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SUMMARY:

Advances in molecular “omics” technologies have motivated new methodology for the integration 

of multiple sources of high-content biomedical data. However, most statistical methods for 

integrating multiple data matrices only consider data shared vertically (one cohort on multiple 

platforms) or horizontally (different cohorts on a single platform). This is limiting for data that 

take the form of bidimensionally linked matrices (e.g., multiple cohorts measured on multiple 

platforms), which are increasingly common in large-scale biomedical studies. In this paper, we 

propose BIDIFAC (Bidimensional Integrative Factorization) for integrative dimension reduction 

and signal approximation of bidimensionally linked data matrices. Our method factorizes the data 

into (i) globally shared, (ii) row-shared, (iii) column-shared, and (iv) single-matrix structural 

components, facilitating the investigation of shared and unique patterns of variability. For 

estimation we use a penalized objective function that extends the nuclear norm penalization for a 

single matrix. As an alternative to the complicated rank selection problem, we use results from 

random matrix theory to choose tuning parameters. We apply our method to integrate two 

genomics platforms (mRNA and miRNA expression) across two sample cohorts (tumor samples 

and normal tissue samples) using the breast cancer data from TCGA. We provide R code for fitting 

BIDIFAC, imputing missing values, and generating simulated data.
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1. Introduction

1.1 Overview

Several recent methodological developments have been motivated by the integration of 

multiple sources of genetic, genomic, epigenomic, transcriptomic, proteomic, and other 

omics data. Successful integration of these disparate but related sources is essential for a 

complete understanding of the molecular underpinnings of human diseases, by providing 
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essential tools for novel hypotheses (Hawkins et al., 2010) and improving statistical power. 

For example, TWAS and MetaXcan/PrediXcan have shown improved power for gene-based 

association testing, by integrating expression quantitative trait loci (eQTL) and genome-wide 

association (GWAS) data (Gamazon et al., 2015; Gusev et al., 2016). Similarly, the iBAG 

approach (Wang et al., 2012) has shown improved power for gene-based association by 

integrating messenger RNA (mRNA) levels with epigenomic data (e.g., DNA methylation). 

Moreover, recent studies showed that protein-level variations explain additional individual 

phenotypic differences not explained by the mRNA levels (Wu et al., 2013).

In addition to integrating multiple sources of high-dimensional data, integrating high-

dimensional data across multiple patient cohorts can also improve interpretation and 

statistical power. For example, the integration of genome-wide data from multiple types of 

cancers can improve classification of oncogenes or tumor suppressors (Kumar et al., 2015) 

and may improve clinical prognoses (Liu et al., 2018).

Most statistical methods for the integration of high-dimensional matrices apply to data that 

are linked vertically (e.g., one cohort measured with more than one platform, such as mRNA 

and miRNA) or horizontally (e.g., mRNA expression measured for multiple cohorts) (Tseng 

et al., 2012). However, linked structures in molecular biomedical data are often more 

complex. In particular, the integration of bidimensionally linked data (e.g., more than one 

heterogeneous groups of subjects measured by more than one platform) is largely 

unaddressed. In this paper, we propose a new statistical method for the low-rank structural 

factorization of large bidimensionally linked datasets. This can be used to accomplish three 

important tasks: missing value imputation; dimension reduction; and the interpretation of 

lower-dimensional patterns that are shared across matrices or unique to particular matrices.

1.2 Motivating Example

The Cancer Genome Atlas (TCGA) is the most comprehensive and well-curated study of the 

cancer genome, with data for 6 different omics data sources from 11,000 patients 

representing 33 different cancer tumor types as well as rich clinical phenotypes. We consider 

integrating a cohort of breast cancer (BRCA) tumor samples, and a cohort of normal 

adjacent tissue (NAT) samples, from TCGA. NAT samples are often used for differential 

analyses, e.g., to identify genes with mean differential expression between cancer and 

normal tissue. However, such analyses do not address the molecular heterogeneity or trans-

omic interactions that characterize cancer cells. Noticeably, Aran et al. (2017) conducted a 

comprehensive study on NAT across different cancers using TCGA and the Genotype-Tissue 

Expression (GTEx) program data and showed that the expression levels of NAT from breast, 

colon, liver, lung, and uterine tumors yield different clustering from their respective tumor 

tissues. In addition, Huang et al. (2016), using TCGA data, suggested that NATs not only 

serve as controls to tumor tissues but also provide useful information on patients’ survival 

that tumor samples do not. More detailed investigations of the molecular heterogeneity 

between tumor and NAT tissue are limited by available statistical methods, especially for 

multi-omics data. Our premise is that comprehensive analysis of multiple omics data sources 

across both tumor tissues and NAT would distinguish the joint signals that are shared across 
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different omics profiles (e.g., mRNA and miRNA) and those that are only attributed to the 

tumors.

1.3 Existing Methods on Joint Matrix Factorization

Principal components analysis (PCA) and related techniques such as the singular value 

decomposition (SVD) are popular for the dimension reduction of a single data matrix X : m 
× n, resulting in the low-rank approximation X ≈ UVT. Here, U are row loadings and V are 

column scores that together explain variation in X. There is also a growing literature on the 

simultaneous dimension reduction of multiple data matrices Xi with size mi × n, which 

estimate low-rank signals that are jointly shared across data matrices. To capture joint 

variation, concatenated PCA assumes Xi = UiVT for each matrix Xi, i.e., the scores are 

shared across matrices. The iCluster (Shen et al., 2009) and irPCA (Liu et al., 2016) 

approaches make this assumption for the integration of multi-source biomedical data. 

Alternatively, more flexible approaches allow for structured variation that may be shared 

across matrices or specific to individual matrices. The Joint and Individual Variations 

Explained (JIVE) method (Lock et al., 2013) decomposes joint and individual low-rank 

signals across matrices via the decomposition Xi = UiVT + WiVi
T + Ei . In the context of 

vertical integration, the joint and individual scores V and Vi have been applied to risk 

prediction (Kaplan and Lock, 2017) and clustering (Hellton and Thoresen, 2016) for high-

dimensional data. Several related techniques such as AJIVE (Feng et al., 2018) and SLIDE 

(Gaynanova and Li, 2019) have been proposed (Zhou et al., 2016), as well as extensions that 

allow the adjustment of covariates (Li and Jung, 2017) or accommodate heterogeneity in the 

distributional assumptions for different sources (Li and Gaynanova, 2018; Zhu et al., 2018).

