 
to the thickness of the cortex, as long as the GM and WM can be accurately segmented.

Noninvasive measurement and analysis of cortical thickness based on MR images is 
of great significance for the study of disease occurrence and has become an important 
research method in brain science. Abnormal cortical thickening or thinning is related 
to neurological diseases. Cortical thickening occurs in epileptic patients with cortical 
dysplasia, while abnormal cortical thinning occurs in patients Alzheimer’s disease (AD) 
or schizophrenia. Therefore, cortical thickness as a feature can provide effective infor-
mation about normal or abnormal areas. The measurement of cortical thickness can be 
applied to disease monitoring and in research.

Materials and methods
Materials

Patients

Six patients were selected (average age ± SD = 32 ± 13; four males and two females) from 
the Sixth Medical Center of PLA General Hospital (Haidian District, Beijing, China) 
between 2012 and 2016 who had three-dimensional (3D) high-resolution FLAIR-nega-
tive images. The inclusion criteria included the following: (1) all patients underwent sur-
gical resection of the FCD lesions to treat drug-resistant epilepsy, and epilepsy did not 
reoccur. (2) All patients were confirmed with histological FCD based on classification 
standards [32, 36]. (3) All patients had preoperative 3T high-resolution FLAIR images 
that were negative. A total of seven lesions were detected in the six patients and  patient 
P1 had two lesions. Pathological reports based on resected tissues confirmed that three 
patients were FCD I b, one was FCD II a and two were FCD II b. The surgery was based 
on strong clinical and electroencephalogram (EEG) localizing information. The manual 
segmentation of the FCD lesion area was performed by an epilepsy expert with 18 years 
of clinical experience. The detailed patient demographics are shown in Table 5.

MRI acquisition

Preoperative 3D MR images were acquired on a 3T scanner (SIEMENS Skyra) using 
a FLAIR sequence (repetition time (TR) = 5000  ms, echo time (TE) = 396  ms, flip 
angle = 120°, slice thickness = 0.4688  mm, displayed field of view (DFOV) = 195  mm) 
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with an isotropic voxel size of 0.4688 *0.4688 *0.4688 mm and the size of the images was 
320 * 416 * 512. Approval for the study was obtained from the Sixth Medical Center of 
PLA General Hospital institutional ethics committee.

Healthy controls (HC) or normal subject database

All HCs come from the IXI (Information eXtraction from Images) Dataset (http://brain​
-devel​opmen​t.org/ixi-datas​et/). The dataset includes nearly 600 MR images from nor-
mal, healthy subjects. The MR image acquisition protocol for each subject included T1-, 
T2- and proton density (PD)-weighted images, magnetic resonance angiography (MRA) 
images and diffusion-weighted images (15 directions). We used T1 images from 32 age-
matched subjects from Hammersmith Hospital using a Philips 3T system. The details 
of the scanner parameters are as follows: TR = 9.6, TE = 4.60, number of phase encod-
ing steps = 208, echo train length = 208, reconstruction diameter = 240.0, acquisition 
matrix = 208 × 208, and flip angle = 8.0°.

Image processing

All digital imaging and communication (DICOM) data from the MR scanner were con-
verted into 3D images in the Neuroimaging Informatics Technology Initiative (NIfTI) 
format by dcm2nii software. All images were analysed on a Dell computer (Intel(R) 
Xeon(R) CPU E5-1607 v3 @3.10 GHz, 4 GB RAM) using Statistical Parametric Mapping 
12 (SPM) [33]. We used the labels_Neuromorphometrics.nii from SPM12 to remove 
the cerebellum area. The neuromorphometric also called maximum probability tissue 
labels derived from the ‘MICCAI 2012 Grand Challenge and Workshop on Multi-Atlas 
Labelling’ (https​://masi.vuse.vande​rbilt​.edu/works​hop20​12/index​.php/Chall​enge_Detai​
ls). The labelled data (labels_Neuromorphometrics.nii) were provided by Neuromorpho-
metrics, Inc. (http://Neuro​morph​ometr​ics.com/). These data were released under the 
Creative Commons Attribution-NonCommercial (CCBY-NC) licence with no end date.

