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)e origin of tobacco is the most important factor in determining the style characteristics and intrinsic quality of tobacco. )ere are
many applications for the identification of tobacco origin by near-infrared spectroscopy. In order to improve the accuracy of the
tobacco origin classification, a near-infrared spectrum (NIRS) identification method based on multimodal convolutional neural
networks (CNN) was proposed, taking advantage of the strong feature extraction ability of the CNN. Firstly, the one-dimensional
convolutional neural network (1-D CNN) is used to extract and combine the pattern features of one-dimensional NIRS data, and then
the extracted features are used for classification. Secondly, the one-dimensional NIRS data are converted into two-dimensional spectral
images, and the structure features are extracted from two-dimensional spectral images by the two-dimensional convolutional neural
network (2-D CNN) method. )e classification is performed by the combination of global and local training features. Finally, the
influences of different network structure parameters on model identification performance are studied, and the optimal CNN models
are selected and compared.)emultimodal NIR-CNN identificationmodels of tobacco origin were established by using NIRS of 5,200
tobacco samples from 10major tobacco producing provinces in China and 3 foreign countries.)e classification accuracy of 1-DCNN
and 2-D CNNmodels was 93.15% and 93.05%, respectively, which was better than the traditional PLS-DAmethod.)e experimental
results show that the application of 1-D CNN and 2-D CNN can accurately and reliably distinguish the NIRS data, and it can be
developed into a new rapid identification method of tobacco origin, which has an important promotion value.

1. Introduction

)e origin of tobacco directly determines the difference of the
style characteristics and intrinsic quality of tobacco [1] and also
serves as an important basis for highlighting the characteristics
of different brands of cigarettes. At present, the identification of
tobacco origin mainly relies on sensory assessment by experts,
genetic detection, and chemical composition detection.
However, due to the complicated process, long time period,
and high cost, these methods cannot be widely applied and
rapidly realize identification of tobacco origin. )erefore, it is
necessary to study amethod that can identify the tobacco origin
quickly, accurately, and conveniently.

Near-infrared spectroscopy has been widely used in the
quantitative detection and qualitative analysis of tobacco
fields because of its advantages of simplicity, rapidity, low
cost, environmental protection, large amount of informa-
tion, and simultaneous determination of multiple

components [2]. Many researchers have attempted to
identify tobacco origins by pattern recognition methods
based on near-infrared spectrum (NIRS). For example, Shu
et al. [3] used principal component analysis combined with
support vectormachine algorithm (PCA-SVM) to establish a
NIRS origin identification model for flue-cured tobacco in
six provinces of China.)e partial least squares discriminant
analysis algorithm (PLS-DA) was used to establish a tobacco
NIRS origin identificationmodel including four provinces in
China [4]. )e neural network method was used to identify
the origin pattern of more than 1000 tobacco samples from
the United States and abroad by near-infrared spectroscopy
[5]. Most studies have shown that the direct construction of
the identification model by full NIRS will not only increase
the modeling complexity but also reduce the recognition
performance and generalization ability, due to its high di-
mensionality, high-frequency noise, and redundant infor-
mation. )e usual practice is to use data dimensionality
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reduction to compress high-dimensional spectral data into
low-dimensional space and improve model recognition
performance while preserving more feature information as
much as possible. Most researchers use the PCA method to
reduce the dimensionality of high-dimensional spectral data
[6, 7], but PCA is a linear algorithm, which cannot explain
the complex polynomial relationship between features, and
does not consider the category information of the data.

Convolutional neural network (CNN) first achieved suc-
cess in the field of image recognition and has been gradually
widely used in other fields. Zhang et al. [8] proposed a fault
diagnosis model based on deep one-dimensional convolutional
neural network (1-D CNN), and a larger size convolution
kernel and a neurons dropout method were used to realize
accurate and stable diagnosis based on the original vibration
signal. A fault diagnosis model based on LeNet-5 network was
proposed, and the original time domain signal was converted
into a two-dimensional gray image as themodel input to realize
fault diagnosis based on one-dimensional time domain signal
[9]. It is concluded that the powerful feature extraction ability
of the CNN is very suitable for the pattern feature extraction of
NIRS, and the extracted features are used for classification.
However, at present, there are few reports on the classification
of NIRS based on CNN.