The aforementioned methods focus exclusively on data that share a single dimension (i.e., 

either horizontally or vertically), and extension to matrices that are linked both vertically and 

horizontally is not straightforward. O’Connell and Lock (2019) decompose shared and 

individual low-rank structure for three interlinked matrices X, Y, Z where X and Y are 

shared vertically and X and Z are shared horizontally. However, their approach is not 

directly applicable to more general forms of bidimensionally linked data, and it suffers from 

potential convergence to a local minimum of the objective during estimation.

1.4 Our Contribution

We propose the first unified framework to decompose bidimensionally linked matrices into 

globally shared, horizontally shared (i.e., row-shared), vertically shared (i.e., column-

shared), or individual structural components. Our specific aims are to (i) separate shared and 

individual structures, (ii) separate the shared components into one of globally-shared, 

column-shared, or row-shared structures, and (iii) maintain the low-rank structures for the 

signals. Our approach extends soft singular value thresholding (SSVT), i.e., nuclear norm 

penalization, for a single matrix. It requires optimizing a single convex objective function, 

which is relatively computationally efficient. It also facilitates a simple and intuitive 

approach based on random matrix theory for model specification, rather than complex and 

computationally expensive procedures to select tuning parameters or model ranks. Although 

our primary focus is bidimensional integration, our approach includes a novel method for 
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vertical-only or horizontal-only integration as a special case. We show in simulation studies 

that our method outperforms existing methods, including JIVE.

The rest of this article is organized as follows. Section 2 describes the proposed method, 

denoted by BIDIFAC (bidimensional integrative factorization) for bidimensionally linked 

matrices, and addresses estimation, tuning parameter selection and imputation algorithms. 

Section 3 constructs simulated data under various scenarios and compares our method to 

existing methods in terms of structural reconstruction error and imputation performance. In 

Section 4, we apply BIDIFAC to the breast cancer and NAT data obtained from TCGA and 

illustrate the utility of the model. We conclude with some points of discussions in Section 5.

2. Methods

2.1 Notation and Definitions

Consider a set of pq matrices {Aij : mi × nj | i = 1,...,p, j = 1,...,q}, which may be 

concatenated to form the matrix

A00 =
A11 ⋯ A1q

⋮ ⋱ ⋮
Ap1 ⋯ Apq

, (1)

where A00 : m0 × n0 with with m0 = ∑i = 1
p mi and n0 = ∑j = 1

p nj . Analogously, we define the 

column-concatenated matrices Ai0 = [Ai1,...,Aiq] for i = 1,...,p and the row-concatenated 

matrices A0j = A1j
T , …, Apj

T T
 for j = 1,...,q. We first define terms to characterize the 

relationships among these data matrices.

DEFINITION 1: In the arrangement (1), a set of data matrices with the structure of {Xij|i = 

1,…,p, j = 1,…,q} follows a p × q bidimensionally linked structure. The elements of {Xij|j = 

1,…,q} are row-shared and the elements of {Xij|i = 1,…,p} are column-shared. The elements 

of {Xij|i = 1,…,p, j = 1…,q} are globally-shared if every Xij in the set is column-shared with 

Xi′j and row-shared with Xij′ for i′ = 1,…,p and j′ = 1,…,q.

2.2 Model Specification

We assume that each matrix is decomposed by Xij = Sij + Eij, where Sij is a low-rank signal 

matrix and Eij is a full-rank white noise. We further assume that Sij can be decomposed as

Sij = Gij + Rij + Cij + Iij, (2)

where Gij is globally shared structure, Rij is row-shared structure, Cij is column-shared 

structure, and Iij is individual structure for matrix Xij. The shared nature of the terms are 

apparent from their factorized forms. Defining the parameter set as 

Θ = G00, Ri0, C0j, Iij | i = 1, ⋯, p, j = 1, ⋯, q , we write each term as a product of row loadings 

U and column scores V:
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G00 = U00
(G)V00

(G)T , Ri0 = Ui0
(R)Vi0

(R)T , C0j = U0j
(C)V0j

(C)T , Iij = Uij
(I)Vij

(I)T . (3)

The loadings and scores are shared across matrices for the global components G, i.e., row-

shared matrices have common global loadings Ui0
(G), and column-shared matrices have 

common global scores V0j
(G) . The row-shared structures R have common loadings, and the 

column-shared structures C have common scores. The dimensions of U and V depend on the 

global shared rank r00, column-shared ranks r0j, row-shared ranks ri0, and individual ranks 

rij:Uij
( ⋅ ):mi × rij and Vij

( ⋅ ):nj × rij for i = 0, ⋯, p, and j = 0, ⋯q . A diagram with the proposed 

notation for 2 × 2 linked structure is shown in Figure 1.

To understand the factorized forms in (3), it is instructive to consider their interpretation 

under the motivating example of Section 1.2. Say X11 gives gene (mRNA) expression for 

tumor samples, X12 gives gene expression for NAT samples, X21 gives miRNA expression 

for tumor samples, and X22 gives miRNA expression for NAT samples. Then, the loadings 

of the global structures G00 give trans-omic signatures U00
(G) that explain substantial 

variability across both tumor and NAT samples with associated scores V00
(G) . The loadings of 

the column-shared structures C01 include trans-omic signatures U01
(C) that explain substantial 

variability in the tumor samples with associated scores V01
(C) but not the NAT samples. The 

loadings of the row-shared structures R10 include gene signatures U10
(R) that explain 

substantial variability across both tumor and NAT samples, but are unrelated to miRNA. The 

loadings of the individual structures I include gene signatures unrelated to miRNA that 

explain variability in only the tumor samples, U11
(I) .

Marginally, Gi0 + Ri0 denotes the components shared by Xi0 and G0j + C0j denotes the 

components shared by X0j. In practice, we assume the errors Eij are Gaussian white noise 

with mean zero and variance σij2 . For vertical integration, q = 1 and the Gij and Rij terms are 

redundant with Cij and Iij, respectively. Thus, we suppress these terms and the 

decomposition of the model reduces to the “joint and individual” structures as in 

onedimensional factorization methods, including JIVE. Note, however, that we do not 

require pairwise orthogonality constraints on Gij, Rij, Cij, and Iij, which will be discussed in 

the remaining sections.

2.3 Estimation

Without any penalization, estimation of Θ would have an identifiability issue. We first 

consider minimizing the sum of squared errors over all matrices with different levels of 

matrix L2 penalties on the Uij
( . ), Vij

( . ) . Our objective function is
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f1 Uij
( ⋅ ), Vij

( ⋅ ) i = 0, …, p, j = 0, …, q, (i, j) ≠ (0, 0)

= ∑
i = 1

p
∑
j = 1

q
Xij − Ui0

(G)V0j
(G)T − Ui0

(R)Vij
(R)T − Uij

(C)V0j
(C)T − Uij

(I)Vij
(I)T

F
2

+ λ00 U00
(G)

F
2 + V00

(G)
F
2 + ∑

i = 1

p
λi0 Ui0

(R)
F
2 + Vi0

(R)
F
2

+ ∑
j = 1

q
λ0j U0j

(C)
F
2 + V0j

(C)
F
2 + ∑

i = 1

p
∑
j = 1

q
λij Uij

(I)
F
2 + Vij

(I)
F
2 ,

(4)

where ‖ ⋅ ‖F  denotes the Frobenious norm and each λij is a non-negative penalty factor. 

