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Abstract

Tumor cell heterogeneity, either at the genotypic or the phenotypic level, is a hallmark of cancer. Tumor cells exhibit large
variations, even among cells derived from the same origin, including cell morphology, speed and motility type. However,
current work for quantifying tumor cell behavior is largely population based and does not address the question of cell
heterogeneity. In this article, we utilize Lévy distribution analysis, a method known in both social and physical sciences for
quantifying rare events, to characterize the heterogeneity of tumor cell motility. Specifically, we studied the breast tumor cell
(MDA-MB-231 cell line) velocity statistics when the cells were subject to well-defined lymphoid chemokine (CCL19) gradients
using a microfluidic platform. Experimental results showed that the tail end of the velocity distribution of breast tumor cell
was well described by a Lévy function. The measured Lévy exponent revealed that cell motility was more heterogeneous
when CCL19 concentration was near the dynamic kinetic binding constant to its corresponding receptor CCR7. This work
highlighted the importance of tumor microenvironment in modulating tumor cell heterogeneity and invasion.
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INSIGHT, INNOVATION AND INTEGRATION

Heterogeneity is a hallmark of cancer. However, quantitative understanding of tumor heterogeneity is lacking, in
particular, in the context of tumor microenvironment. Using an integrated microfluidic and Lévy statistical analysis
approach, we found that cytokines within the tumor microenvironment promoted the heterogeneity of the tumor cell
motility. Our work provided a novel physical insight in which cytokines within tumor microenvironment modulated
tumor invasion and metastasis.
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INTRODUCTION

Mammalian cell motility plays critical roles in many homeostatic
(e.g. immune response and tissue formation) and pathologic (e.g.
tumor cell invasion and fibrosis) processes [1–4]. In all cases, cells
migrate to perform their physiological function, e.g. immune
cells move toward the site of infection to kill bacteria [3, 4]; tumor
cells migrate to foreign organs to establish a new tumor [2, 5].
While it has been established that in these native states animal
cells execute random walks within interstitial spaces [4, 6], it is
only recently that single-cell migration statistics was examined
carefully at a quantitative level [7–9]. These works reveal that
results from population average are not sufficient to describe cell
motility. Rather, rare cell events contribute significantly to the
cell physiology and pathology, in particular in the case of tumor
cell invasion.

Tumor cell heterogeneity is a hallmark of cancer [10, 11].
Although a majority of tumor invasion assays (e.g. Boyden cham-
ber) only provide population-based information, recent develop-
ment in microfluidic device and imaging technology has enabled
the study of single-cell dynamics in both time and space [12, 13].
These studies revealed that mammalian cells did not execute
random walks that followed the Gaussian distribution typically
seen in the passive Brownian motion of micro- or nano-meter-
sized particles in the equilibrium state established in a uniform
environment [14]. Using an in vitro model, metastatic cancer
cells migrating along linear micro-tracks were shown to fol-
low Lévy like movement, in contrast to non-metastatic cells
[9]. Tumor cells migrating within 3D collagen matrices demon-
strated that the distribution of cell speed followed an expo-
nential decay function [7]. Interestingly, immune cell migration
within a mouse model showed that T-cell migration followed
a generalized Lévy walk distribution [8]. Lévy walk has also
been found recently in the motility of single swimming bacteria
within a swarm where a group of bacteria move collectively [15].
Taken together, previous work revealed that rare cell statistics is
a common feature of migrating cells, and we note that both Lévy
statistics and exponential models feature a long tail favoring cell
spreading in space or rare fast moving cell events. Lévy statistics
has long been studied extensively in diverse fields, including
the financial market, fluid mechanics and biological science,
for the purpose of quantifying rare occurring events [16–18].
Indeed, rare tumor cell motility events such as the fast movers
are important role players in cancer metastatic processes [19].
Here, we hypothesize that tumor cell migration follows a Lévy
distribution, and its heterogeneity can be influenced by the
cytokine concentration within the tumor microenvironment and
quantified by the Lévy exponent.