In view of the above problems, this paper presents the
method of multimodal CNN to identify the NIRS of tobacco
from different regions. )e NIR-CNN identification model of
tobacco origins is established by using NIRS of 5,200 tobacco
samples from 10 major tobacco producing provinces in China
and 3 foreign countries. With the excellent feature learning
ability of CNN, the reconstructed feature data can better reflect
the essential features of NIRS, which is helpful for the classi-
fication of spectral data. Firstly, simple patterns in one-di-
mensional near-infrared spectrum (1-DNIRS) are identified by
the lower layer of 1-D CNN, then these simple patterns are
combined into complex features in the upper layer, and then
the extracted features are used for classification. Secondly, the
1-D NIRS are converted into two-dimensional spectral images,
and the structure features are extracted from two-dimensional
spectral images by the image convolution method. )e global
training features are extracted and classified by mining the
spatial correlation in the data. Finally, the optimal CNNmodel
is selected by adjusting the network structure parameters, and
the identification performances of different spectral processing
methods and different models are compared.

2. Materials and Methods

2.1. SamplePreparation. Data balancing is very important in
multiclassification problems. Generally, the data in the
training set should be distributed as evenly as possible with
respect to the category labels, that is to say, the data sets
corresponding to each category label are basically equal in
the training set, so as to avoid the classification model being
too inclined to the characteristics of some certain categories.
In this research work, a total of 5,200 tobacco samples were
collected from 10major tobacco planting provinces of China
(Yunnan, Guizhou, Fujian, Jiangxi, Hunan, Sichuan,
Chongqing, Henan, Shandong, and Jilin) and 3 major

foreign countries (Brazil, Zimbabwe, and America). )at
means 400 tobacco samples were taken from each province
or country. Among them, 320 samples were used for training
and 80 samples were used for testing. )e origins and
quantities of all observations are summarized in Table 1. All
origins of tobacco samples were identified by experts from
State Tobacco Monopoly Administration of China.

2.2. Near-Infrared Spectra. NIRS of tobacco samples were
acquired by Antaris-II with diffuse reflection mode, which is
a Fourier-transform near-infrared spectrometer produced
by)ermoFisher, America. )e spectral scanning range was
4000 cm− 1∼10000 cm− 1, the resolution was 8 cm− 1, and the
number of scans was 64. Each sample of tobacco was dried in
an oven (60°C, 2 h) and grounded into powder (60 meshes).
In order to ensure the consistency of spectral acquisition,
each sample was repeatedly scanned for three times, and the
mean spectrum was used as the final spectrum of the sample.

2.3. Spectral Processing. Spectral data processing and algo-
rithm calculation were based on MATLAB, version 2016b.
Due to the problems, such as baseline drift, high-frequency
noise, and mutual interference between components, in the
raw NIRS, it is necessary to perform corresponding pre-
processing before applying the spectra to improve the signal-
to-noise ratio and enhance the prediction performance of the
model. In this work, the first-order derivative and Savitz-
kyGolay (S-G) smoothing methods were adopted, the moving
window width was 9, and the polynomial number was 3 [10].

Figure 1(a) shows the raw NIRS of the tobacco samples
collected by the methodmentioned above. Figure 1(b) shows
the processed NIRS which are calculated after the 1st de-
rivative and S-G smoothing. It can be seen from Figure 1 that
the 1st derivative and smoothing processes effectively reduce
the baseline drift and highlight the differences in the raw
spectra of different samples, which is very important for the
qualitative classification of the NIRS.

2.4. Convolutional Neural Network (CNN). CNN is a ma-
chine learning model under deep supervised learning, which
requires very little data preprocessing and is highly adaptable
[11]. By forward propagation through the filters of each layer
in the network, the local features of the data can be better
mined, and the global training features can be extracted and
classified. Its weight-sharing structure network makes it
more similar to biological neural networks and has achieved
good results in various fields of pattern recognition.