Methods
The methodology used in this study consisted mainly of preprocessing, construct-
ing a cortical thickness extension map and quantitative evaluation, and the detailed 
process mainly included six steps: (1) bias correction, (2) normalized segmentation, 
(3) cortical thickness calculation, (4) convolution/smoothing, (5) comparison with 
HCs, and (6) quantitative evaluation. The preprocessing included the first step and 
the second step, mainly using SPM12. Constructing a cortical thickness extension 

Table 5  Detailed patient demographics and FCD information

No. Year/onset age Sex Surgical resection region FCD type

P1 1993/23 Male Left frontal lobe, cingulate gyrus I b

P2 2003/14 Male Left occipital lobe I b

P3 1986/29 Male Right occipital lobe II b

P4 1970/46 Male Right temporal lobe I b

P5 1984/32 Female Left temporal lobe II a

P6 1971/45 Female Left temporal lobe II b

http://brain-development.org/ixi-dataset/
http://brain-development.org/ixi-dataset/
https://masi.vuse.vanderbilt.edu/workshop2012/index.php/Challenge_Details
https://masi.vuse.vanderbilt.edu/workshop2012/index.php/Challenge_Details
http://Neuromorphometrics.com/
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map comprised the third step to the fifth step. The 3D Laplace method was used to 
calculate the thickness of the cortex in step three. In the fourth to sixth steps, MAT-
LAB was used to realize the detection and evaluate the differences in the lesion area 
between the detection results and manually segmented results. The overall structural 
flow chart is shown in Fig. 3.

The main steps are as follows:

(1)	 Bias correction: bias correction corrected the density of the image and removed the 
bias artefacts due to the physics of MR scanning, which is a process that makes the 
image more conducive to automatic processing. The bias-corrected version should 
have more uniform intensities within the different types of tissues. The parameters 
in SPM12 were as follows: bias regularization = light regularization (0.001); Bias 
FWHM = 60 mm.

(2)	 Normalized segmentation: the individual subject images were normalized by per-
forming a nonlinear deformation field based on the tissue probability maps (TPM) 
through affine registration. Meanwhile, the normalized image was segmented into 
six different tissue types, including the GM, WM, cerebrospinal fluid (CSF), bone, 
soft tissue, and air/background, using TPM. The parameters in SPM12 were as fol-
lows: tissue probability map = TPM; The number of Gaussians is set 1, 1, 2, 3, 4, 
2 by default; Markov Random Field (MRF) parameter = 1; Clean up = light clean; 

Fig. 3  Overview of the image processing steps for identifying lesions based on cortical thickness: (1) bias 
correction, (2) normalized segmentation, (3) cortical thickness calculation, (4) convolution, (5) comparison 
with healthy controls (see text for details), and (6) quantitative evaluation
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Warp regularization = [0 0.001 0.5 0.05 0.2]; Affine regularization = east Asian 
brains; Smoothness = 0; Sampling distance = 3.

(3)	 Cortical thickness calculations: measuring the cortical thickness required two 
major processing steps: cortical segmentation and thickness calculation. This corti-
cal segmentation, which is done in step 2, yielded two surfaces: the WM–GM sur-
face between WM and GM and the GM-CSF surface between GM and CSF. The 
calculation of cortical thickness involved calculating the distance between the two 
surfaces. The Laplace method was used to calculate the thickness of the GM cor-
tex in 3D images and included three steps: first, the initial equipotential surface 
through the inner and outer boundaries of the cerebral cortex were defined, each 
equipotential surface between the two boundaries were iteratively solved, then the 
normal vector of the equipotential surface was calculated, and finally, the thickness 
of the cortex was calculated by the field line tracking method. The detailed process 
of these three steps was as follows:

	 Step 1: the GM-CSF surface and WM–GM surface of the cortex were set as two 
boundary lines of the potential field, and the potential field model ψ was con-
structed. The potential field was described by a second-order partial differential 
equation, also known as the Laplace equation, as shown in Eq. (1).

	

where the GM-CSF surface is the outer surface and the potential field value of the 
area outside the outer surface is set to 256. The WM-GM surface is the inner sur-
face, and the WM area within the inner surface is set to a potential field value of 0.

	 Then, we used the iterative method to solve the equipotential surface between the 
inner and outer surfaces of the 3D brain space, as shown in Eq. (2). The equipoten-
tial surfaces do not intersect each other and transform smoothly between the inner 
and outer surfaces.

	

where ψi(x, y, z) potential energy value at position (x, y, z) of the i - th iteration, 
�x = 1 , and εi = sqrt[(ψi+1 − ψi)

2] . When εi < 0.1 , the iteration is stopped, and 
the equipotential surface is obtained.

	 Step 2: the field line was calculated according to the equipotential surface, as shown 
in Eq. (3). The field line is located between the inner and outer surfaces and perpen-
dicular to all the equipotential surfaces.

