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Introduction

With advances in genomic sequencing technology, the 
hope of precision medicine is being harnessed to both 
better understand disease biology and to provide targeted 
therapies to minimize toxicity. While innovative laboratory 

techniques have improved sequencing depth and sensitivity, 
translating these findings into meaningful diagnostic, 
prognostic, and therapeutic information for patients 
remains a major clinical challenge and likely requires 
large clinical volumes to generate this data. For example, 
while early phase 1/2 data showed ~40% response to IDH 
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inhibition in adult AML, next-generation sequencing (NGS) 
identified that non-responders in larger clinical trials had 
concurrent Ras mutations (1,2). These studies highlight 
how comprehensive sequencing can yield insightful 
information that better informs treatment plans. However, 
with rare exceptions, the majority of these studies have 
been conducted in adult patients, with mean ages typically 
in the 60s (3), and where mutational burden is higher and 
the molecular landscape quite divergent from pediatric 
malignancies (4-8). Illustratively, recent studies confirm that 
pediatric malignancies possess fewer and different mutations 
as compared to their adult counterparts and therefore likely 
represent biologically distinct disease processes. Together, 
this accumulating evidence supports that further studies are 
needed to define the unique genetic signatures and their 
clinical implications specific to pediatric diseases. 

In this vein, large genomic datasets in pediatric cancers 
have started to become available, but the correlative 
clinical data is not yet widely accessible. To address this 
limitation, we completed comprehensive ICS on pediatric 
and young adult patients over a period of five years who 
presented with high-risk clinical features at our institution 
and analyzed this data in the context of their clinical 
course. Across the spectrum of high risk acute leukemia, our 
analysis demonstrates that patients who harbor mutations 
predictive of hyperactive Ras signaling experience shorter 
event-free (EFS) and overall survival (OS). Notably, this 
data complements and expands upon studies in specific 
cohorts of ALL, including relapsed T-cell ALL (9), pre-B 
cell ALL (10), early T-cell precursor ALL (11), hypodiploid 
ALL (12), and MLL-rearranged infant ALL (13) and 
AML (14), by examining pediatric and young adult patients 
across a spectrum of presentations of acute leukemia. 
These analyses have uncovered an association of Ras 
aberrancy with inferior survival, early relapse of ALL, more 
frequent central nervous system (CNS) involvement and, 
importantly, sensitivity to MEK inhibition (15). Together, 
these data highlight the clinical impact of Ras mutational 
status and the importance of interrogating Ras-mediated 
leukemic transformation to uncover novel biology and 
strategically design targeted treatment regimens for high-
risk pediatric leukemia patients.

Methods

High-risk or relapsed/refractory pediatric and young adult 
patients with hematologic malignancies were consented 
to undergo ICS through the PEDS-MIONCOSEQ study 

at the C. S. Mott Children’s Hospital from 2012–2017 
(UM IRBMED: HUM00056496). Patients with chronic 
myeloid leukemia, juvenile myelomonocytic leukemia, and 
mixed phenotype and mixed lineage acute leukemia were 
excluded from the analysis. Specific methods of sequencing 
procedures have been described previously (8). Briefly, 
nucleic acid preparation and high-throughput sequencing 
were performed using standard protocols, adhering to 
Clinical Laboratory Improvement Amendments (CLIA). 
Our cohort was sequenced using two panels: prior to 
January 2016, we used whole-exome sequencing and, since 
that time, a 1,700 gene panel replaced WES. Paired-end 
whole-exome/OncoSeq 1,700 libraries and transcriptome 
libraries from bone marrow or peripheral blood samples 
that were matched with normal DNA were prepared and 
sequenced. Sequences were analyzed to detect putative 
somatic mutations, insertions and deletions, copy-number 
alterations, gene fusions, and gene expression. Statistical 
analysis was performed using Prism GraphPad software 
(San Diego, CA, USA). Differences between groups (Ras-
aberrant vs. non-Ras aberrant) for clinical data were 
calculated using a Chi-Square test or unpaired, two-tailed 
student’s t-test, depending on the analysis. EFS and OS 
were calculated from date of initial diagnosis using Kaplan-
Meier analyses to either first event using Gehan-Breslow-
Wilcoxon test (relapse/death for EFS) or log-rank test for 
death (OS). 