Following Section 2.1, 

U0j
(C) = U1j

(C)T , ⋯, Upj
(C)T , Vi0

(R) = Vi1
(R), ⋯, Viq

(R) , U00
(G) = U10

(G)T , …, Up0
(G)T T

, and V00
(G)

= V01
(G), ⋯V0q

(G) .
 We 

upper bound the ranks by setting rij = min(mi, nj) for i = 0,...,p and j = 0,..., q; the actual 

ranks of the solution may be lower, as discussed below. The objective function (4) is a 

convex function of each of Uij
( ⋅ ) and Vij

( ⋅ ), given all the others fixed. One may use alternating 

least squares (ALS) with a matrix L2 penalty to iteratively update each of 

U00
(G), V00

(G) , Ui0
(R), Vi0

(R) , U0j
(C), V0j

(C) , Uij
(I), Vij

(I)  until convergence.

Alternatively, we reformulate (4) and motivate our model using nuclear norm penalties. A 

matrix A : m × n with ordered singular values δ1, δ2,... has nuclear norm 

A * = ∑i = 1
min m, n δi . We first present a well-known result on the equivalence of nuclear 

norm penalization and matrix factorization for a single matrix in Proposition 1.

PROPOSITION 1: (Mazumder et al., 2010) For a matrix X : m × n,

min
U:n × r, V:m × r

‖X − UVT‖F
2 + λ ‖U‖F

2 + ‖V‖F
2 = min

Z:r(Z) ⩽ r
‖X − Z‖F

2 + 2λ‖Z‖* (5)

where r = min(m, n). Moreover, Z = UVT , where Z solves the right-hand side of (5) and 

U, V  solves the left-hand side of (5).

Proposition 1 depends on Lemma 1, which is also shown in Mazumder et al. (2010).

LEMMA 1: For a matrix Z:m × n, min
UVT = Z

U:m × min(m, n)
V:m × min(m, n)

U F
2 + V F

2 = 2‖Z‖* .

We extend the nuclear norm objective in (5) to our context as follows:
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f2(Θ) = 1
2 ∑

i = 1

p
∑
j = 1

q
Xij − Gij − Rij − Cij − Iij F

2

+ λ00 G00 * + ∑
i = 1

p
λi0 Ri0 * + ∑

j = 1

q
λ0j C0j * + ∑

i = 1

p
∑
j = 1

q
λij Iij * .

(6)

Following Section 2.1, Ri0 = Ri1, ⋯, Riq , C0j = C1j
T , ⋯Cpj

T T , and G00 = G01, ⋯, G0q .

Theorem 1 establishes the equivalence of (4) and (6), with proof in Web Appendix B.

THEOREM 1: Let

Θ1 = {Ui0
(G)V0j

(G)T , Ui0
(R)Vij

(R)T , Uij
(C)V0j

(C)T , Uij
(I)Vij

(I)T i = 1…p, j = 1, …q}

minimize (4). Then,

Θ2 = Gij, Rij, Cij, Iij i = 1…p, j = 1, …q

minimizes (6), where 

Gij = Ui0
(G)V0j

(G)T , Rij = Ui0
(R)Vij

(R)T , Cij = Uij
(C)V0j

(C)T , and Iij = Uij
(I)Vij

(I)T .

The objective (6) has several advantages. First, the function is convex, which we state in 

Theorem 2 and prove in Web Appendix B.

THEOREM 2: The objective f2(∙) in (6) is convex over its domain.

Fortunately, minimizing one term (G00, Ri0, C0j, or Iij) with the others fixed is straight-

forward via soft singular value thresholding (SSVT). We state the well-known equivalence 

between nuclear norm penalization and SSVT in Proposition 2; for a proof see Mazumder et 

al. (2010).

PROPOSITION 2: If the SVD of X is UXDX VX
T  and DX has diagonal entries 

δ1 ⩾ ⋯ ⩾ δr ⩾ 0, the solution for Z in (5) is equal to Z = UXDX(λ)VX
T , where DX(λ) is a 

diagonal matrix with δ1,...,δr replaced by max(δ1 − λ, 0),...,max(δr − λ, 0), respectively.

We use an iterative soft singular value thresholding (ISSVT) algorithm to solve (6), applying 

Proposition 2 to the appropriate residual matrices for G00, Ri0, C0j, or Iij. For example, 

Iij and Ri0 are obtained by soft-thresholding the singular values of 

Xij − Gij − Rij − Cij and Xi0 − Gi0 − Ci0 − Ii0 towards 0, respectively. This iterative 

algorithm is guaranteed to converge to a coordinatewise-minimum, and convexity implies 

that it will be a global minimum if it is a local minimum. In practice, we find that iterative 

algorithms to solve either (4) or (6) converge to the same solution and are robust to their 

initial values. The detailed algorithm of ISSVT is provided in Web Appendix A. The 
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resulting global, column-shared, row-shared and individual terms of the decomposition will 

have reduced rank depending on the penalty factors λij. Moreover, this relation between the 

penalty factors and the singular values motivates a straightforward choice of tuning 

parameters using random matrix theory described in Section 2.6.

ISSVT can also be represented as a blockwise coordinate descent algorithm for the ALS 

objective (4) (see Web Appendix A), and it converges faster than ALS, so we use it as our 

default algorithm. However, the ALS approach may be extended to certain related contexts. 

For example, it can incorporate sparsity in the loadings via an additional penalty (e.g., L1) 

on Uij
( ⋅ ) . Also, with only three linked matrices X11, X12 and X21, as in O’Connell and Lock 

(2019), (6) cannot properly construct the globally shared components. The formulation of 

(4) with an ALS algorithm can handle such cases, where the linked matrices do not form a 

complete 2-way grid.

2.4 Data Pre-Processing

In practice, the data matrices Xij may have very different levels of variability or be measured 

on different scales. Thus, a straightforward application of the objective (4) or (6) is not 

appropriate without further processing. By default we center the matrices to have mean 0, so 

that each matrix has the same baseline. To resolve issues of scale, we propose dividing each 

data matrix Xij, i, j > 0 by an estimate of the square root of its noise variance σij, denoted by 

Xij,scale. We discuss estimating the Gaussian noise variance in Section 2.6. After scaling, 

each matrix has homogeneous unit noise variance, which motivates the proposed penalties. 