)e basic structure of the CNN consists of an input layer,
a convolution layer, a pooling layer, a fully connected layer,
and an output layer [12]. Each feature map has a plurality of
neurons and extracts a feature of the input through a
convolution filter. )e convolution layer and the pooling
layer are the core modules for implementing the feature
extraction function of the CNN. )e lower hidden layer of
the CNN is composed of the convolution layer and the
pooling layer alternately. )e upper layer is the fully con-
nected layer corresponding to the hidden layer and

2 Journal of Analytical Methods in Chemistry



regression classifier of the traditional multilayer perceptron
(MLP) [13]. Various classifiers can be used to classify the
feature data extracted from the lower layer. )e network
model minimizes the loss function by using the gradient
descent method to reversely adjust the weight parameters in
the network layer by layer [14] and improves the accuracy of
the network through frequent iterative training.

2.4.1. Convolutional Layer Operation. )e convolutional
layer convolves the input data using a plurality of con-
volutional kernels and outputs the convolved features [15],
that is, the featuremaps. Each convolutional kernel outputs a

feature map corresponding to a type of extracted features.
Since it is not affected by the input dimensions and is easy to
train the depth structures, the convolution structure is an
effective tool for feature extraction of complex and high-
dimensional inputs. )e two-dimensional convolution op-
eration process is shown in Figure 2.

)e input data and the convolution kernel are both two-
dimensional tensors. )e convolution calculation formula is
as follows:

y(i) � f(g(i)) � f 􏽘
m

x�1
􏽘

n

y�1
ax,y ∗w

i
x,y + b

i⎛⎝ ⎞⎠, (1)

Table 1: )e origin and quantity of different tobacco samples.

Origins of tobacco samples
(country/province) Category tag Number of training set samples Number of test set samples

China

Yunnan C 1 320 80
Guizhou C 2 320 80
Fujian C 3 320 80
Jiangxi C 4 320 80
Hunan C 5 320 80
Sichuan C 6 320 80
Chongqing C 7 320 80
Henan C 8 320 80
Shandong C 9 320 80
Jilin C 10 320 80
Brazil C 11 320 80
Zimbabwe C 12 320 80
America C 13 320 80
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Figure 1: )e raw NIRS of the tobacco samples (a) and the 1st derivative and S-G smoothing preprocessed NIRS (b).
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where i is the i-th convolution kernel; g(i) is the feature map
of the i-th convolution kernel; a is the input data; b is the
bias; x and y are the two dimensions of the input data; and
f(·) is an activation function used to implement nonlinear
transformations.

)e ReLU activation function is the most widely used in
CNN at the present stage [16], and its calculation process is
as follows:

f(g(i)) � max 0, g(i)􏼈 􏼉. (2)

2.4.2. Pooling Layer Operation. )e pooling layer down-
samples the input feature vectors by the sampling kernels
and further highlights the extracted features while realizing
data dimensionality reduction [17]. )e pooling operation
mainly includes the maximum pooling and the average
pooling [18], as shown in the following equation:

p
l(i,j)
max � max

(j− 1)w<t<jw
a

l(i,t)
􏽮 􏽯,

p
l(i,j)
avg � avg

(j− 1)w<t<jw

a
l(i,t)

􏽮 􏽯,
(3)

where al(i,t) is the t-th neuron of the i-th feature map in the l-
th layer, w is the width of the convolution kernel, and j is the
j-th sampling kernel.

2.5. One-Dimensional Convolutional Neural Network (1-D
CNN). 1-D CNN is a special CNN that can be well applied to
one-dimensional time series analysis. It also can be used to
analyze signal data with fixed length period or fixed position
expression, such as NIRS data. )e input of 1-D CNN is a
one-dimensional vector, so the convolution kernel and
feature map of the network are also one-dimensional. As
with the two-dimensional CNN, the same pooling operation
can be performed for the one-dimensional vectors, which is
also used to extract the data features of the one-dimensional
vectors.)e one-dimensional convolution operation process
is shown in Figure 3.