Lymphoid chemokines are important components in the
tumor microenvironment and have been implicated in breast
cancer metastasis [20]. Lymph nodes are the first metastatic sites
for many cancer types including breast and prostate cancers [21].
It has been estimated that ∼80% of the solid tumors disseminate
via lymphatic systems, in contrast to ∼20% via blood vessels
or direct seeding [22]. Traditionally, the lymphatic system is
considered to play a passive role in tumor cell metastasis,
and tumor cells landed in lymphatic system due to its high
permeability and the absence of a basement membrane barrier.
Recent work, however, suggests that the lymphoid system is
an active player in mediating tumor cell invasion. Chemokine
receptors were found to be highly expressed in malignant
breast tumor cells [20], and the activation of the lymphatic
system including lymphangiogenesis was associated with tumor
progression and metastasis [23]. Muller et al. profiled all the

chemokine receptors using 12 human breast tumor cell lines and
found that the expression of CCR7 and CXCR4 peaked relative
to other receptors [20]. CCR7 is a G protein-coupled receptor,
known to regulate actin polymerization, pseudopodia formation,
and consequently modulation of cell migration. CCR7 is also
known as a lymphoid chemoreceptor, its binding ligands are
CCL19 (soluble) and CCL21 (matrix binding). CCL21 is a potent
chemokine in directing tumor cell migration and has been
studied extensively [24, 25]. In contrast, the role of soluble ligand
CCL19 in tumor cell migration is much less understood [2, 20,
21]. Here, we choose breast tumor cells (MDA-MB-231 cell line)
embedded within a 3D collagen matrix as a model system to
examine roles of the chemokine CCL19 in tumor cell invasion.

In this article, we explored breast tumor cell migration statis-
tics under well controlled CCL19 gradients using a 3D microflu-
idic model. We focused on the quantitative evaluations of rare
cell motility and its correlation with cytokine gradient within the
tumor microenvironment.

RESULTS AND DISCUSSIONS

Microfluidic setup for creating cytokine gradients
within a 3D extracellular matrix

Microfluidic model is an enabling technology for providing well-
defined chemokine gradients for tumor cells. Its compatibility
with optical imaging allows for probing single-cell dynamics in
real time and space [12, 26]. Previously, we employed a microflu-
idic model for studying dendritic as well as tumor cells migrating
within a 3D collagen matrix and in cytokine gradients [24, 25].
The 3D environment is important for cell migration studies as
most mammalian cells require the architectural support within
the 3D ECM to execute physiologically realistic motion. Indeed,
results from studies of cell migration behavior on a 2D substrate
are very different from those in 3D [27, 28]. Here, we used a
microfluidic platform previously developed in our lab to study
breast tumor cell (MDA-MB-231 cell line) dynamics in response
to the gradients of lymphoid chemokine CCL19 [29]. As seen in
Fig. 1a, three parallel microfluidic channels were patterned in a
1-mm-thick agarose gel membrane. CCL19 of various concentra-
tions and buffer were introduced along the two side channels,
respectively, and cell embedded collagen matrix was introduced
into the center channel. A CCL19 gradient was established across
the center channel via the molecular diffusion through the
agarose gel walls [24, 25]. Four such devices were patterned on a
single microfluidic chip for parallel experiments. Figure 1b is an
image of the cells reconstructed from a z-stack image taken at a
time t = 0 showing that cells were embedded in 3D. Due to the gel
polymerization method we used (See Materials and Methods),
most of the cells were located in the mid-z plane of the cell
channel as seen in the x-z plane of the image. Using time series
images such as the one shown in Fig. 1b, we evaluated cell
migration speed, velocity and persistence length as illustrated
in Fig. 1c.