After all components, denoted by Gij,scale, Rij,scale, Cij,scale, and Iij,scale, are estimated, we 

transform the results back to the original scale by multiplying each matrix by σij .

We comment on estimating the noise variance σij2 . Without any signal or with a very weak 

signal, the standard deviation of vec(Xij), denoted as σij
SD, provides a nearly unbiased 

estimate of σij. However, this estimate is biased and overly conservative with a high signal-

to-noise ratio. An alternative is to use random matrix theory, and estimate σij by minimizing 

the Kolmogorov-Smirnov distance between the theoretical and empirical distribution 

functions of singular values, as in Shabalin and Nobel (2013). Their estimate σij
KS is based 

on grid-search on a candidate set of σ. Recently, Gavish and Donoho (2017) proposed 

another estimator σij
MAD based on random matrix theory, which is defined as the median of 

the singular values of Xij divided by the square root of the median of the Marcenko-Pastur 

distribution. Our simulations, not shown here, revealed that both σij
KS and σij

MAD well 

approximate the standard deviation of a true noise matrix when the data matrix consists of 

low rank signal, and we use σij
MAD as a default throughout this paper for its simplicity. From 

here, we assume that BIDIFAC is applied to the data matrices with σij2 = 1.

2.5 Summarizing Results

Given that the mean of each matrix is 0, we propose proportion of variance explained 

RXij
2 ( ⋅ )  as a summary statistic. For example,
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RXij
2 Gij = 1 −

Xij − Gij F
2

Xij F
2 (7)

provides a measure of the proportion of variability explained by the globally shared 

component. However, because orthogonality is not explicitly enforced in BIDIFAC, this 

equality does not hold in general and R2(·) is not necessarily additive across terms (e.g., 

RXij
2 Gij + Cij ≠ RXij

2 Gij + RXij
2 Cij .

2.6 Selecting Tuning Parameters

The performance of the proposed method depends heavily on the choice of tuning 

parameters. In the literature, there are several approaches to select ranks in the context of 

vertical integration, including permutation testing (Lock et al., 2013), BIC (O’Connell and 

Lock, 2016), and cross-validation (Li and Jung, 2017). In our context, the issue of rank 

selection is analogous to selecting the tuning parameters λij. Although cross-validation is a 

natural way of selecting tuning parameters in penalized regression, our objective involves 

too many parameters (1+p+q+pq) to be computationally feasible. Moreover, despite the rich 

literature on cross-validating SVD for a single matrix, it is not clear how to define the 

training and test sets (e.g., randomly select cells, rows, columns, a whole matrix, etc). A 

general description of the difficulties in cross-validating matrices is provided by Owen and 

Perry (2009).

Admitting that cross validation in BIDIFAC is not straightforward and inefficient, we 

provide an alternative approach to select the tuning parameters based on random matrix 

theory. We first construct necessary conditions for each element of Θ to be nonzero.

PROPOSITION 3: The following conditions are necessary to allow for non-zero 

G00, Ri0, C0j,  and Iij:

1. maxjλij < λi0 < ∑jλij for i = 1, …, p and maxiλij < λ0j < ∑iλij for j = 1, …, q

2. maxiλi0 < λ00 < ∑iλi0 and maxjλ0j < λ00 < ∑jλ0j .

We provide a proof of Proposition 3 in Web Appendix B. Without loss of generality, suppose 

that each cell of Xij has Gaussian noise with unit variance (σij2 = 1), which is independent 

within each matrix and across matrices. Based on random matrix theory, we propose using 

the following penalty factors:

λij = mi + nj, where i = 0, …, p, and j = 0, …, q . (8)

It is straightforward to show that our choice of tuning parameters meets the necessary 

requirement. Also, under the aforementioned assumptions, mi + nj provides a tight upper 

bound for the largest singular value of Eij (Rudelson and Vershynin, 2010). Thus, without 

any shared structure, the motivation for (8) is apparent by considering the penalty as a soft-

thresholding operator on the singular values in Proposition 2. The penalty (8) is also used in 
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the single matrix reconstruction method in Shabalin and Nobel (2013). The penalties for the 

shared components are decided analogously because the stack of column-/row-shared 

matrices are also Gaussian random matrices with unit noise variance. For example, the 

penalty for Ri0 is determined by an estimate of the largest singular value of its concatenated 

noise matrix Ei0 with unit variance: mi + n0 .

2.7 Imputation

A convenient feature of BIDIFAC is its potential for missing value imputation. For single 

block data, PCA or related low-rank factorizations can be used to impute missing values by 

iteratively updating missing entries with their low-rank approximation, and this approach 

has proven to be very accurate in many applications (Kurucz et al., 2007). An analogous 

algorithm has been used for imputation with joint matrix factorization (O’Connell and Lock, 

2019), and this approach readily extends to BIDIFAC. Importantly, this allows for the 

imputation of data that are missing an entire row or column within a block, via an 

expectation-maximization (EM) approach. Our imputation algorithm is presented below.

1. Let ℐij = (r, s) |Xij[r, s] is missing  . For each matrix, initialize the missing 

values by the column- and/or row-wise mean and denote the initial matrix by 

Xij
(old) .

2. a. Maximization: Apply BIDIFAC to Xij
(old)

i, j = 1
p, q

.

b. Expectation: For (r, s) ∈ ℐij, replace Xij
(old)[r, s] with Sij[r, s] and denote 

the imputed matrix by Xij
(new) .

3. If ∑i, j = 1
p, q ∑(r, s) ∈ ℐij Xij

(old)[r, s] − Xij
(new)[r, s]

2
< ϵ, the algorithm converges. If 

not, reapply (2) after replacing Xij
(old) by Xij

(new) .

To improve computational efficiency, each maximization step uses the Θ from the previous 

maximization step as starting values. The imputation scheme can be used to impute entries 

or entire rows or columns of the constituent data matrices; however, in all cases the missing 

entities (entries, rows or columns) must be missing at random.

Our algorithm can be considered a regularized EM algorithm, using a model-based 

motivation for the objective function (4). Because each component is estimated as a product 

of two matrices, it is naturally translated as a probabilistic matrix factorization. The 

unpenalized objective with λij = 0 for all i, j maximizes a Gaussian likelihood model if the 

noise variances are the same across the matrices (i.e., σ2 = σ11
2 = ⋯ = σpq2 ). With 

penalization, the approach is analogous to maximizing the posterior distribution in a 

Bayesian context with Gaussian prior on the terms of Uij
( ⋅ ) and Vij

( ⋅ ) . Specifically, if the 

entries of Uij
( ⋅ ) and Vij

( ⋅ ) are independent Gaussian with mean 0 and variance σ2/λij, then 

minimizing (4) is analogous to finding the posterior mode (Mnih and Salakhutdinov, 2008). 