)e convolution calculation process is shown in

y(i) � f(g(i)) � f 􏽘
m

x�1
ax ∗w

i
x + b

i⎛⎝ ⎞⎠, (4)

where i is the i-th convolution kernel; g(i) is the feature map
of the i-th convolution kernel; a is the input data, b is the

bias; x is the one-dimensional input data; and f(·) is the ReLU
activation function used to implement nonlinear
transformations.

2.6. Softmax Function. Softmax function is a gradient log-
arithmic normalization of a finite discrete probability dis-
tribution, which is commonly used in multiclassification
processes [19]. It compresses a K-dimensional vector V with
any real number to another K-dimensional real vector σ(V),
so that every element is between 0 and 1, and the sum of all
the elements is 1. )e score value of each category is
regarded as a probability to be understood, and the mul-
ticlassification is performed by selecting the node with the
largest probability (that is, the node with the largest value) as
the prediction target.

Suppose there is an arrayV, vi represents the i-th element
in V, then the softmax value of this element is calculated as
shown in

Si �
evi

􏽐
n
j�1 evj

, (5)

where n is the number of elements in the array V.
)e softmax function is widely used in probability-based

multiclassification problems. In the deep neural network, the
input of softmax is the result obtained from K different
neurons, and the probability that the sample vector x belongs
to the j-th category is shown in

P(y � j | x) �
exTwj

􏽐
K
k�1 exTwk

. (6)

It can be seen from the formula that the probability
belonging to a certain class is a composite of K linear
function softmax. )ere is a significant correlation between
the prediction results and the input features. )e more the
features of a certain class are included, the higher the
probability of the output being of a certain class. When
several features are often activated together, the training
process will learn the larger joint distribution weights,
making their joint probability closer to the real category.

2.7. Model Training Parameters Setting. For the training of
CNN, the learning rate is set to 0.01, the batch size is set to
40, and the epoch of training is set to 50. )e model may
appear overfitting during the training process, which can be

Input feature Output feature Convolutional kernel 

∗

Figure 2: Schematic diagram of the two-dimensional convolution operation.
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dealt with by adjusting the model operation mode. )ere-
fore, this paper sets early termination for CNN training. In
most cases, the model first learns the correct distribution of
the data and then begins to overfit the data at some point in
time. As the number of iterations increases, the training
error will gradually decrease, while the testing error will
decrease first and then increase. When the testing error
increases, it indicates that the model is overfitting.)erefore,
by identifying when the testing error of the model has
changed (turned up), the training process of the model can
be terminated before the overfitting occurs.

2.8. Model Performance Evaluation Method. )e perfor-
mance of the model is evaluated by the data set classification
accuracy index. )e classification accuracy rate PA is cal-
culated as shown in

PA �
NC

NT

× 100%, (7)

where NC is the number of correctly classified samples in the
data set and NT is the total number of samples in the data set.

3. Results and Discussion

3.1. Research on Dimensionality Reduction Classification of
NIRS. According to the 1st derivative and S-G smoothing
preprocessed NIRS described in the experimental part, PCA
and t-distributed stochastic neighbor embedding (t-SNE)
[20] were used to reduce the dimension of the NIRS. And,
the classification differentiation was preliminarily explored
through the two-dimensional visual graphics.

Figure 4(a) is the PC1 and PC2 score maps of PCA. As
can be seen from the figure, in the PCA model constructed
from the overall samples, the contribution of the first
principal component (PC1) was 52.6%, and that of the
second principal component (PC2) was 17.2%. However,
tobacco samples from different regions exhibited high
overlap due to the same compositional properties.)erefore,
the first two principal components, while characterizing the
major part of the NIRS differences, are not sufficient to
achieve the classification distinction.