Breast tumor cells displayed a distinct chemokinesis
but a mild chemotactic tendency in CCL19 gradients

Individual cell tracks under various CCL19 gradients (Fig. 2a)
were obtained using time series images. Tumor cell motility was
clearly seen to increase with the increase of CCL19 chemokine
gradients ranging from 0 to 111 nM/mm. This was also reflected
in the percentage increase of migrating cells (Fig. 2b) and the
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Figure 1. A microfluidic setup for 3D tumor cell migration in CCL19 gradients. (a) Top view shows a photo of the microfluidic chip on a microscope stage. Each chip

contains four identical three-channel devices. Zoom in view shows that each device contains three parallel channels with a width of 400 μm and a depth of 250 μm.

The gaps between the channels are 250-μm wide. Cell embedded collagen matrix is seeded in the center channel, cytokine/buffer flow through the two-side channels,

respectively, and a concentration gradient of the cytokine is formed in the center channel via molecular diffusion. (b) 3D reconstruction of embedded cell images from

a z-stack of images taken at time t = 0. Here, x-y represents the horizontal plane, and z the vertical direction. (c) Definition of migration parameters, speed, velocity,

persistence length, and x-directional persistence length. Here, x-axis represents the direction of gradient.

average cell speed at five different CCL19 gradients (Fig. 2c).
The cell speed peaked (or increased 34%) at CCL19 gradient of
111 nM/mm or average CCL19 concentration of ∼ 50 nM. In con-
trast to the significant chemokinesis behavior (Fig. 2c), MDA-MB-
231 cells showed mild chemotaxis behavior in CCL19 gradients
(Fig. 2d). Here, the average velocity as well as the persistence
length along the direction of CCL19 gradient (or + x direction)
were positive in comparison to control but increased less than
5% of its control velocity (Fig. 2d and e).

Tumor cell speed responded to CCL19 gradients most sensi-
tively at CCL19 gradients of 111 nM/mm or average concentration
of 50 ± 25 nM (see Fig. 2c), which was close to the reported
dynamic kinetic constant between CCL19 and CCR7 100 ± 40 nM
[24, 25]. We previously obtained a dynamic kinetic binding con-
stant of 100 ± 40 nM for CCL19 and CCR7 [25] using dendritic
cell chemotaxis in CCL19 gradients, in which we demonstrated
that the chemotactic sensitivity of dendritic cells to CCL19 gradi-
ents was proportional to the difference of the fractional ligand-
receptor occupancy at the front and back of the cell [25]. Thus,
the ultrasensitivity of G protein-coupled receptors to the exter-
nal ligand close to the dynamic kinetic constant regime shown
here was consistent with the ligand-receptor occupancy model
proposed in [25]. We also note that this dynamic kinetic constant
was close to the CCL19 concentration at which T-cell speed

peaked in a separate study [30]. The kinetic binding constant
from traditional biochemical assays using isolated CCR7 recep-
tors along the CCL19-CCR7 axis was typically smaller and less
accurately determined, reported to be 0.1–10 nM [31, 32].

The maximum cell speed increase of 34% due to CCL19
gradients is significant in comparison to the impact of other
cytokines traditionally considered to be potent for promoting
tumor cell invasion. Previously, we reported that the maximum
speed increase of tumor cells (MDA-MB-231 cell line) was 12.5%
in an epidermal growth factor (EGF) gradient and was 13.2% in
an SDF-1α (ligand to chemokine CXCR4) gradient, two potent
cytokines implicated in breast tumor metastasis [33]. There
also existed distinct differences in the motility responses of
tumor cells and murine dendritic cells (mDCs) to the presence
of CCL19 gradients. A previous study in our labs using the
same microfluidic setup showed that mDCs displayed mild
chemokinesis but distinct chemotaxis in CCL19 gradients [25].
The highest speed percent change was 10% for mDCs, in contrast
to 34% for tumor cells; the highest normalized x-velocity is 0.2
for mDCs in contrast to 0.05 for tumor cells when subjected to
the same range of CCL19 gradients. These results indicate the
intrinsic differences between immune and tumor cells; in that,
immune cells utilized directed motion to reach their destination
efficiently, while tumor cells may need to rely on enhancing
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Figure 2. MDA-MB-231 cells show distinct chemokinesis and mild chemotaxis behavior in CCL19 gradients. (a) Polar plots of cell tracks, each 8-h long, under the CCL19