This provides a theoretical foundation for the iterative imputation algorithm based on 
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expectation-maximization (EM) algorithm. It is closely related to softImpute, proposed by 

Mazumder et al. (2010), a computationally efficient imputation algorithm for a single matrix 

based on Proposition 1. Prediction intervals for the imputed values may be obtained via a 

resampling approach, as described in Web Appendix E of O’Connell and Lock (2019).

3. Simulation Studies

3.1 Simulation Setup

In this section, we compare our model to existing factorization methods using simulated 

data. Because competing approaches apply only to uni-dimensionally linked matrices 

(vertical or horizontal), we constructed two simulation designs with p = q = 2 for proper 

comparison. Design 1 does not include any row-shared or globally shared structure and may 

be considered as two separate sets of vertically-linked matrices. Design 2 includes all linked 

structures that are represented in our model: global, column-shared, row-shared and 

individual.

For each simulation design, we used existing methods to compare performance. First, we fit 

2 separate JIVE models to {X11, X21} and {X12, X22}, using both (i) true marginal ranks for 

joint and individual components and (ii) rank selection based on permutation testing, 

denoted by JIVE(T) and JIVE(P) respectively. The “true marginal rank” in this context 

means r(Gij + Cij) for the joint component and r(Rij + Iij) for the individual components 

given that j is fixed. We similarly apply the AJIVE and SLIDE methods, where we used the 

rank of Sij as the initial rank for AJIVE. We also consider an approach that is analogous to 

BIDIFAC but reduced to vertical integration only, i.e., with Gij and Rij set to 0mi × nj,

denoted as UNIFAC in this paper. We fit UNIFAC to {X11, X21} and {X12, X22} separately. 

For notational simplicity, we denote the joint and individual components estimated by 

JIVE(P), JIVE(T), AJIVE, SLIDE and UNIFAC by Cij and Iij . We also applied soft singular 

value thresholding for each single matrix with the corresponding imputation algorithm, 

softImpute, with tuning parameters decided as in Section 2.6 λij = σij ⋅ ( mi + nj) . We 

denote this approach by SVD(soft). We also consider the performance of the hard-

thresholding low-rank approximation of each matrix, denoted by SVD(T), using the true 

marginal rank for a single matrix (r(Sij)). Similar to the above, SVD(soft) and SVD(T) 

estimate Iij (or, equivalently, Sij) components only and assume Gij = Rij = Cij = 0mi × nj .

BIDIFAC, UNIFAC, and SVD(soft) are soft-thresholding methods, while JIVE(T), JIVE(P), 

and SVD(T) are based on hard-thresholding.

In our simulation studies, the number of rows and columns for each matrix was set to 100: 

mi = nj = 100. The rank of the total signal in each matrix, Sij = Gij + Rij + Cij + Iij, was 10. 

This total rank was distributed across each of the 4 terms (or the two terms Cij and Iij for 

Design 1) via a multinomial distribution with equal probabilities. For clarity of the 

simulation studies and to allow for comparison with other methods, we enforced 

orthogonality among the shared structures, both within each matrix (i.e., G11 and C11 are 

orthogonal) and across matrices (i.e., G11 and G12 are orthogonal). Note, however, that our 

model does not enforce orthogonality when estimating parameters.

Park and Lock Page 11

Biometrics. Author manuscript; available in PMC 2020 March 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Each signal matrix, Sij, was generated by applying SVD to a Gaussian random matrix with 

mean 0 and unit variance, denoted as Y = UY DY VY
T . Then UY and VY were rearranged 

accordingly to guarantee orthogonality and a 2 × 2 linked structure. The singular values 

were randomly permuted within each shared component to allow for heterogeneity in the 

size of the joint signal across matrices, e.g., C11 and C21 have the same loadings and scores 

but with different order. Each signal matrix Sij was standardized to have Sij F = 1. Finally, 

independent Gaussian noise was added to each signal matrix, where the noise variance was 

decided by the signal-to-noise ratio (SNR) defined by 1/ σij ⋅ mi ⋅ nj . We first considered 

three SNRs in our simulation studies: 0.5, 1, and 2. For the true structure Sij the expected 

value of RXij
2 Sij is SNR2/ 1 + SNR2 , when SNRs are the same for all matrices. We also 

considered a scenario where the SNR is randomly selected separately for the different 

matrices, uniformly between 0.5 and 2, to accommodate heterogeneous noise variances.

We compared the performance of our method and the competing methods from two 

perspectives: prediction error and imputation performance. We computed prediction error for 

each term in the decomposition (G, R, C or I) as the relative reconstruction error:

PredErr(G) =
∑i = 1, j = 1

p, q Gij − Gij F
2

∑i = 1, j = 1
p, q Gij F

2 . (9)

For a fair comparison between our method and the existing methods for uni-dimensionally 

shared matrices, we also report PredErr(G + C), PredErr(R + I) . Finally, we also report 

PredErr(S) to evaluate the overall signal reconstruction performances.

For imputation, we considered three scenarios where in each matrix (i) 200 randomly 

selected cells are missing, (ii) 2 columns are missing, and (iii) 2 rows are missing. To foster 

borrowing information from the shared structures in (ii) and (iii), there was no overlapping 

row/column missing simultaneously in shared matrices. To reduce computation cost, 

imputation using JIVE(P) used fixed ranks determined by the complete data, resulting in 

slightly inflated imputation performances. We evaluated the imputation performance using 

the scaled reconstruction error for missing cells, defined by

ImputeErr  =
∑i = 1, j = 1

p, q ∑(r, s) ∈ ℐij Sij[r, s] − Sij[r, s] 2

∑i = 1, j = 1
p, q ∑(r, s) ∈ ℐij Sij[r, s] 2 . (10)

3.2 Results

We repeated each simulation 200 times and averaged the performance. The results are shown 

in Tables 1 and 2. We summarize the results below from a few perspectives.

On performance of BIDIFAC: BIDIFAC was competitive against all compared models in 

separating signals into multiple shared structures. In Design 1 where Gij F
2 = Rij F

2 = 0,
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the loss from the model misspecification was negligible when comparing the prediction 

errors for column-shared matrices (C) and the sum of global and column-shared matrices (G 
+ C), as well as individual matrices (I) and the sum of row and individual matrices (R + I). 