Figure 4(b) is the 2-dimensional feature distributionmap of
the t-SNE algorithm. In order to further demonstrate the
difference of NIRS characteristics of different sample types, the
t-SNE dimensionality reduction algorithm in manifold
learning was introduced to visualize low-dimensional features.
It can be seen from the figure that the distribution of the class
features extracted by the t-SNE algorithm is slightly better than
that of the PCA. However, due to the influences of spectral
redundancy, noise, and other factors, different categories are
still difficult to distinguish.

)is result shows that it is very difficult to classify to-
bacco origins by full NIRS using conventional methods. It is
necessary to use a deep feature extraction method to find
local and global features with better classification discrim-
ination from the NIRS.

3.2. Classification Performance of 1-D CNN. In this paper,
different parameters and depths of the network structure
were designed for the application of 1-D CNN in the NIRS
classification, and the 1-D CNN models with different
network structures were applied to the tobacco origin
classification. )e dimension of 1-D NIRS data is 1609, so
the input data value of 1-D CNN is 1∗ 1609. )e archi-
tecture of 1-D CNN is similar to that of 2-D CNN in the field
of computer vision. It consists of an input layer, a fully
connected layer, an output layer, and multiple convolutional
and pooling layers stacked together. Generally speaking, the
depth calculation of neural network does not include the
input layer, only the hidden layer, and the output layer. For
the 1D-CNN designed in this paper, its network depth is 2
fully connected layers (the first fully connected layer is the
feature merge layer, which summarizes the local features of
all feature maps after convolution and pooling), 1 output
layer, and several convolutional and pooling layers added
together. For example, a 1-D CNNwith a depth of 5 includes
1 convolutional layer, 1 pooling layer, 2 fully connected
layers, and and 1 output layer; a 1-D CNN with a depth of 7
includes 2 convolutional layers, 2 pooling layers, 2 fully
connected layers, and 1 output layer. )e rest of the depths
are deduced by analogy. )e basic structure of 1-D CNN is
shown in Figure 5.

Feature detector

Extracted spectral segment

Convolutional kernel 

Near-infrared spectral sequence

Input feature

Output feature 

∗ 1-D convolution

Figure 3: Schematic diagram of one-dimensional convolution operation.
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Figure 4: Two-dimensional feature visualization of NIRS. (a) PC1 and PC2 score maps of PCA; (b) two-dimensional feature distribution
map of t-SNE.
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After feature extraction through the convolutional layers
and pooling layers, all feature maps are stitched and merged
by the first fully connected layer to summarize all local
features. )e number of neural nodes in the first fully
connected layer changes with the convolution kernel size,
the sampling kernel size, and the number of feature maps.
)e number of neural nodes in the second fully connected
layer is the same as that in the first fully connected layer. )e
last output layer is classified by softmax, and the output
category is 13 in the data set.)e 2 fully connected layers and
the softmax layer form a simple MLP structure. Each neuron
in the fully connected layer is fully connected to all neurons
in the previous layer. )e excitation function of each neuron
in the fully connected layer adopts the ReLU function, and
the training method uses the BP algorithm. In the fully
connected layer, a regularization method, dropout tech-
nology, is adopted to make the output value of the neurons
in the fully connected layer become 0 with a probability of
0.5. By this method, parts of the neural nodes become in-
valid. )ese nodes will neither participate in the forward
propagation process of CNN nor will participate in the
backpropagation process. At present, most researches on
CNN use ReLU+dropout technology, which has achieved
good classification performance.

Firstly, the effects of network depth on classification
performance are studied by using 5 different depth network
structures: (1) depth 5 (1 convolutional layer and 1 pooling
layer); (2) depth 7 (2 convolutional layers and 2 pooling
layers); (3) depth 9 (3 convolutional layers and 3 pooling
layers); (4) depth 11 (4 convolutional layers and 4 pooling
layers); (5) depth 13 (5 convolutional layers and 5 pooling
layers).)e simple structures of 1-D CNN at different depths
are shown in Table 2, where C represents the convolutional
layer and S represents the pooling layer. Stage represents the
stacking stage of 1 convolutional layer and 1 pooling layer,
and M represents the number of feature maps (i.e., the
number of convolution kernels) of each stage.