Results 

Among the acute leukemia patients sequenced, 32 (74%) 
had acute lymphoblastic leukemia (ALL) and 11 patients 
(26%) had acute myeloid leukemia (AML). Of these,  
22 (51%) were sequenced at the patient’s initial diagnosis 
(n=18/22 with ALL, n=4/22 with AML), while the remaining 
21 cases (49%) were patients with either relapsed or 
refractory disease (14/21 =ALL, 7/21 =AML; Table 1). Our 
initial analysis revealed that the most prevalent activating 
mutations were for Ras-signaling pathways (Figure 1,  
Table S1). In this group, we include all NRAS, KRAS or 
HRAS mutations, along with well-characterized Ras-pathway 
aberrations (NF1, PTPN11, PI3K, BRAF). Importantly, while 
FLT3 mutations also activate Ras signaling (16), patients 
with FLT3 mutations (12/55 patients sequenced during this 
analysis) were excluded from this study given its established 
role conferring inferior survival in leukemia (17). It is 
noteworthy, however, that concurrent Ras mutations have 
recently been shown to promote chemoresistance in FLT3 
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mutant leukemia and co-mutational burden may, in fact, 
synergize to confer inferior survival (18). Nonetheless, 
patients in our cohort had a much higher percentage, 42% 
(n=18/43), of RAS and Ras-pathway aberrations than would 
be anticipated based on previously published pediatric 
(14,19-21) and adult leukemia series (22) but in-line with 
recent reports of large cohort studies and of high-risk and 
relapsed leukemia patients (4,5,15,23-25). Of the 42% of 
mutations detected, approximately half were Ras-pathway 
aberrations (21%), while the remainder (21%) were point 
mutations in the Ras family of oncogenes (Figure 2A,B,C, 
Table 2), with single nucleotide variants in NRAS being 
more common than KRAS (Figure 2D). We next compared 

the frequency of these mutations by disease type and clinical 
status at sample collection. Surprisingly, pediatric patients 
with myeloid neoplasms did not have a significantly higher 
prevalence of RAS and Ras-pathway aberrations (7/11; 64%) 
compared to pediatric ALL patients (11/32; 34%) (P=0.09; 
Figure 2B,C; Table 1). To understand if mutations conferring 
hyperactive Ras signaling were enriched at disease 
recurrence, we compared the frequency of these mutations 
in unmatched diagnostic and relapsed/refractory samples, 
but observed no difference, as 11 of 22 (50%) diagnostic 
samples contained RAS or Ras-pathway aberrations, while 
7 of 21 (33%) relapsed samples harbored these mutations 
(P=0.27; Table 1). These data suggest that a considerable 

Table 1 Characteristics of Patients with and without Ras-aberrant mutations

Patient characteristic Non-Ras aberrant (N=25) Ras-aberrant (N=18) P

Demographics

Age (mean ± SEM) 0.2–22.4 (9.3±1.5) 0.5–17.9 (8.6±1.4) 0.76

Male (%) 15 [60] 8 [44] 0.313

Clinical information

WBC (mean ± SEM) k/μL 66.8±31 40.4±22 0.49

CNS involvement (%) 8 [32] 6 [33] 0.93

ICU admission (%) 3 [12] 4 [22] 0.37

Sample type (%)

ALL 21 [84] 11 [61]

AML 4 [16] 7 [39]

Diagnostic (%) 11 [44] 11 [61]

ALL 10 [40] 8 [44]

AML 1 [4] 3 [17]

Relapse/refractory (%) 14 [56] 7 [39]

ALL 11 [44] 3 [17]

AML 3 [12] 4 [22]

Treatment

Allogeneic BMT (%) 14 [56] 6 [33] 0.14

Number of treatment regimens received (mean ± SEM) 1–11 (3.4±0.5) 1–5 (2.6±0.38) 0.27

Mutational landscape

Range of mutations detected (mean ± SEM) 1–20 (7.4±1.1) 2–25 (8.2±1.6) 0.69

KMT2A present (%) 6 [24] 6 [33] 0.5

Chromosomal abnormalities detected (mean ± SEM) 0.52±0.15 0.89±0.25 0.22

Data are shown as mean ± SEM or n [%]. SEM, standard error of mean; WBC, white blood cell; CNS, central nervous system; ICU, 
intensive care unit; ALL, acute lymphoblastic leukemia; AML, acute myeloid leukemia; BMT, bone marrow transplant.
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number of high-risk pediatric leukemia patients, whether 
at diagnosis or relapse, harbor mutations predictive of 
hyperactive Ras signaling. 