concentration gradient of (i) 0, (ii) 55.6 and (iii) 111 nM/mm CCL19. (b) Percent of migrating cells at various CCL19 concentration gradients. Here, the definition for

migrating cells is that the standard deviation of cell displacement in x-direction is larger than 2 μm and y-direction is larger than 2.5 μm in 16 h. (c–e) Normalized cell

speed (c), normalized cell velocity along gradients (d) and normalized persistence length along gradients (e) under various CCL19 concentration gradients. Student t-test

is used for statistical analysis with ∗ for 0.01 < P < 0.05, ∗∗ for 0.001 < P < 0.01 and ∗∗∗ for P < 0.001.

its speed or heterogeneity when invading. We note that the
steep response to the chemokine concentration gradients
reflects the sensitive nature of G-protein-coupled receptor to the
external ligands.

The heterogeneity of the tumor cell motility was
modulated by CCL19 gradient

Tumor cells are known to display the high level of heterogeneity
both in their genotypic and phenotypic behaviors. When taking
a close look at the cell trajectories, we find various types of cell
trajectories for breast tumor cells migrating within a 3D extra-
cellular matrices. Figure 3a–c shows three sample trajectories
typically seen in our experiments. Figure 3a is a breast tumor

cell that stops and goes reminiscent of E. coli motion in which
the cell runs or tumbles [34]. Note that the time between two
consecutive dots in each trajectory is the same (8 min), and thus
clustered dots indicate that the cell does not move. Figure 3c
is a cell that moves smoothly. Figure 3b shows a track that a
majority of cells follow, which is between a stop and go motion
(Fig. 3a) and a smooth motion (Fig. 3c). To quantify cell motility
heterogeneity, we first calculated the distribution of cell speed at
various CCL19 gradients. In Fig. 3d, we see that the normalized
speed distribution appears to become wider and shifts to the
high speed end with the increase of CCL19 gradients. This means
that there are more fast movers at high CCL19 concentration. At
the single-cell level, the cell motility heterogeneity can be visual-
ized by the scatter plots of persistence length versus cell speed as
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Figure 3. Rare cell motility events are modulated by cytokine (CCL19) availability. Sample single-cell trajectories: (a) stop and go; (b) in-between ‘stop and go’ and ‘smooth’

track motion; and (c) smooth motion. Here, each dotted line is a cell track of about 16-h long; the time between the two consecutive dots is 8 min. (d) Distribution of

normalized cell speed under various CCL19 gradients. The occurrence of fast moving cells increases with CCL19 gradients, indicating thicker tail distribution. (e and f)

Scatter plots of persistence length and normalized speed in various CCL19 gradient: 0.00 (e), 22.2 (f), 55.6 (g) and 111 (h) nM/mm. Each dot represents data taken from

one cell track. The number of cells is 244 in each of the four concentration gradients.

shown in Fig. 3e–h for various CCL19 gradients, where each dot
represents one cell. Clearly, the rare events (represented by high
speed and high persistence length) occur more often in Fig. 3h
(111 nM/mm) than in Fig. 3e (no CCL19). Previously, we studied 3D
breast tumor cell motility in the presence of EGF using a similar
experimental setup. Performing a similar data analysis as in
Fig. 3, we observed a similar trend for cells in the presence of EGF
gradients (Supplementary Fig. S1). EGF is used here because it is
a well-known growth factor that promotes tumor invasion and
progression [33, 35].

