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ABSTRACT The human ether-a-go-go-related gene1 (hERG) ion channel has been the subject of fascination since it was
identified as a target of long QT syndrome more than 20 years ago. In this Biophysical Perspective, we look at what makes
hERG intriguing and vexingly unique. By probing recent high-resolution structures in the context of functional and biochemical
data, we attempt to summarize new insights into hERG-specific function and articulate important unanswered questions. X-ray
crystallography and cryo-electron microscopy have revealed features not previously on the radar—the ‘‘nonswapped’’ trans-
membrane architecture, an ‘‘intrinsic ligand,’’ and hydrophobic pockets off a pore cavity that is surprisingly small. Advances
in our understanding of drug block and inactivation mechanisms are noted, but a full picture will require more investigation.
Structure-function studies of ion channels are problematic.
Functional studies provide insights into dynamic transitions
between different conformational states but allow only in-
ferences of structure. These approaches require a certain
cleverness in design and necessarily involve a simple molec-
ular interpretation. Structural approaches, on the other hand,
enable a satisfying visualization of many structural details
of the channel, often at the atomic level. But the picture is
a static one and of a protein that is sometimes modified by
deleting parts of the channel or attaching antibodies to in-
crease stability and monodispersity required for structural
and biochemical studies. Only after iterative advances in
both regards can we hope to deeply understand our favorite
ion channels.
A different intersubunit architecture

More than two decades of combined functional and struc-
tural efforts have shed light on the fascinating family of
KCNH channels and its most charismatic member, the hu-
man ether-a-go-go-related gene1 channel (hERG, encoded
by KCNH2). Recent single-particle cryo-electron micro-
scopy (cryo-EM) structures of the hERG channel (1) and
the rat ether-a-go-go1 channel complexed with four CaM/
Ca2þ molecules (rEAG, encoded by KCNH1) (2) punctuate
these advances with new insights. For example, a novel mo-
lecular architecture dictates differences with respect to other
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voltage-gated K channels for the mechanism of how
changes in membrane voltage gate the channel open and
closed. Although possessing a canonical S1-S4 voltage
sensor domain (VSD), the means by which the VSD con-
nects to the S6 gate is different from other Kv channels.
The VSD in KCNH channels is closely apposed to the
pore module in the same subunit, the two connected by a
short linker (Fig. 1). In contrast, in other Kv channels, the
VSD of one subunit interacts with the pore domain of the
adjacent subunit. The VSD connects with its own pore
domain through a long S4-S5 helical linker, and four
S4-S5 linkers form a cuff around the S6 gate sequences.
These differences explain why integrity of the S4-S5 linker
is required for coupling between the VSD and pore gate in
Shaker-like channels (3) but not KCNH channels (4,5). In
this regard, KCNH channels echo their ligand-gated
cousins, the cyclic nucleotide-gated and modulated chan-
nels, which also exhibit a ‘‘nonswapped’’ subunit architec-
ture (6,7). Changes in membrane potential must be
transduced directly from transmembrane interactions of
VSD and pore domains, as has been demonstrated for the
HCN1 channel (8) as well as EAG-HCN1 chimeras (9).
An open and a closed channel

The hERG cryo-EM structures show a channel with the
VSD in the activated state and the gate open (1). The
rEAG structure provides a view of a different conforma-
tional state, with the gate closed (2) (Fig. 2 a). This is visible
by superimposing the pores of the two channels, showing
how S6 of hERG, relative to rEAG, has swung away from
the pore axis, creating an entry to the pore cavity large
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FIGURE 1 hERG and Kv channel. View of the

hERG channel (left, in pink) and Kv1.2-Kv2.1

chimera (right, in cyan) channels with three subunits

shown as surface and the fourth subunit as cartoon.

The VSD from a subunit of the Kv chimera was

omitted to facilitate view of the pore domain. Star

symbols (*) indicate the S4-S5 linkers, which are

much shorter in hERG. Lines mark membrane

limits. Domains are labeled.
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enough to accommodate ion flux (Fig. 2 b). S5 follows a par-
allel change. When the cytosolic gate opens, akin to the
blades of a camera iris, a corresponding movement occurs
in the two first helices of the C-linker (aA0 and aB0;
Fig. 2 c).