Given these findings, we next sought to understand 
if RAS and Ras-pathway aberrations had any impact on 
clinical outcomes and should therefore be considered in 
medical management. Importantly, in adult leukemia, RAS 
mutations have not been prognostic to clinical outcomes 
(26,27). To understand this in pediatric leukemias, we 
compared EFS in Ras-aberrant patients to that of non-
Ras-aberrant patients and observed a significantly shorter 
EFS in the Ras-aberrant patients (median EFS 5.6 vs.  
22.8 months; P=0.04) (Figure 3A). In an attempt to uncover 
if hyperactive Ras signaling contributed only to lower EFS 
and perhaps early relapse but bore no ultimate effect on 
OS, we compared OS of Ras-aberrant patients to non-
Ras aberrant patients and again observed significantly 
shorter OS (median OS 22.5 vs. 124 months; P=0.04)  
(Figure 3B). Given that myeloid and lymphoid malignancies 
are distinct diseases with overall different expected survival, 
we attempted to independently analyze clinical outcomes 
in each disease cohort. Due to low patient numbers with 
AML, we were unable to make meaningful conclusions 

for AML. However, we were able to identify inferior OS 
in ALL patients with genetic lesions in Ras pathway genes 
compared to those without (P=0.03; median survival 28.7 
vs. 124 months) (Figure 3C), similar to other studies (25).  
Notably, the OS for both Ras-aberrant and non-Ras 
aberrant patients is much lower than reported for standard-
risk pediatric leukemia patients and highlights the high-risk 
disease features represented by our cohort (28). 

Given the inferior survival of patients with mutations 
predictive of Ras aberrancy, we examined if these patients 
are more likely to present with high-risk clinical features, 
and could therefore account for higher mortality. Notably, 
there was no difference in CNS involvement between 
Ras-aberrant and non-Ras aberrant patients (33% vs. 
32%, P=0.93) (Table 1), total white blood cell count at 
diagnosis/relapse (40.4±22 vs. 66.8±31; P=0.49) or initial 
ICU admission (22% vs. 12%, P=0.37) (Table 1). This data 
suggests that hyperactive Ras signaling confers inferior 
survival without initially evident high-risk clinical features. 
Our observations are supported by the association of NRAS 
mutations with aggressive clinical behavior including early 
relapse (15,29) and resistance to chemotherapy, including 
vincristine and MTX (30), and IDH inhibition (1).

Age & Gender
Diagnosis

Status
Outcome

FLT3
NRAS

NF1
KRAS

PTPN11
BRAF

CBL
PIK3CA

RIT
Cell Cycle

DNA Repair
Epigenetic

Kinase
Signaling

Transcription
Chromosomal

P
O

-3
32

7

P
O

-3
00

9

P
O

-3
01

4 
(2

)

P
O

-3
12

2

P
O

-3
20

1

P
O

-3
21

6

P
O

-3
21

6 
(2

)

P
O

-3
27

0

P
O

-3
35

4

P
O

-3
04

8

P
O

-3
05

4

P
O

-3
06

5

P
O

-3
27

3

P
O

-3
36

9

P
O

-3
03

0

P
O

-3
23

9

P
O

-3
25

1

P
O

-3
36

5

P
O

-3
31

2

P
O

-3
31

2 
(2

)

AML

Male

Alive

SNV

deletion Insertion
Overexp

Dead

fusion
ITD

DxRelapse
B cell ALL T cell ALL

Female 0-21 years

Figure 1 Overview of genetic landscape in sequenced pediatric patients with Ras aberrancies. Prevalence of RAS and Ras-pathway 
aberrations in hematologic malignancies broken down by gender, age, disease type, disease status at sequencing and clinical outcome with 
concurrent mutational burden. 
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Figure 2 Frequency of RAS and Ras-pathway mutations in pediatric hematologic malignancies. (A) RAS and Ras-pathway mutations in 
all patients; (B) RAS and Ras-pathway mutations in ALL; (C) percentage of RAS and Ras pathway aberrations in AML; (D) frequency of 
genetic mutations identified to predict hyperactive Ras signaling in sequenced patients. ALL, acute lymphoblastic leukemia; AML, acute 
myeloid leukemia.