Table 3 shows the results of the NIRS classification by the
1D-CNN models with 5 different depths on the training set
and test set. In the stacked structure of each convolutional
layer and pooling layer, the convolution kernel size in the
convolutional layer is 1∗ 5, the sampling kernel size of the
pooling layer is 1∗ 2, and the number of feature maps in
each stage is 12. As can be seen from Table 3, with the
increase of neural network depth, the classification accuracy
of training set increases continuously, and the classification
accuracy of test set first rises and then declines [21]. )is
shows that, as the complexity of the network structure in-
creases, the model overfitted the training set samples,
resulting in a decline in generalization ability. )erefore, the
model with a depth of 11, the best comprehensive perfor-
mance of training set and test set, is adopted in this paper for
subsequent experiments.

3.2.1. Influence of Convolution Kernel Size on Model Clas-
sification Performance. In order to test the influence of
convolution kernel size on the performance of the model,
under the condition of network depth 11, the convolution

kernel size is gradually increased by Step 2 from 3, and the 1D-
CNN models are established when other parameters are the
same.)e curve of classification accuracy of the model test set
changing with the size of convolution kernel is shown in
Figure 6. It is found through experiments that too large or too
small convolution kernel is not conducive to model learning
[22]. In this experiment, when the convolution kernel size is
15, the model can obtain better classification results.

3.2.2. Influence of Sampling Kernel Size on Model Classifi-
cation Performance. In order to test the influence of sam-
pling kernel size on the performance of the model, under the
condition of network depth 11, the sampling kernel size is
changed and the 1-D CNN models are established when
other parameters are the same.)e pooling layer reduces the
number of neurons through the downsampling operation, so
the size of sampling kernel is generally required to be smaller
than the convolution kernel and capable of divisible post-
convolution sequence. In this experiment, when the con-
volution kernel size is 1∗ 15, the results of classification
accuracy for different sampling kernel sizes are shown in
Table 4. It is found through experiments that, when the size
of sampling kernel is 2, the model can obtain better clas-
sification results.

3.2.3. Influence of the Number of Feature Maps on Model
Classification Performance. In order to test the influence of

Table 2: Simple 1-D CNN structures of different depths.

Model Hidden layer
structure Feature map structure Depth

1D_CNN_5 Stage1: C1 + S1 M1 5

1D_CNN_7 Stage1: C1 + S1;
Stage2: C2 + S2 (M1, M2) 7

1D_CNN_9
Stage1: C1 + S1;
Stage2: C2 + S2;
Stage3: C3 + S3

(M1, M2, M3) 9

1D_CNN_11

Stage1: C1 + S1;
Stage2: C2 + S2;
Stage3: C3 + S3;
Stage4: C4 + S4

(M1, M2, M3, M4) 11

1D_CNN_13

Stage1: C1 + S1;
Stage2: C2 + S2;
Stage3: C3 + S3;
Stage4: C4 + S4;
Stage5: C5 + S5

(M1, M2, M3, M4, M5) 13

Table 3: Classification performance of 1-D CNN models with
different depths.

Model Depth
Training set
classification
accuracy (%)

Test set
classification accuracy (%)

1D_CNN_5 5 82.75 74.71
1D_CNN_7 7 88.1 81.28
1D_CNN_9 9 92.46 87.05
1D_CNN_11 11 95.56 90.81
1D_CNN_13 13 96.72 88.13
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the number of feature maps (convolution kernels) on the
performance of the model, under the condition of network
depth 11, the number of feature maps is gradually increased
by step 6 from 6 and the 1D-CNN models are established
when other parameters are the same. )e curve of classi-
fication accuracy of the model test set changing with the
number of feature maps is shown in Figure 7. )rough
experiments, the classification accuracy increases first and
then decreases. When the number of feature maps is too
small, some features conducive to network learning are
ignored, so its classification performance is poor [23].
However, when the number of feature maps is too large, not
only the training time of the model is greatly increased but
also the model is prone to overfitting. Considering com-
prehensively, the number of feature maps is set to 24.