It is important to note that both hERG and rEAG channel
structures show the S4 voltage sensor in the up position,
which agrees well with the electrical field of 0 mV in the
experimental setup and the open gate of the hERG channel
but not with the conformational state of the closed rEAG.
Like other members of the EAG subfamily, rEAG is in-
hibited by calmodulin in complex with Ca2þ (CaM/Ca2þ)
(10–14), and the structure provides an extraordinary view
of the two proteins together. CaM/Ca2þ either stabilizes
the closed gate, forces it closed, or somehow decouples it
from the VSDs while they remain in their ‘‘up’’ or activated
positions. Thus, we do not yet have a picture of the resting
VSD in concert with the closed gate. An interaction be-
tween the C-terminus of S4 and the C-linker, covalently
FIGURE 2 Cytosolic gate. (a) A view of rEAG channel gate from the cytoso

Superposition of hERG (pink) and rEAG (light green) channels without gate sid

is suggested by arrows in one subunit. (c) The gate region of superposed hERG an

gate region of the pore domain are indicated. The N-terminal helices of the C

rEAG.
attached to the gate, are proposed to mediate channel
closure (2).
Per-Arnt-Sim and cyclic nucleotide-binding
domain interactions in the context of the channel

Unique to the KCNH family is its cytosolic complex of the
N-terminal region with homology to Per-Arnt-Sim (PAS)
domains (15,16) and the C-terminal region with homology
to cyclic nucleotide-binding (CNBh) domains (Fig. 1;
(17–19)). The cryo-EM structures of hERG and rEAG
reveal a cytosolic ring structure with the PAS domain of
one subunit interacting with the CNBh domain of its
neighbor (Fig. 1; (1,2)). It is unsurprising that the versatile
PAS domain, which mediates functions across the phyloge-
netic spectrum as diverse as phototransduction and redox
sensing (20–22), should have evolved a role in gating. Not
to be outdone, the C-terminal binding partner has evolved
from ancient CNBh domains but is indifferent to cyclic
l. Residues occluding access to the pore (Q476) are shown as spheres. (b)

e chains viewed as in (a). Displacement of S6 and S5 helices during gating

d rEAG viewed from the membrane. Displaced S6 and S5 helices around the

-linker are also visible, showing similar displacement of hERG relative to

Biophysical Journal 118, 790–797, February 25, 2020 791



FIGURE 3 Calmodulin/Ca2þ bound to rEAG. Aview from the cytosol of

CaM/Ca2þ (red cartoon) associating with the cytosolic regions of three

different subunits (cyan, blue, and light green surfaces) of the channel.
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nucleotides (23,24). Instead, as revealed in the x-ray crystal
structures of purified domains, the binding pocket is occu-
pied by a downstream sequence of three amino acids that
have assumed the role of ‘‘intrinsic ligand’’ (18,25).
KCNH channels are neither modulated nor bound by cyclic
nucleotides (23,24); this is not because the intrinsic ligand
prevents cyclic nucleotide molecules from binding, but
because the side-chain chemistry within the binding pocket
has coevolved to interact with the intrinsic ligand (18,25).
The ligand lies at the PAS-CNBh domain interface known
to be critical for channel function as a hotspot for disease
mutations mediating type 2 long QT syndrome (hERG)
and cancer (EAG1) (19). Interactions between PAS and
CNBh domains appear to be somewhat dynamic, showing,
e.g., rearrangements revealed by transition-metal Forster
resonance energy transfer (FRET) during gating in ELK
(26), another KCNH family member, or alterations in
hERG deactivation gating mediated by PAS-directed sin-
gle-chain variable antibodies (27).