MDA-MB-231 cell velocity followed a
Lévy tail distribution

To establish that the tail end of the cell velocity distribution
follows a Lévy function, we comparatively fitted the whole veloc-
ity distribution to a Gaussian versus a Crystal ball function
(equations (1) and (2)), and also the tail end of the distribu-
tion to a Lévy versus an exponential function (equations (3)
and (4)). Gaussian distribution is known to describe Brownian
motion of small particles in fluids due to thermal fluctuation
in an equilibrium system. Our choice of Gaussian function as a
proposed model is based on the fact that cells are micrometer
in length scale, and they execute random walks. Crystal ball
function is composed of a Gaussian core in the low-velocity
region and a Lévy function in the large-velocity region (equa-
tion (2)). It has been commonly used in high-energy physics
to account for rare events. We used Crystal ball function here
to account for the rare fast moving cells. Strictly speaking, it
is the tail behavior of the Lévy stable distribution that con-
verges to a power law; we thus used the tail end distribution
to fit a Lévy function/power law. The exponential function was
used here for comparison purpose due to a previous report
where exponential function was used to describe tumor cell
motility [7, 36].

The four functions we used are defined in the following:

a1. Gaussian: N e−|Vx |2/2α2
, (1)

a2. Crystal ball:

{
N αpe

−p
(
1−|Vx |2/α2

)
/2

, |Vx| < α

N |Vx|−p, | Vx| ≥ α
, (2)

b1. Lévy tail: N |Vx|−p, (3)

b2. Exponential tail: N e−|Vx |/β , (4)

where Vx is the normalized velocity along x-axis, N is the normal-
ization factor for the distribution, α is the standard deviation in
Gaussian distribution, p is Lévy exponent and β is an exponential
decay factor. The crystal ball function is constructed such that
the function and its derivative are continuous at the boundary
between Gaussian core and power law at Vx = α. Equations (1)
and (2) were used to fit the whole velocity distribution, while the
tail end of the velocity distribution was used to fit equations (3)
and (4).

We note that a modular scientific tool kit, root (an open
source software, https://root.cern.ch), commonly used to per-
form statistical analysis in high-energy physics was used for all
the fitting. Root is an easily adaptable and a highly versatile data
analysis tool; it allowed us to fit various functions and to carry
out statistical analysis in a straightforward way.

The fitted results in Fig. 4a showed that the distribution of
Vx was best described by a Crystal ball function in contrast to
a Gaussian distribution. To determine the goodness of a fit, we
used the probability value (pv) evaluated from χ2 and the number
of degrees of freedom. In Fig. 4a, we obtained a probability value
of 0.9996 from a fit to the Crystal Ball function, and 0.0003 to the
Gaussian function. Note pv = 1 represents the best fit, and pv = 0
poor fit. We also used a second criterion, Akaike Information
Criterion weight (wAIC), from AIC to determine which function is
the best model. As seen in Fig. 4a, the results from Akaike weight

https://root.cern.ch


Lymphoidal chemokine CCL19 promoted the heterogeneity 17

Figure 4. MDA-MB-231 cells follow Lévy but not Brownian statistics. The distribution of the normalized x-velocity is fitted to various statistical models. Dotted lines are

from experiments with no CCL19 (control), and solid lines are fits to the models. (a) The fits to Gaussian versus Crystal ball function. (b) The fit to the tail end of the data

to Lévy and exponential model. Here, pv is the probability value calculated using a chi-squared calculator, representing the goodness of fit. The best fit is represented

by pv = 1. wAIC is the Akaike weight from Akaike Information Criterion, a second criterion used here to evaluate the goodness of fit.

calculation were consistent with the conclusion that crystal ball
is a better model of the two.

The fitted results in Fig. 4b showed that the tail end of the
distribution was better fitted to a Lévy function in contrast to
an exponential function. The cutoff in Vx for tail end was deter-
mined by the α value obtained in the previous fitting (Fig. 4a,
left panel). We obtained P-value (pv) of 0.9762 for Lévy function,
0.3679 for exponential tail function. This trend was reflected in
the values of Akaike weight wAIC as well. To verify the robust-
ness of the results, we repeated the above analysis using the data
of MDA-MB-231 cells migrating in gradients of EGF obtained in
a similar microfluidic platform [see Supplementary Fig. S2 and
Kim et al. [33]]; the results also demonstrated that Lévy statistics
was the best fit to the tail end of the velocity distribution.