The negligible effect of misspecification can also be seen when compared to UNIFAC, 

where the global or row-shared structures are ignored. In Design 2, where BIDIFAC is the 

only method estimating global (G) and row-shared (R) components, the prediction errors 

were comparable to the other components regardless of SNR. Even when error variances 

differ by each matrix, BIDIFAC was not affected severely.

On soft and hard thresholding: When SNR is low, matrix completion via soft 

thresholding generally outperformed hard-thesholding approaches (JIVE, SLIDE and 

SVD(T)). It is easily seen by comparing SVD(soft) to SVD(T) or comparing JIVE(T)/

JIVE(P)/SLIDE to UNIFAC. Especially, when SNR= 0.5 in Design 1, JIVE(T) overfitted 

severely even when true ranks are given. JIVE(P) performed even worse, due to erroneous 

rank selection. SLIDE suffered less from overfitting, but this was because it selected 0 rank 

in most simulated data. As SNR increases, SLIDE, JIVE(P) and JIVE(T) outperformed 

UNIFAC and BIDIFAC in estimating G+C and R+I in both designs. This result is intuitive: 

soft-thresholding prevents over-fitting when the SNR is low, but over-penalizes the estimated 

signal when SNR is high. We found that AJIVE did not perform well unless SNR is 2, where 

it provides provides similar results to JIVE with the true ranks, JIVE(T).

On overall signal recovery: In Design 1, JIVE(T) can be considered as the gold 

standard for overall signal recovery as it reflects the true joint and individual rank structures, 

which are unknown in practice. Except when SNR is 0.5 (which is explained by the 

difference between soft and hard thresholding), JIVE(T), JIVE(P) and SVD(soft) performed 

better than BIDIFAC in recovering the overall signals. The overall signal recovery of 

BIDIFAC was the same as UNIFAC and better than SVD(soft), revealing that BIDIFAC and 

UNIFAC obtained additional power from the column-shared matrices and the effect of 

model misspecification of BIDIFAC is negligible. In Design 2, BIDIFAC performed better 

than UNIFAC and SVD(soft) as it closely matched the data generating process.

On imputation performance: JIVE(T) was the winner in both designs in imputing 

missing cells and columns except when SNR is 0.5. However, recall that JIVE(T) uses the 

true ranks which are unknown in practice. BIDIFAC performed close to or even better than 

JIVE(P) in both designs, revealing that signal detection does not necessarily guarantee 

imputation performance as it is also affected by appropriate rank selection and detecting 

shared structures. In Design 1, it is not surprising that all models suffered when an entire 

row is missing, as there was no row-shared structure. In Design 2, BIDIFAC was the only 

method that successfully imputed missing rows.

To summarize, the performance of BIDIFAC was promising in simulation studies even when 

it was misspecified. It appropriately separated signals into linked structures and did not 

overfit for low SNR. Among the compared models, BIDIFAC is the only model that well 

accommodates the cases where a whole data matrix is missing or both a whole column and a 

whole row is missing. Acknowledging that it is not possible to obtain the true ranks of 

shared and individual structures, BIDIFAC performed the best across different scenarios.
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4. Data Analysis

4.1 TCGA Breast Cancer Data

In this section, we apply our method to breast cancer data from TCGA(Cancer Genome 

Atlas Network, 2012). We integrate mRNA and miRNA profiles of the tumor samples and 

NATs, which, to our knowledge, has not been previously investigated in a fully unified 

framework. The data used here are freely available from TCGA. Specifically, we obtained 

the level III raw count of mRNA (RNASeq-V2) and miRNA (miRNA-Seq) data using the R 

package TCGA2STAT (Wan et al., 2015). In our analysis we first removed the tumor data of 

those samples with matched NAT, so that tumor and NAT data correspond to two 

independent cohorts. We also filtered mRNAs and miRNAs with more than half zero counts 

for all individuals. Then we took log(1 + count) and centered each of mRNA and miRNA 

profiles to the mean of tumors and NATs, so that the mean of each row of each matrix is 0. 

Lastly, we selected the 500 mRNAs and miRNAs with maximum variability. The resulting 

data had 500 mRNA and miRNA profiles for 660 tumor samples and 86 NATs.

Breast cancer tumor samples are classified into 5 intrinsic subtypes, based on expression 

levels of 50 pre-defined genes: Luminal A (LumA), Luminal B (LumB), HER2-enriched 

(HER2), Basal-enriched (Basal), and Normal-like tumors (Ciriello et al., 2015). In our 

TCGA data, 419 out of 660 tumor samples had the labeled subtypes.

4.2 Results

We first applied BIDIFAC to the processed data until convergence. We summarize the 

proportion of explained variance, as well as the estimated ranks of the components, in Table 

3. The difference between RXij
2 Sij − RXij

2 Gij + Rij + Cij  among tumors and NATs suggests 

that most of the variability of the miRNA and mRNA profiles were attributed to shared 

structures. In particular, more than a half of the variability of both the mRNA and miRNA 

profiles from the NAT is attributed to the row-shared components (Global+Row); this makes 

sense, as tumor cells are derived from normal tissue and thus we expect many of the same 

patterns of variability that are present in normal tissue to also be present in tumors. Between 

30–45% of the variability is explained by the shared structure between miRNA and mRNA 

across the four matrices. There is a large difference of sample sizes between tumor and 

normal tissues, which may have also affected the estimate of proportion of variance 

explained. Even though the rank of the estimated signals in NAT was close to the rank of the 

data matrix (86) linear independence among the terms of the decomposition was preserved 

in our decomposition.

We compared BIDIFAC to existing methods on one-dimensionally linked matrices, 

including UNIFAC, JIVE(P) and SLIDE. We used two criteria to compare models: subtype 

classification and survival analysis. Specifically, we hypothesize that accounting for multiple 

omics profiles and removing the shared variations between tumors and normal tissues would 

increase the biological interpretation of cancer subtypes and patient’s survival. Thus, we 

focused on column-shared and individual components estimated by BIDIFAC and compared 

it to other methods using tumor mRNA and miRNA only.
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We first compared how the estimated components are well distinguished by breast cancer 

subtypes. To summarize the subtype distinctions, we used the SWISS (Standardized WithIn 

Class Sum of Squares) score (Cabanski et al., 2010). Interpreted similar to ANOVA, a lower 

SWISS score implies more clear subtype distinction. We restricted the attention to the tumor 

samples with labeled subtypes. As summarized in Table 4, the SWISS score of C + I of 

UNIFAC was superior to JIVE and SLIDE, suggesting that soft-thresholding better 

uncovered subtype heterogeneity when integrating mRNA and miRNA. Compared to 

UNIFAC, BIDIFAC obtained a slightly better SWISS score with lower rank of the C + I. 