It is interesting to note that mutations in the intrinsic
ligand have a range of phenotypes in different KCNH chan-
nel types but ultimately suggest a unifying mechanism by
which the intrinsically liganded gating ring promotes activa-
tion. In hERG channels, the two liganding side chains (in the
sequence F860-N861-L862) exert an additive effect stabiliz-
ing the open state as measured by combined FRET and
gating assays (28). The same is true for human EAG1
(hEAG, homolog of rEAG), with its corresponding YNL
ligand motif: ligand interactions promote the occupation
of early steps in the activation sequence, giving rise to the
so-called Cole-Moore effect, and generally stabilize the
open state of the channel (29). In zebrafish ELK, depolariz-
ing prepulses potentiate current, but only when the intrinsic
ligand is intact (26). An important unanswered question is
how the conformation of the intrinsic ligand is communi-
cated to the gating machinery. Its path to the channel gate
via the C-linker seems most direct, yet a path to the VSD
via the PAS-CNBh domain interaction can also be traced
(30,31). Mutating the intrinsic ligand in hERG channels dis-
rupts PAS-CNBh domain interactions, as demonstrated by
FRET and gating assays, suggesting the intrinsic ligand is
important for integrity of the intracellular ring in addition
to its role in gating (28).

Given the observation that the intrinsic ligand promotes
activation, it might reasonably be predicted that the open
state of the KCNH channel is intrinsically liganded, and
the closed state is not. Indeed, the concept of the ‘‘intrinsic
ligand’’ inherently implies existence of an unliganded state.
However, comparing the open hERG channel structure with
the closed-gate rEAG1 structure, the ligand is clearly bound
in both cases, suggesting it is not ejected from its binding
site when the activation gate closes. Whether the ligand is
bound in the true resting state of the channel, with the
VSD in its ‘‘down’’ position and without CaM/Ca2þ bound,
remains to be determined. Despite its invariance in the two
792 Biophysical Journal 118, 790–797, February 25, 2020
structures, in ELK channels, there is functional evidence
that the intrinsic ligand is dynamic, rather than a fixed
element of the channel’s tertiary structure: a peptide corre-
sponding to the intrinsic ligand disrupts so-called voltage-
dependent potentiation, as if competing for a binding pocket
vacated by the intrinsic ligand. This result implies move-
ment of the native intrinsic ligand and suggests its covalent
linkage to other channel sequences is required to modulate
channel function (32).
The ‘‘closed’’ conformation

What does comparison of the two proteins tell us about the
channel gate? The structure of rEAG was determined with
four molecules of CaM/Ca2þ bound to previously character-
ized cytosolic stretches immediately after the PAS domain
(BDN) and CNBh domain (BDC1 and BDC2) (11,14).
Intriguingly, each CaM protein interacts with three different
subunits of the rEAG channel, including two on opposite sides
of the channel (Fig. 3). Thus, binding of CaM is expected to
stabilize or restrict movement in the PAS-CNBh ring, promot-
ing a conformational state that favors closure of the gate
despite havingS4 in an upward position. It follows that quater-
nary arrangements of the PAS-CNBh rings should differ for
hERG and rEAG, as observed for related CNG channels, in
which superposition of two CNG channel structures in the
open and closed states shows that binding of cyclic nucleotide
results in a conformational change in the CNBh domain ring
that is reflected in the splaying of S6 (33,34).

Surprisingly, comparison of the PAS-CNBh domain rings
hERG and rEAG reveal only very subtle changes in the
arrangement of the CNBh domains in the two rings
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(Fig. 4). The root mean-square deviation for the a carbon
(Ca) of residues in all four CNBh domains is �0.9 Å, and
the displacement of the Ca from the aromatic residues in
the intrinsic ligand of hERG (F from FNL) and rEAG
(Y in YNL) is 0.5 Å. The largest differences occur between
PAS domains, with the Ca atom of equivalent residues in
rEAG (P72) and hERG (E73) separated by 3.5 Å (Ca atoms
are indicated by spheres in Fig. 4). Instead, binding of CaM/
Ca2þ and closure in rEAG result in a simple rigid-body rota-
tion of the entire ring relative to hERG, paralleling the iris
movement of aA0 and aB0 helices from the C-linker
(Fig. 4). Therefore, the structural comparison of the open
hERG and closed rEAG leaves unanswered the questions
of how CaM/Ca2þ inhibits EAG channels and what the
role of the PAS and CNBh domains in KCNH gating is. A
possible explanation is that the closed-gate conformation
mediated by CaM/Ca2þ is different from that elicited by
voltage-dependent movements of the VSD. However, this
argument is not supported by homology modeling of the
hERG closed conformation, which mirrors details of the
closed gate in the EAG cryo-EM structure (35).