Here, we showed that Lévy distribution was the best model
to describe the tail end of the normalized velocity distribution.
Our work is consistent with the previous report using migrating
metastatic tumor cells along a contact line [9] and migrating
T cells within a mouse model [8]. We note that the difference
between Lévy and exponential function was subtle, not very pro-
nounced. Previously, fibrosacoma HT 1080 cells migrating within
collagen matrix were found to follow exponential function [7].
We conjecture that this difference may come from different
cell types as well as cell culture condition. It is known that
HT 1080 cells executed mostly mesenchymal motility in static
culture which is an integrin-dependent motion; while MDA-MB-
231 cells in microfluidic platform executed both mesenchymal
and amoeboid (integrin independent motion) which may lead to
a higher heterogeneity [33].

Chemokine CCL19 within tumor microenvironment
promoted heterogeneity of MDA-MB-231 cell motility
revealed by the Lévy exponent

To evaluate the level of heterogeneity of tumor cell motility
to cytokine gradient, we fitted the tail end of the cell velocity
distribution under various CCL19 concentration gradients to the
Lévy distribution, N |Vx|−p. Here, a smaller exponent means a
longer tail end, which leads to larger rare events or higher het-
erogeneity. Figure 5 showed that the Lévy exponent decreased
with the increase of CCL19 gradients ranging from 2.68 to 1.95.
Consistent results were obtained when the Crystal Ball function
was used for the fitting (see Supplementary Fig. S3). These

results indicated that the number of rare fast moving events
increased significantly in the presence of the CCL19 gradients.
Interestingly, we found that the Lévy exponent of the Vx distribu-
tion reached to a minimum value of 1.95 ± 0.14 and 2.04 ± 0.21 or
the cell motility was most heterogenic when the average CCL19
concentration was between 50 and 100 nM, which was close to
the measured dynamic kinetic constant between CCL19-CCR7,
100 ± 40 nM measured in our labs previously [25]. Similar results
were obtained when we fitted data from EGF gradients to a
power law (Supplementary Fig. S4) and a Crystal Ball function
(Supplementary Fig. S5). An minimum exponent of 1.97 ± 0.31
was obtained at the average EGF concentration of 2.5 nM, close
to the kinetic binding constant of EGFR and EGF, 2–5 nM [33].

Here, we found that the experimentally obtained Lévy expo-
nent was close to 2.0 when the cytokine (either CCL19 or EGF)
concentration was close to its dynamic kinetic constant. Early
work [37] using flight length distribution of forager showed that
an Lévy exponent of 2.0 represented an optimized search strat-
egy for the foragers to find sparsely populated food. It is likely
that tumor cells optimized its strategy to spread when the cells
were most sensitive to their cytokines, that is when the cytokine
concentration was close to its dynamic kinetic constant. Further
work will be needed to verify this conjecture.

In summary, our data in Fig. 5 showed that tumor cell het-
erogeneity increased with the increase of CCL19 chemokine
gradients. The measured Lévy exponent reached a minimum
or a value of ∼ 2.0 when CCL19 concentration was near its
dynamic kinetic constant. This indicated that CCL19 promoted
heterogeneity of the cell movement, highlighting the importance
of cytokine gradients within the tumor microenvironment in
tumor cell invasion.