In order to explore the optimal combination of CNN
depth, convolution kernel size, sampling kernel size, and the
number of feature maps, more than 200 CNN models with
different structures are designed in this paper. )ese dif-
ferent CNN models all use the same training set and test set
as above to carry out experiments.

3.3. Classification Performance of 2-D CNN. In this paper,
the LeNet-5 open source network [24], which is widely used
in the field of two-dimensional image recognition and has a
high classification accuracy, is adopted for training of two-
dimensional near-infrared spectral (2-D NIRS) images.
Small random numbers are used to initialize the weights of
LeNet-5 network, 2-D NIRS data of the training set are used
for model training, and the weights of the network are
updated through back propagation. And, the last fully
connected layer is replaced to create output units of origin
category in the data set.)e retrained CNN is used to extract
the features of 2-D NIRS images, and then the extracted
features are used as input to train a brand new single-layer

full-connected classifier to deal with the origin classification
problem of NIRS.

In the case of a fixed CNN structure, the image structure
of 2-D NIRS becomes an important factor affecting the
classification accuracy. In order to test the influence of 2-D
NIRS image structure on the classification performance of
the model, the 2-D CNN models are established under the
condition that other parameters are the same by changing
the input structure of 2-D NIRS images combined with the
extracted characteristic spectrum segments of the NIRS. )e
NIRS with different spectral lengths are transformed into 2-
D NIRS images as follows.

1-D NIRS data are a series of digital vectors. When
converting it into a 2-D image matrix, it is necessary to
intercept subvectors of a fixed length from front to back and
stack the subvectors in rows. Figure 8(a) illustrates a process
of converting 1-D NIRS to 2-D NIRS by taking a one-di-
mensional near-infrared spectrum at 1600 points as an
example. Since 1600 can be decomposed into 40∗ 40, the
converted 2-D NIRS image has 40 dimensions for both rows
and columns. Take the values of points 1–40 in 1-D NIRS
and put them into the first row of the two-dimensional
matrix. Take the values of points 41–80 in 1-D NIRS and put
them into the second row of the two-dimensional matrix. By

Table 4: Classification performance of 1-D CNN models with
different sampling kernel sizes.

Model Convolution
kernel size

Sampling
kernel size

Test set
classification
accuracy (%)

1D_CNN_11

1∗ 15 1∗ 1 91.14
1∗ 15 1∗ 2 92.82
1∗ 15 1∗ 3 90.05
1∗ 15 1∗ 4 89.53
1∗ 15 1∗ 5 88.47
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Figure 7: Model classification accuracy with different number of
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Figure 6: Model classification accuracy of different convolution
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analogy, a 2-D NIRS image of 40∗ 40 can be formed, as
shown in Figure 8(b).

Full spectrum conversion is shown in Figure 9. 1-DNIRS
data have 1609 detection points. After removing the last 9
points, it becomes 1∗ 1600, which is converted into a two-
dimensional image matrix of 40∗ 40.

Feature segment spectrum conversion is shown in Fig-
ure 10. For the spectrum range of “4000 cm− 1∼7740 cm− 1” with
high signal-to-noise ratio, there are 1024 detection points in 1-
D NIRS, which is converted into a two-dimensional image
matrix of 32∗ 32.

)e NIRS is gradually intercepted from the right side by
changing the width of the window, and the 2-D NIRS image

size is compressed in a step of 2. Table 5 shows the classi-
fication accuracy of different 2-D spectral image sizes from
40∗ 40 to 26∗ 26 on the test set.

)rough the experiments, the accuracy of model clas-
sification increases first and then decreases. When the 2-D
NIRS image size is 32∗ 32, the classification accuracy of the
model reaches the highest level. )is is because the effective
signal is weak in the spectrum range of
“7740 cm− 1∼10000 cm− 1”, mainly the noise information.
After filtering out this part of the data, it can effectively
highlight the effective information of the spectrum. When the
spectral compression range is large, for example, the spectrum
range is “4000 cm− 1∼6400 cm− 1”, the loss of effective spectral
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information leads to insufficient training of the model.
)erefore, it is necessary to extract a suitable feature segment
for two-dimensional spectral image conversion.