Another obvious difference of the closed conformation
can be appreciated in the pore cavity. In hERG channels, a
‘‘hydrophobic pocket’’ extends away from the pore cavity
in the plane of the membrane just below the pore helices
(Fig. 5; (1)). In the EAG1 structure, the hydrophobic pockets
are squeezed shut (2). Whether these differences reflect open
versus closed conformations or inherent differences between
the channel types (see below) will require further study.
Mechanism of hERG block

At the time thismanuscript was drafted, PubMed loggedmore
than 3600 works with the search term ‘‘hERG or KCNH2,’’
making it the most examined member of the KCNH family.
FIGURE 4 PAS-CNBh ring. Views from the cytosol of the PAS-CNBh dom

(light green) and hERG (pink), (b) structures after superposition of the channels

tivity filter, showing PAS domains of rEAG and hERG rotated relative to each o

equivalent residue in PAS domain of rEAG (P72) and hERG (E73). Arrows ind
Most of these studies focus on the curious andwantonproperty
of hERGchannels to avidly interactwith awide range of drugs
and small molecules, presenting a major challenge for drug
discovery and development (36). Because hERG channels
conduct cardiac IKr (37,38), a repolarizing current in the heart
(39), hERG blockers can prolong the ventricular action poten-
tial and the QT interval on the surface electrocardiogram and
lead to catastrophic ventricular arrhythmias. Residues critical
for drug block have been identified in the internal vestibule,
where mutations (especially of F656 and Y652) alter efficacy
of inhibition of many drugs by several orders of magnitude
(40,41). Drug block requires an activated channel to allow
drugs that have permeated the plasmamembrane to exert their
effects (42). Speculation that hERG’s pharmacophilia could
arise from an unusually large central cavity was resoundingly
quashed by new structural details showing that hERG’s vesti-
bule is actuallymuch smaller than those apparent in other open
K channel structures (1). Electrostatic calculations suggest the
pore helices entering hERG’s diminutive cavity yield a five-
fold greater electronegativity compared with other K chan-
nels, providing a potentially powerful attraction to hERG
blockers that are positively charged or can form cationic con-
jugate acids (1).

It has long been a curiosity that the closely related
EAG1 channels do not exhibit the same high-affinity
drug block, even though they possess the corresponding
residues identified as critical for drug binding in the
hERG cavity (43,44). Thus, comparing structures of the
two channels is a sensible way to determine one of
hERG’s most unique properties. The dimensions of the
hydrophobic pocket off the pore cavity in the hERG
structure will accommodate the aromatic moiety of a
blocker, leading to speculation that the opportunity for
binding does not exist in EAG1, where this pocket is con-
stricted (1,2).
ain rings: (a) structures after superposition of CNBh domains of rEAG

’ selectivity filters, and (c) side view of superposed channels through selec-

ther while VSD domains are well-matched. Spheres indicate in Ca atom of

icated relative displacement.
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FIGURE 5 View of cavities in the pore of hERG.

(a) View of the pore cavity shown as gray mesh with

pockets jutting to the sides of the channel, just below

the selectivity filter. Selectivity filter residues are

shown as sticks. (b) Zoom view of one of the pockets

with residues known to affect drug efficacy (Y652)

lining the pocket shown as sticks and labeled. (c) Su-

perposed rEAG (light green) and hERG (pink) chan-

nels viewed as in (b). The pocket in rEAG is shown

as mesh, surrounded by the same residues as in (b)

that are conserved in rEAG (shown as green stick).