The scatterplot of the principal components from the column-shared structures of BIDIFAC, 

shown in Figure 2, reveals that the subtypes are well distinguished. The column-shared 

structure from JIVE(P) had the lowest SWISS score overall, which may be because of its 

extremely low rank.

Using overall survival data for patients with tumors, we applied the Cox proportional 

hazards model (PHM) using scores from the estimated components as predictors and used 

the score test to assess its significance. The results are also shown in Table 4. At α = 0.05, 

all models suggested that scores from C + I were associated. Narrowing down the scope to 

each structural component, we also found that the individual components of UNIFAC and 

BIDIFAC, even though not indicative of subtype distinction in SWISS scores, could provide 

additional information on patients’ survival. BIDIFAC, accounting for normal tissues, 

provided reduced rank for individual components compared to UNIFAC.

5 Conclusion

In this paper we propose BIDIFAC, the first unified framework to handle multiple matrices 

that are shared both vertically and horizontally. In contrast to existing methods on joint 

matrix factorization, we provide the estimator based on soft-thresholding and nuclear norm 

penalization, where the complicated problem of selecting tuning parameters is alleviated by 

using the well-known result from random matrix theory. We conducted extensive simulation 

studies to show the efficiency and flexibility of BIDIFAC compared to existing methods. We 

applied our method to TCGA breast cancer data, where mRNA and miRNA profiles are 

obtained separately from both tumor tissues and normal tissues adjacent to tumors (NATs). 

From this application we conclude that (i) patterns of variability in normal tissue are largely 

also present in tumor tissue for both mRNA and miRNA, (ii) patterns that are associated 

with survival and clinical subtypes across both mRNA and miRNA are largely *not* present 

in normal tissue, and (iii) patterns that distinguish the clinical subtypes are shared by mRNA 

and miRNA. Existing vertical integration methods establish (iii), but not (i) or (ii). In 

addition to the integration of tumor and NAT data, this methodology may be applied to a 

growing number of applications with bidimensionally linked matrices. A particularly 

intriguing potential application is the integration of “pan-omics pan-cancer” data; that is, the 

integration of multi-omic data for samples from multiple types of cancers (as defined by 

their tissue-of-origin).

We describe several limitations of our method. These limitations primarily relate to use of 

the Frobenious norm in the objective and applying random matrix theory to select tuning 

parameters. Importantly, our model assumes normality of each matrix to select appropriate 
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tuning parameters, which may be violated in practice. For example, application to SNPs data 

would be limited as each cell of a matrix takes discrete values (e.g., 0,1, 2). Similarly, we do 

not consider the case where one or more matrices are binary, which is common for 

biomedical data. Also, our approach is sensitive to outliers, due to the use of the Frobenious 

norm in the objective function. Even when the Gaussian assumption holds, our model may 

be extended by adopting variable sparsity or overcoming deficiencies of soft-thresholding, as 

neither soft-thresholding nor hard-thresholding provides optimal signal recovery (Shabalin 

and Nobel, 2013). Empirical approaches (e.g., cross-validation) may also be used to select 

the tuning parameters. Although our convex objective guarantees convergence to a stationary 

point that is empirically consistent for different starting values, the theoretical identifiability 

properties of the resulting decomposition deserves further study. Lastly, our approach does 

not inherently model uncertainty in the underlying structural decomposition and missing 

value imputations; the result gives the mode of a Bayesian posterior, and extensions to fully 

Bayesian approaches are worth considering.

Here we have focused on capturing four types of low-rank signals in bidimensional data: 

global, column-shared, row-shared, and individual. Other joint signals are possible. For 

example, when p = 3, q = 1, it is possible that X11 and X21 share a signal that is not present 

in X31. Similarly, our method would suffer when X11, X12, X21 share a signal that is not 

present in X22, though this is perhaps less likely for most data applications. It is 

straightforward to extend our framework to accommodate these or other structures, with 

appropriate additions to the objective (4).

An interesting extension of our work is the factorization of higher-order arrays (i.e., tensors). 

For example, integrating multiple omics profiles for multiple cohorts that are measured at 

multiple time points would give additional insights on the linked structure in a longitudinal 

manner that cross-sectional designs cannot provide.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Overview of the proposed method, using the 2 × 2 bidimensionally linked structure.
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Figure 2. 
The top three principal components of the column-shared structure from BIDIFAC, colored 

by subtype (red: basal, green: HER2, blue: luminal A, purple: luminal B, black: normal).
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Table 1

Summary of the simulation studies for Design 1, where prediction and imputation errors are computed using 

Equations (9) and (10) respectively.