Table 2 Detected mutations in RAS or Ras pathway genes [n]

Gene [total mutation No.] Mutations detected by gene

NRas [10] All single nucleotide variants: G12D [2]; G12S [2]; G12A [2]; G13D [1]; G13R [1]; Q61H [2]

KRas [1] G12D [1]

PTPN11 [3] All single nucleotide variants: E76Q [1]; A461G [1]; G483V [1] 

NF1 [4] Single nucleotide variant Y333I [1]; homozygous deletion [1]; frameshift deletion [2]

CBL [2] Deletion [1]; MLL-CBL fusion [1]

Other BRAF loss [1]; RIT1 (p.F82C); PIK3CA

MLL, mixed lineage leukemia; CBL, Casitas B-Lineage Lymphoma Proto-oncogene. 
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Next, we wanted to dissect if Ras-aberrant mutations 
could have a direct role in inferior survival. To do this, 
we examined if Ras-aberrant mutations occurred in older 
pediatric patients, where mutational frequency is likely 
higher and therefore the accumulation of secondary 
mutations more likely and could result in chemotherapy 
resistance and/or further genomic instability. However, we 
saw no difference in the mean age between Ras-aberrant 
versus Ras non-aberrant patients (8.6±1.4 vs. 9.3±1.5 years; 
P=0.76; Table 1). Consistent with this, we also observed no 
difference in the mean number of mutations detected in 
Ras-aberrant versus non Ras-aberrant samples (8.2±1.6 vs. 
7.4±1.1; P=0.69). Furthermore, we observed no difference 
between patient cohorts in the frequency of additional 
high-risk genetic features, including patients with KMT2A 
fusions (6/18, 33% and 6/25, 24%; P=0.5; Table 1) or the 
mean number of chromosomal abnormalities detected 
(0.89±0.25; 0.52±0.15; P=0.22). Together, these data suggest 
that mutations predictive of Ras aberrancy are associated 
with inferior survival without requiring the accumulation 
of further genetic lesions that contribute to treatment 
resistance and genomic instability. 

Discussion

Improved efficiency in sequencing techniques have allowed 
us to define genetic alterations for pediatric leukemia in 
real-time. However, with these results arises a great need 
to ascribe their function and clinical significance. Here, 
using ICS, we show across a spectrum of high risk acute 
pediatric leukemia that RAS and Ras-pathway aberrations 
are associated with inferior EFS and OS. These findings are 
not dependent on other high-risk genetic features, such as 
KMT2A fusions, or on chromosomal or mutational burden. 
Rather, we propose Ras aberrancy is an independent 

risk factor for aggressive clinical behavior and that the 
downstream consequences of hyperactive Ras signaling 
directly contribute to inferior survival and, potentially, 
therapy resistance. Notably, while oncogenic Ras has not 
been validated as a leukemia-initiating event in adult disease, 
its biologic significance in pediatric leukemia has yet to be 
defined. Hence, murine models that activate Ras signaling 
may best recapitulate the steps of pediatric leukemogenesis, 
where mutational burden is lower and therefore driven by 
fewer, distinct, and perhaps more fully penetrant genetic 
lesions. These models may provide insightful evidence 
regarding the potential role of Ras aberrancy in disease 
development and treatment resistance. 

Importantly, large pediatric cohort studies have now 
identified mutations in RAS and Ras pathways as frequent 
lesions in many pediatric cancers (4,5,24), specifically in 
the relapsed or refractory setting (6,15,31). This finding, 
when combined with inferior survival, early relapse and 
chemotherapy resistance, illuminate two fundamental 
questions regarding the precise role of hyperactive 
Ras signaling in both leukemogenesis and treatment 
refractoriness. In murine models, it is known that 
oncogenic NRasG12D/+ induces hematopoietic stem cell (HSC) 
dysregulation, where hyperactive Ras signaling drives 
both pre-leukemic proliferation and clonal expansion but 
also HSC self-renewal (32). Importantly, complementary 
studies have revealed that quiescent pre-LSCs persist 
despite negative minimal residual disease testing (MRD), 
are therefore resistant to treatment, and can hence form the 
basis of relapse (33,34). Combined, murine models support 
that hyperactive Ras signaling drives leukemogenesis 
through HSC dysregulation but accumulating clinical 
data suggests that this may ultimately lead to treatment 
refractoriness and relapse. Understanding these paradigms 
is of critical importance in the research laboratory and 