Slight twisting of tyrosine (Y652 in hERG) leads

to isolation of the pocket from the pore cavity in

rEAG.
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The discovery of the hydrophobic pockets represents a
paradigm shift in how KCNH channels, and particularly
hERG, differ from other potassium channels. The pocket ge-
ometry may provide upper limits on how many drug mole-
cules can bind, depending on the compound’s dimensions.
Close examination of the structures reveals that constriction
of the hydrophobic pocket in rEAG is associated with a very
small movement of the conserved tyrosine (Y652 in hERG;
Fig. 5). Perhaps the hydrophobic pocket similarly constricts
when the hERG channel closes, explaining the state depen-
dence by which hERG blockers target only open (and/or in-
activated) channels. And if the converse occurs, i.e., the
EAG hydrophobic pockets become accessible in the open
state, then the pockets cannot solely account for selective
hERG block.
Inactivation

Of all things hERG, rapid inactivation is arguably the most
iconic of the channel’s properties. Inactivation occurs upon
depolarization at a rate 10-fold that of activation, effectively
suppressing outward current by severely limiting the
794 Biophysical Journal 118, 790–797, February 25, 2020
amount of time channels stay open upon depolarization
(45,46). In this way, hERG inactivation allows sodium
and calcium conductances to maintain ventricular depolari-
zation for more than a whopping 300 ms (compared
to <3 ms for a neuronal action potential). When membrane
potential begins to flag, only then do hERG channels
recover from inactivation and produce a resurgent current
that decisively repolarizes the membrane (46). When inacti-
vation is defective, repolarization happens too quickly, and
catastrophic arrhythmias associated with short QT syn-
drome can result (47–50). EAG does not exhibit the power-
ful inactivation characteristic of hERG (24,51).

hERG inactivation occurs at the external mouth of the
pore by a mechanism not well understood. It has the hall-
marks of C-type inactivation, slowing with elevated Kþ
concentrations or in the presence of external tetraethylam-
monium (TEA) (44,45,52,53). The N-terminus is involved
but only as a modulator; N-terminal truncations slow the
process (54), much like N-terminal truncations slow Shaker
C-type inactivation (55). In other ion channels, inactivation
borrows its voltage dependence from channel opening—
when depolarization opens the channel, it subsequently
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inactivates. In contrast, hERG inactivation is inherently
voltage-dependent, as if directly gated by a voltage sensor
(45,56). Cryo-EM structures are well-resolved at the selec-
tivity filter and outer mouth of the pore for both the wild
type and S631A, a mutant that impedes inactivation
(57,58). Careful inspection reveals a slight shift of side
chains at the outer reaches of the selectivity filter (1). It is
a difference in the right location, where changes in angles
of the side chains supporting ion flux is a plausible mecha-
nism for inactivation. How the positions of these side chains
are ultimately influenced by differences in transmembrane
voltage cannot be gleaned considering all structures were
determined at 0 mV.

A tantalizing link between inactivation and high-affinity
drug block is based on reports that single point mutations
disrupting one process also disrupt the other (44,52,59).
‘‘High-affinity’’ blockers such as dofetilide or E-4031
with IC50 values in the 1–10 nM range show loss
of efficacy when inactivation is hampered by point
mutations such as S620T or S631A flanking the pore
selectivity sequence (44,52) or by other mutations in
the vicinity (60). The connection between inactivation
and block also occurs for some, but not all (60–62),
lower-affinity blockers. Haloperidol, with an IC50 of 1
mM, shows state dependence, an acceleration of inacti-
vation in the presence of drug, and fourfold reduction
of efficacy in the S631A mutation (58). Both inactivation
and E-4031 sensitivity can be conferred upon mouse
EAG by transferring a segment comprising much
of the hERG selectivity filter and pore helix and the
N-terminal half of the S6 transmembrane domain to the
corresponding location in EAG. By effectively substitut-
ing only 15 residues, including outer mouth residues
implicated in inactivation, EAG is transformed with
the emblematic features of hERG (44). Ultimately, the
link between inactivation and drug block could be
elucidated by a structure clearly harboring a drug
molecule, but the likelihood of structural resolution
may be reduced by the occupancy of only one of four
possible binding sites in the pore cavity or hydrophobic
pocket (1,63).
Slow deactivation in hERG