CONCLUSION AND FUTURE PERSPECTIVES

Cellular heterogeneity is important in many physiological and
pathologic processes including immune response and cancer
progression. Here, we propose a new parameter, the Lévy
exponent, for quantifying cellular heterogeneity. Using 3D breast
tumor cell migration data, we showed that the migration velocity
of breast tumor cells followed a Lévy distribution function. When
challenged by chemokine CCL19 gradients within a microflu-
idic device, we found that the Lévy exponent reached to a
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Figure 5. CCL19 gradients promoted the heterogeneity of tumor cell motility revealed by the Lévy exponent. Fit to a power law using the tail end of the x-velocity

distribution. Dotted lines are experimental data taken at CCL19 gradients of (i) 0.00, (ii) 22.2, (iii) 55.6, (iv) 111 and (v) 222 nM/mm. The Lévy exponent decreases with the

increase of CCL19 gradient and approaches to ∼2.0 when the average CCL19 concentration is near ∼111 nM.

minimum value of ∼2.0 when average CCL19 concentration
was ∼50 nM, close to the currently reported dynamic ligand
receptor (CCL19-CCR7) kinetic constant. We also showed that
MDA-MB-231 cells displayed a mild chemotactic but distinct
chemokinesis response in CCL19 gradients. A similar trend was
also observed in the response of tumor cells to EGF gradients.
Our work highlighted the importance of cytokines in modulating
cellular heterogeneity, and its subsequent impact in tumor cell
invasiveness. While our work is at single-cell level, the next
level of inquiry will be to ask the question whether tumor cell
motility follows Lévy walk when they are in aggregated form
(tumor spheroids) for optimized invasion. We note that tools
used here can be also used to explore the potential roles of
genetic heterogeneity in tumor invasion and cancer metastasis.

MATERIALS AND METHODS

Device fabrication and assembly

A microfluidic platform previously developed in our lab was
adopted for this project [25, 29]. Briefly, a silicon master with
the pattern of four functional gradient generators was fabricated
at the Cornell NanoScale Science and Technology Facility using
a standard photolithography method. To make a device, we
first placed a 1-mm-thick PDMS spacer on the silicon master
surrounding the four functional units. A hot 3% agarose solution
was then poured onto the silicon master inside of the spacer. A
glass slide was immediately placed on the top of the spacer, and
pressure was applied on the glass slide until the agarose gel was
polymerized under room temperature. The agarose membrane,
spacer, together with the glass slide were carefully peeled off
from the silicon master. The agarose membrane typically was
soaked in the media for 30 min before being assembled between
a glass slide and a manifold. Lastly, the device was stored in an
enclosure (upside down petri dish) to avoid evaporation before
experiments.

3D cell culture

Cells. Human breast tumor cells (MDA-MB-231) were a gener-
ous gift from the Cornell University Center on the Microenvi-
ronment and Metastasis. The cells were maintained in DMEM
(Invitrogen, Carlsbad, CA) with 10% FBS (Atlanta Biologicals,
Lawrenceville, GA) and 1% Penicillin/Streptomycin (Invitrogen).
When reaching 70–80% confluence, cells were detached with
2 mL of trypsin/EDTA and then re-suspended in fresh DMEM.

3D cell culture. The suspended cells in DMEM were first mixed
with 0.5% type I collagen from rat tails (Pel-Freez, Rogers, AR)
to reach a final concentrations of 1.5 mg/mL collagen and 106

cells/mL. The cell-collagen mixture was then introduced into
the cell channel of each of the four functional units. To prevent
the cells from settling to the bottom of the channel due to
gravity, we created the following procedures. The device was
first incubated, in an upside-down position, at 37◦C in a 5% CO2

incubator for 7 min. The device was then turned upright way for
an additional 13 min of incubation. Figure 1c showed that cells
were distributed along z-direction, and most cells were in the
mid-z plane, facilitating a 3D cell culture.