Figure 3 Survival of sequenced patients. (A) Event free survival comparing Ras aberrant (red) to non-Ras aberrant (blue); (B) overall survival 
of Ras aberrant (red) and non-Ras aberrant (blue) patients; (C) overall survival of ALL patients with mutations predictive of Ras aberrancy 
(red) or non-Ras aberrant (blue). *, P<0.05. ALL, acute lymphoblastic leukemia.
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the clinic if we are to better define disease-initiating cell 
populations and more effectively target disease-propagating 
events that may be specific to pediatric diseases. Ultimately, 
these results suggest that real-time ICS looking to identify 
RAS mutations and known Ras-pathway aberrations holds 
great promise in realizing the power of precision oncology 
in pediatrics. If our findings are validated by larger 
cohorts, we propose these alterations should be part of 
expanded disease stratification when tailoring treatment 
regimens based on patient genomics, such as the addition 
of MEK inhibitors (15), in order to improve outcomes. 
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Supplementary

Table S1 Characteristics of patients with RAS or Ras pathway mutations

Age (years) Disease Presenting white 
blood cell count  
(k/μL)

CNS Ras pathway mutation M u t a t i o n 
frequency

Diagnosis 
or relapse

Co-occurring mutations Total somatic lesions

4 AML 0.6 Negative NRAS (p.G13R) 0.46 Relapse Copy loss of 6q and 20q 14

14.3 Pre B ALL 5.6 Positive NRAS (p.Q61H) 0.38 Relapse p53, MLL2 7

13.6 AML 49.8 Negative BRAF Refractory CSF3R, EIF4A2-MECOM, Chr7q, 
Chr3q loss,Chr21 gain

6

8.5 Pre B ALL 6.1 Negative NF1 Deletion Relapse p53, MAX, KDM6A 5

17.9 AML 0.7 Positive NF1 (p.Y333I) 0.23 Diagnosis TSC2, CBFB-MYH11 fusion 3

17.9 AML 3.7 Negative PTPN11 (E76Q) 0.12 Relapse NF1, WT1, BIRC-CEBPZ, EDF1-
NOTCH

5

5.2 ALL 39.5 Negative NRAS (p.G12S) 0.31 Diagnosis ETV6-RUNX1, BCR-ABL1 3

0.9 Pre B ALL 33 Positive NRAS (p.G12D)
(p.G12S)

0.02 Diagnosis KMT2D, FLT3, CDKN2A 9

0.5 Pre B ALL 30.5 Positive NRAS (p.G12A) 0 . 3 2  t o 
0.38

Diagnosis + 
relapse

PIK3R1, MLL 4

1.8 AML 0.4 Negative CBL Refractory MLL 3

11.5 T ALL 1.1 Negative CBL Diagnosis NOTCH1, IL7R, SH2B3 4

13 Pre B ALL 2.3 Positive NRAS (p.G12A) 0.03 Diagnosis PAX5 4

1.8 Pre B ALL 7.9 Negative KRAS (p.G12D) 0.03 Diagnosis CCNB3 2

4 AML 12.7 Negative RIT1 (p.F82C) 0.41 Diagnosis KIT 8

6 ALL 3.1 Negative NRAS (p.G13D) 0.01 Diagnosis DOT1L, RUNX1 21

18 AML 89 Positive NRAS Diagnosis HNRNPH1-ERG 3

(p.G12D) 0.01

(p.Q61H) 0.08

6 ALL 35 Negative PIK3CA Relapse XBP1, BCL2L14, ETV6 18

11 T cell ALL 407 Negative PTPN11 Diagnosis JAK1, JAK3, NOTCH1 25

(p.A461G) 0.46

(p.G483V) 0.45

AML, acute myeloid leukemia; ALL, acute lymphoblastic leukemia; CNS, central nervous system.