A distinctive functional feature of hERG is slow deactiva-
tion, which serves to delay channel closure upon repolariza-
tion long enough to allow the channels to recover from
inactivation and provide a repolarizing surge of current at
the appropriate time during the ventricular action potential
(46). The impact of mutations and truncations of the N-ter-
minus of the PAS domain (PAS-cap) on deactivation has
been well described, with most speeding the process of
channel closure (54,57,64,65). In addition, multiple func-
tional studies have demonstrated interactions of the PAS-
cap with residues in the C-linker and the S4-S5 linker
(54,66–68). A comparison of hERG and rEAG structures of-
fers a beautiful insight into the contribution of PAS-cap in
gating (Fig. 6). In hERG, the two highly conserved N-termi-
nal arginine residues of the PAS-cap are sequestered among
one of the C-linker helices, the long S2-S3 loop character-
istic of KCNH channels, and the region just upstream
from the first transmembrane domain (pre-TM1). The struc-
ture also shows N-terminal residue V3 in contact distance of
residues in the S4-S5 linker (Fig. 6 A). In rEAG, the closed
gate is associated with repositioning of the C-linker away
from the pre-TM1 region and S2-S3 loop, breaking apart
the assembly that holds the PAS-cap in position. An accom-
panying disordering of part of the PAS-cap that includes the
arginine residues is observed in the rEAG structure, in
which L10 is the first residue seen in the structure. Thus,
the structures indicate that when the gate is closed, the
PAS-cap loosely interacts with the C-linker and VSD; in
the open state, a binding site is assembled, and the PAS-
cap becomes trapped. As a consequence, the PAS-cap stabi-
lizes the gate in the open state by holding the C-linker in the
open position. This model explains why mutations or trun-
cations of the cap give rise to the very fast rate of deactiva-
tion in hERG.
FIGURE 6 The PAS-cap binding site. (a) A zoom

of the PAS-cap binding site in hERG; Ca of V3 is

shown as a sphere, and R4 and R5 are shown as

white sticks. Residues within interacting distance

(4 Å) of V3 and arginines are shown as yellow

sticks. (b) A zoom of PAS-cap binding site in

rEAG (light green) and hERG (pink) channels super-

posed through selectivity filter. Spheres indicate Ca

of first residue in PAS-cap: V3 (hERG) and L10

(rEAG). Arrow indicates movement of C-linker he-

lix as the gate closes in rEAG, disassembling PAS-

cap binding site.
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Summary of unanswered questions

Cryo-EM and x-ray crystallography studies have provided
unprecedented insights into the structural domains that so
many of us have been tinkering with for so long. To say
that not all questions have been answered is not to diminish
this work’s provocative contributions: the observation of the
nonswapped architecture traded for swapped cytosolic do-
mains, the idea of an intrinsic ligand, the subtle differences
likely underlying inactivation, and the release of the PAS
domain from a binding pocket accounting for slow deactiva-
tion. Still, there is much to keep us at it for some time to
come. First, does the CNBh domain binding pocket become
unliganded, and under what physiological conditions? What
is the closed conformation of the resting hERG when the
gate and VSD work in harmony?Will that resting conforma-
tion demonstrate a bigger difference in the PAS-CNBh ring
between open and resting closed channel, in contrast to the
small difference in EAG channel caught with its VSD up?
How does the binding of CaM/Ca2þ lead to the closed
EAG gate? How is drug binding in the hERG cavity and/or
hydrophobic pocket transduced into block? Will new struc-
tures comparing a resting and inactivated hERG channel
reveal how hERG inactivation gets its voltage dependence?
More structures will no doubt help, together with the stal-
wart aid of targeted functional analysis.
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