	

(1)∇
2ψ=

∂2ψ

∂x2
+

∂2ψ

∂y2
+

∂2ψ

∂z2
= 0

(2)
ψi+1(x, y, z) =(ψi(x +�x, y, z)+ ψi(x −�x, y, z)+ ψi(x, y+�y, z)

+ ψi(x, y−�y, z)+ψi(x, y, z +�z)+ψi(x, y, z −�z))/6

(3)











�

�ψ(x, y, z)/�x =[ψ(x +�x, y, z)− ψ(x −�x, y, z)]/2
�

�ψ(x, y, z)/�y =[ψ(x, y+�y, z)− ψ(x, y−�y, z)]/2
�

�ψ(x, y, z)/�z =[ψ(x, y, z +�z)− ψ(x, y, z −�z)]/2
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	 Then, the field line was normalized according to Eq. (4) of the gradient and the unit 
tangent vector of the point along the field line direction was obtained.

	

	 Step 3: we used field line tracing to calculate the thickness of the cortex. The thick-
ness of any point in the cortex can be defined as the length of the field line pass-
ing the point. We first calculated the number of steps from each point in the 
cortex to the GM-CSF boundary. For example, starting from a point (x, y, z) 
on the boundary of GM-WM, set the step size to 0.1, and obtain the next 
point (x +�x, y+�y, z +�z) along the direction of the unit tangential vec-
tor T (x, y, z) , where �x = stepsize ·

−→
T x(x, y, z) , �y = stepsize ·

−→
T y(x, y, z) , and 

�z = stepsize ·
−→
T z(x, y, z) . Then, we repeated the above operations to obtain the 

number of steps from each voxel to the GM-CSF boundary. As �x , �y , �z can-
not always be an integer, the direction of the next point T (x +�x, y+�y, z +�z) 
has to be interpolated. The number of steps from each point in the cortex to the 
GM-WM boundary can be calculated in the same way and in the opposite direc-
tion −T (x, y, z) . Finally, the steps to the inner and outer boundaries were added 
to obtain the total steps for each voxel in the cortex. The true thickness is the total 
steps multiplied by the step size and multiplied by the resolution.

(4)	 Convolution: the cortical thickness obtained in step (3) was smoothed by perform-
ing a 3D convolution with a matrix (convolution kernel) of 43. This can reduce the 
high-frequency noise in the cortical thickness measurement, improve the signal-to-
noise ratio of the image, make the thickness values closer to a normal distribution, 
and ultimately improve the detection accuracy.

(5)	 Comparison with healthy controls: to find FCD lesion areas with different cortical 
thicknesses from epilepsy patients using HCs, a cortical thickness extension map, 
or z-score map, was computed by subtracting the cortical thickness mean image of 
the HCs from the smooth cortical thickness image of each individual and dividing 
the result by the cortical thickness standard deviation (SD) image of the HCs.

	 The cortical thickness mean image and the cortical thickness SD image were cal-
culated from the T1 images of 32 normal subjects. Each individual was processed 
from step (1) to step (4). The average of all individuals was taken to obtain the corti-
cal thickness mean image, and the standard deviation of all individuals was taken to 
obtain the cortical thickness SD image.

(6)	 Quantitative evaluation: after detection, the detected lesions and the manually seg-
mented lesions were compared to qualitatively and quantitatively evaluate the 
detection effect. Lesion segmentation was performed in a semi-automatized and 
retrospective manner on the normalized brain images by an experienced epilepsy 
specialist depending on the surgical resection area. For the quantitative evaluation, 
we performed patient-wise and voxel-wise analyses. We used specificity, accuracy, 
recall, precision, Dice coefficient, Youden index, and area under the receiver oper-

(4)















−→
T x = (�ψ/�x)/[(�ψ/�x)2 + (�ψ/�y)2 + (�ψ/�z)2]
−→
T y = (�ψ/�y)/[(�ψ/�x)2 + (�ψ/�y)2 + (�ψ/�z)2]
−→
T z = (�ψ/�z)/[(�ψ/�x)2 + (�ψ/�y)2 + (�ψ/�z)2]
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ating characteristic (ROC) curve (AUC) for the quantitative evaluation [37]. The 
following equations were used: Specificity = TN/(TN+ FP) · 100 , 
Accuracy = (TP+ TN)/(TP+ FP+ FN+ TN) · 100 , Recall = (TP

/

TP+ FN) · 100 , 
Precision = TP/(TP+ FP) · 100 , Dice coefficient = 2× Precision×Recall

Precision+Recall · 100 , 
Youden index = Recall+ Specificity− 1 , and AUC = 1− 1

2

(

FP
FP+TN + FN

FN+TP

)

,

	 where TP are the actual lesion voxels that were identified; FP are the healthy voxels 
incorrectly identified as lesion voxels; FN are the actual lesion voxels incorrectly 
identified as healthy voxels; and TN are the healthy voxels correctly identified as 
healthy voxels.
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