3.4. Classification Performance Comparison of Different
Models. )e best performing classification models of 1-D
CNN and 2-D CNN were selected by experiments, and the
same training set and test set were used for modeling
analysis. )en, they were compared with the PLS-DA
classification method. )e classification performance of
different models is shown in Table 6. )e overall prediction
performances of 1-D CNN and 2-D CNN are both better
than those of PLS-DA.

In order to more clearly show the recognition results of
different models for each category in the test set, the

confusion matrix is introduced to analyze the experimental
results in detail. )e confusion matrixes of the three models
are shown in Figures 11–13.

As can be seen from the comparison of the confusion
matrix in Figures 11–13, the following can be observed. (1)
)e prediction accuracy of 1-D CNN and 2-D CNN models
for each category is higher than that of the PLS-DA model,
which can basically meet the requirements of practical
application. (2) For some categories, the prediction accuracy
of the three models is low (for example, C7), which may be
caused by the lack of significant characteristics in the
samples of this category. (3) )e category distributions of 1-
D CNN and 2-D CNN models are relatively concentrated,
while the category distribution of PLS-DAmodel is relatively
discrete.

Table 5: Model classification accuracy with different 2-D image input sizes.

Model 2-D NIRS image sizes Feature spectrum range of 1-D NIRS (approximate) Test set classification accuracy (%)

LeNet-5

40∗ 40 4000–10000 cm− 1 81.67
38∗ 38 4000–9360 cm− 1 87.56
36∗ 36 4000–8800 cm− 1 90.81
34∗ 34 4000–8250 cm− 1 92.47
32∗ 32 4000–7740 cm− 1 93.05
30∗ 30 4000–7260 cm− 1 91.83
28∗ 28 4000–6810 cm− 1 84.46
26∗ 26 4000–6400 cm− 1 78.72

Table 6: Classification performance of different models.

Model Main parameters of model Test set classification accuracy (%)
1D_CNN_11 C: 1∗ 15; S: 1∗ 2;M� 24 93.15
2D_LeNet-5 Input size: 32∗ 32 93.05
PLS_DA Characteristic spectrum: 4000 cm− 1∼7740 cm− 1; PC number: 7 81.25
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Figure 10: Feature NIRS transformed into a two-dimensional spectral image.
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Figure 12: 2-D CNN model identification results of test set.
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Figure 11: 1-D CNN model identification results of test set.
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4. Conclusions

In this paper, for the problem of identifying tobacco origin by
NIRS, a multimodal CNN method is proposed to construct
classification models for improving classification accuracy.
With the current popular research method of deep CNN,
NIRS data are directly input into the network. )e CNN can
directly extract feature information from the spectrum and
conduct automatic learning, thus avoiding the accumulation
of errors caused by manual feature extraction and finally
achieving the accurate classification of tobacco origin.

)e 1-D CNN and 2-D CNN models have achieved good
classification results in most tobacco origin categories, and
both of the model performances are better than the traditional
PLS-DA model. )is method can be developed into an ac-
curate and high performance method for identifying tobacco
origin, which has important guiding significance and extensive
popularization value for the scientific and rational utilization
of tobacco raw materials of brand characteristic cigarettes.

In this paper, only some CNNs with specific structures
are considered. How to adaptively select the network
structures in the face of complex and variable input data
remains to be further studied. In addition, when using CNN
for NIRS classification, the input dimension should be
consistent. )erefore, the original data need to be inter-
cepted to a fixed length. How to intercept the appropriate

data so that CNN can maximize its advantages is a problem
worthy of further study. Since recurrent neural network
(RNN) can handle data of varying lengths [25], it is possible
to consider combining RNN with CNN in the later stage.
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