Prediction Imputation

SNR Model G R C I G + C R + I S Cell Column Row

0.5 BIDIFAC — — 0.81 0.87 0.80 0.87 0.81 0.86 0.95 1.00

UNIFAC — — 0.80 0.87 0.80 0.87 0.81 0.86 0.94 1.00

JIVE(T) — — 1.01 1.40 1.01 1.40 1.05 1.49 1.13 1.02

JIVE(P) — — 1.09 2.67 1.09 2.67 1.33 2.05 1.13 1.02

AJIVE(T) — — 4.58 1.00 4.58 1.00 1.48 — — —

SLIDE — — 0.97 1.02 0.97 1.02 0.84 — — —

SVD(T) — — 1.00 3.61 1.00 3.61 1.20 1.87 1.02 1.02

SVD(soft) — — 1.00 0.89 1.00 0.89 0.85 0.90 1.00 1.00

1 BIDIFAC — — 0.35 0.41 0.35 0.41 0.36 0.43 0.80 1.00

UNIFAC — — 0.35 0.41 0.35 0.41 0.36 0.43 0.79 1.00

JIVE(T) — — 0.18 0.23 0.18 0.23 0.19 0.25 0.63 1.01

JIVE(P) — — 0.47 0.54 0.47 0.54 0.23 0.40 0.78 1.01

AJIVE(T) — — 1.98 1.00 1.98 1.00 0.30 — — —

SLIDE — — 0.19 0.22 0.19 0.22 0.19 — — —

SVD(T) — — 1.00 1.73 1.00 1.73 0.22 0.30 1.01 1.01

SVD(soft) — — 1.00 0.66 1.00 0.66 0.40 0.49 1.00 1.00

2 BIDIFAC — — 0.11 0.13 0.11 0.13 0.11 0.16 0.65 1.00

UNIFAC — — 0.11 0.13 0.11 0.13 0.11 0.16 0.65 1.00

JIVE(T) — — 0.04 0.05 0.04 0.05 0.04 0.05 0.54 1.01

JIVE(P) — — 0.35 0.32 0.35 0.32 0.05 0.14 0.81 1.01

AJIVE(T) — — 0.07 0.08 0.07 0.08 0.04 — — —

SLIDE — — 0.05 0.06 0.05 0.06 0.06 — — —

SVD(T) — — 1.00 1.37 1.00 1.37 0.05 0.06 1.01 1.01

SVD(soft) — — 1.00 0.74 1.00 0.74 0.13 0.18 1.00 1.00

Mixed BIDIFAC — — 0.37 0.41 0.37 0.41 0.31 0.38 0.80 1.00

UNIFAC — — 0.37 0.41 0.37 0.41 0.31 0.36 0.77 1.00

JIVE(T) — — 0.20 0.27 0.20 0.27 0.22 0.29 0.64 1.01

JIVE(P) — — 0.55 0.73 0.55 0.73 0.29 0.47 0.83 1.01

AJIVE(T) — — 2.28 0.92 2.28 0.92 0.64 — — —

SLIDE — — 0.51 0.53 0.51 0.53 0.38 — — —

SVD(T) — — 1.00 1.78 1.00 1.78 0.74 0.35 1.01 1.01

SVD(soft) — — 1.00 0.70 1.00 0.70 0.59 0.43 1.00 1.00
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Table 2

Summary of the simulation studies for Design 2.

Prediction Imputation

SNR Model G R C I G + C R + I S Cell Column Row

0.5 BIDIFAC 0.67 0.60 0.81 0.89 0.73 0.83 0.76 0.81 0.91 0.91

UNIFAC 1.00 1.00 0.85 0.91 0.80 0.87 0.82 0.86 0.95 1.00

JIVE(T) 1.00 1.00 3.05 3.86 1.00 1.38 1.04 1.47 1.14 1.02

JIVE(P) 1.00 1.00 2.60 6.58 1.12 2.51 1.36 2.13 1.17 1.02

AJIVE(T) 1.00 1.00 10.74 1.00 4.05 1.00 1.47 — — —

SLIDE 1.00 1.00 1.00 1.27 0.96 0.97 0.85 — — —

SVD(T) 1.00 1.00 1.00 8.51 1.00 3.32 1.19 1.86 1.02 1.02

SVD(soft) 1.00 1.00 1.00 0.95 1.00 0.89 0.86 0.90 1.00 1.00

1 BIDIFAC 0.26 0.26 0.34 0.42 0.30 0.37 0.32 0.39 0.77 0.77

UNIFAC 1.00 1.00 0.65 0.68 0.34 0.41 0.36 0.44 0.79 1.00

JIVE(T) 1.00 1.00 1.62 1.76 0.18 0.23 0.19 0.25 0.63 1.01

JIVE(P) 1.00 1.00 1.72 2.18 0.45 0.48 0.23 0.40 0.77 1.01

AJIVE(T) 1.00 1.00 5.77 1.00 1.76 1.00 0.30 — — —

SLIDE 1.00 1.00 0.99 0.93 0.19 0.22 0.19 — — —

SVD(T) 1.00 1.00 1.00 4.82 1.00 1.56 0.22 0.29 1.01 1.01

SVD(soft) 1.00 1.00 1.00 1.19 1.00 0.63 0.40 0.49 1.00 1.00

2 BIDIFAC 0.09 0.09 0.11 0.14 0.10 0.12 0.10 0.14 0.63 0.64

UNIFAC 1.00 1.00 0.76 0.76 0.11 0.13 0.11 0.16 0.65 1.00

JIVE(T) 1.00 1.00 1.33 1.39 0.04 0.05 0.04 0.06 0.54 1.01

JIVE(P) 1.00 1.00 1.42 1.70 0.29 0.25 0.05 0.14 0.78 1.01

AJIVE(T) 1.00 1.00 1.39 1.57 0.05 0.06 0.04 — — —

SLIDE 1.00 1.00 1.02 1.19 0.05 0.06 0.06 — — —

SVD(T) 1.00 1.00 1.00 4.07 1.00 1.22 0.05 0.06 1.01 1.01

SVD(soft) 1.00 1.00 1.00 2.00 1.00 0.67 0.13 0.18 1.00 1.00

Mixed BIDIFAC 0.30 0.28 0.37 0.48 0.31 0.35 0.27 0.33 0.77 0.78

UNIFAC 1.00 1.00 0.69 0.79 0.36 0.40 0.31 0.37 0.77 1.00

JIVE(T) 1.00 1.00 1.65 1.83 0.20 0.27 0.22 0.29 0.64 1.01

JIVE(P) 1.00 1.00 1.85 2.53 0.53 0.65 0.30 0.46 0.87 1.01

AJIVE(T) 1.00 1.00 6.35 1.11 2.07 0.90 0.60 — — —

SLIDE 1.00 1.00 1.01 1.37 0.49 0.49 0.34 — — —

SVD(T) 1.00 1.00 1.00 4.94 1.00 1.61 0.25 0.36 1.01 1.01

SVD(soft) 1.00 1.00 1.00 1.39 1.00 0.66 0.36 0.43 1.00 1.00
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Table 3

Proportion of variance explained (Equation (7)) for each component, estimated by BIDIFAC using the breast 

cancer data. The parentheses denote the rank of the estimated components.

Global Global+Row Global+Col Global+Row+Col Signal

Tumor mRNA 0.14 (34) 0.32 (68) 0.45 (93) 0.58 (127) 0.67 (173)

NAT mRNA 0.23 (34) 0.50 (68) 0.44 (4l) 0.66 (75) 0.78 (83)

Tumor miRNA 0.09 (34) 0.46 (67) 0.30 (93) 0.63 (126) 0.76 (175)

NAT miRNA 0.13 (34) 0.66 (67) 0.24 (4l) 0.75 (74) 0.76 (79)

Biometrics. Author manuscript; available in PMC 2020 March 13.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Park and Lock Page 24

Table 4

Summary of the SWISS scores and p-values of the score test of the estimated components from the Cox 

proportional hazards model, including tumors only. ‘Rank’ refers to the rank of the estimated components.

Model Components Rank SWISS p-value

BIDIFAC Signal 173 0.54 0.002

Global 34 0.69 0.046

Row 34 0.75 0.085

Col+Indiv 105 0.52 0.003

Col 59 0.48 0.029

Indiv 46 0.79 0.003

UNIFAC Col+Indiv 137 0.54 0.001

Col 75 0.49 0.012

Indiv 62 0.73 0.001

JIVE(P) Col+Indiv 35 0.64 0.020

Col 3 0.31 0.007

Indiv 32 0.90 0.114

SLIDE Col+Indiv 58 0.67 0.002

Col 16 0.52 0.007

Indiv 42 0.96 0.061
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