CCL19 gradient generation

CCL19 (R&D Systems, Minneapolis, MN) was reconstituted at
10 μg/mL insterile PBS (Invitrogen) containing 0.1% BSA (Sigma).
At each experiment, three different concentrations of CCL19
solution were prepared by adding designated amount of growth
medium to the reconstituted CCL19, while the control solution
contained only growth medium. All mixture solutions were then
transferred to the 3 mL syringes (BD, Franklin Lakes, NJ) whose
tips were connected to a medical grade tubing (ID = 0.51 mm,
PharMed BPT, Cole-Parmer, Vernon Hills, IL). The free ends of
tubing were subsequently connected to the inlets of the source
channels of the four functional units. The outlets of the flow
channels were connected to a set of the tubing that was placed
in a disposal container. For gradient generation, CCL19 solu-
tion and growth medium were pumped through the source
and sink channels by a syringe pump (KD Scientific, Holliston,
MA) at a rate of 1 μL/min. Since the chemokine can diffuse
through the agarose barrier, a steady linear chemokine gradient
was readily established across the center channel [24, 25]. For
example, by flowing a 100 nM of CCL19 and buffer via source
and sink channels, respectively, we create a CCL19 gradient of
100 nM/0.9 mm = 111 nM/mm gradient, with an average concen-
tration of 50 nM. Note that the distance between the sink and
the source channel is 0.9 mm.

Imaging

Images were taken in bright field using an inverted microscope
(20× objective, Olympus IX81, Center Valley, PA) in the middle
of the channel along the z-axis, at 8-min intervals for 16 h, and
saved on hard drive for post-analyses. We used an image acqui-
sition software, SlideBook (Intelligent Imaging Innovation, Inc.,
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Denver, CO), a CCD camera (Orca-ER, Hamamatsu, Bridgewater,
NJ), and a x-y controlled stage (OptiScan II, Prior Scientific, Inc.,
Rockland, MA). For each experiment, we imaged two locations
in each of the four center channels at a given time point. Note,
although cells were embedded within a 3D biomatrix, we image
a single z-plane in the middle of the cell channel.

Data analysis

Time series images were used to obtain cell trajectories using
Imaris (Bitplane, Zurich). An in-house MATLAB (The MathWorks,
Inc., Natick, MA) script was used to compute migration param-
eters. To exclude non-motile cells from the analysis, we first
calculated the standard deviations of the cell positions along
the x-axis and y-axis (stdX and stdY) of each cell track (16-h
duration). A cell was considered motile if its standard deviation
stdX and stdY were greater than 2 and 2.5 μm, respectively. For
each cell track, we first computed the total traveled distance T,
the net displacement D, and the net displacement along the x-
axis Dx as shown in Fig. 1c. From these, we computed speed, U′ =
T/t, the x-directional velocity V′

x = Dx/t, the persistence length
P = D/T, and the x-directional persistence length or chemotactic
index P′

x = Dx/T. Here, t = 16 h, the duration of each track.
The speed (U′) was normalized by the average control speed to
minimize experiment-to-experiment variations. To normalize x-
directional velocity, we subtract the average V′

x of the control
group from the V′

x of each cell, and the difference is subsequently
divided by the average speed (U′) of the control population. The
x-directional persistence length, P′

x is normalized by subtracting
individual P′

x with the average P′
x of the control group such that

the average of the normalized directional persistence length (Px)
of the control group was set to zero. Student t-test was carried
out in Prism (Graphpad, La Jolla, CA) for statistical analysis.

Statistical analysis

The goodness of fit was evaluated by two methods, probability
value (pv) from Chi-Squared fitting and wAIC. The probability
value calculates the probability that the assumed function
simulates the real function using χ2 criterion. Probability value
(pv) = 1 represents the best fit indicating the assumed function
is the real function. pv = 0 represents a poor fit indicating
the assumed function is not suitable for the distribution. The
probability value pv was obtained using the fitted chi-squared
value and degree of freedom with an online Chi-Square calcu-
lator, https://www.mathsisfun.com/data/chi-square-calculator.
html. Akaike Information Criterion weight is a measure that
allows one to compare and rank multiple competing models
and to estimate which of them best approximates the true
process [16, 38]. AIC was computed using results from Chi-
Square fit (details see https://en.wikipedia.org/wiki/Akaike_
information_criterion). The relative likelihoods of candidate
models were calculated using weights, with the weight (wAIC) of
any particular model varying from 0 (no support) to 1 (complete
support) relative to the entire model set. We used equation (8) in
[38] for this calculation.
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