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Abstract: Herein, we examine two sensing schemes for detection and discrimination of chlorinated
volatile organic compounds (VOCs). In this work, phosphonium ionic liquids (ILs) were synthesized
and vapor sensing properties examined and compared to phosphonium IL-polymer composites.
Pure IL sensors were used to develop a QCM-based multisensory array (MSA), while IL-polymer
composites were used to develop an MSA and virtual sensor arrays (VSAs). It was found that by
employing the composite MSA, five chlorinated VOCs were accurately discriminated at 95.56%,
which was an increase in accuracy as compared to pure ILs MSA (84.45%). Data acquired with two
out of three VSAs allowed discrimination of chlorinated VOCs with 100% accuracy. These studies
have provided greater insight into the benefits of incorporating polymers in coating materials for
enhanced discrimination accuracies of QCM-based sensor arrays. To the best of our knowledge, this
is the first report of a QCM-based VSA for discrimination of closely related chlorinated VOCs.
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1. Introduction

Many volatile organic compounds (VOCs) cause detrimental health and environmental effects
after both acute and chronic exposure, which has led to an increase in development of new techniques
for detection of these compounds [1–3]. However, it is still a challenge to detect and discriminate
closely related VOCs. In this regard, electronic noses (e-noses), which mimic the human nose, are of
great interest due to a large selection of possible transducers [4,5]. Among such transducers, the quartz
crystal microbalance (QCM) coupled with ionic liquids (ILs) has proven to be a viable e-nose [6–10].
The QCM is a sensitive and rapid responding transducer with a large selection of sensing materials,
which makes it ideal for fabricating sensor arrays. In this regard, ILs have proven to be good sensing
materials due to their tunable properties and ability to be used for detection of a wide range of
VOCs [11–13]. Briefly, ILs are a class of organic salts with melting points below 100 ◦C, and by a
simple counterion exchange, many properties including toxicity, hydrophobicity, thermal properties,
etc. can be tuned [14]. Due to these redeeming qualities, IL-based QCM sensor arrays have proved to
be beneficial in vapor sensing studies [15–17].

E-noses, or cross-reactive sensor arrays (CRSAs), have two major sensing schemes. The most
common is the multisensor array (MSA), which consists of several sensors that are based on chemical
affinity. In this scheme, differences in each sensing material allows for interaction with a large
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range of different VOCs. Each sensor will generate analyte specific response patterns, which can be
analyzed using statistical analyses techniques, such as artificial neural networks (ANN), principal
component analysis (PCA), cluster analysis (CA), discriminant analysis (DA), etc., in order to identify
or discriminate the analyte in question. The second CRSA scheme is the virtual sensor array (VSA),
which is based on a single sensor. The VSA generates multiple analyte specific response patterns and
can be analyzed in the same manner as an MSA. Fundamentally, the VSA represents a large number
of sensors; however, there is only one physical sensor and the remaining “sensors” are imaginary. A
schematic of a QCM-based VSA is depicted in Figure S1. In this regard, the VSA reduces cost and
complexity of sensing materials as compared to the MSA.

QCM based VSAs were first introduced by Warner, et al. in 2015, and are based on film thickness,
viscoelasticity, and harmonics [18]. Briefly, a viscoelastic material is used as the coating material, which
results in significantly different behavioral changes under resonant conditions as compared to rigid
films due to elastic and viscous properties of the material. This theory is based on the Sauerbrey
equation:

∆ f = −
n
c

∆m = −
n
c
ρ f t f

where ∆ f is change in resonance frequency, n is harmonic number, c is mass sensitivity designated
as 17.7 ng cm−2 Hz−1 for the 5 MHz AT-cut crystal used in this study; ρ f is film density, and t f is
film thickness [19]. Thus, the harmonic, thickness, and viscoelasticity of each film will have an effect
on sensor response. Harmonics are generated using fundamental frequencies at odd multiples. The
quartz crystal resonators (QCRs) used in this work are capable of seven harmonics. In this regard,
each harmonic response is recorded and employed as a sensor. For QCM based MSAs and VSAs, the
selectivity and sensitivity depend on the coating material.

Herein, a comparative study of QCM based MSAs and VSAs for detection and discrimination of
commonly used chlorinated VOCs is described. To accomplish this, three phosphonium-based ILs
were synthesized using trihexyltetradecylphosphonium as the cation with three different anions as
coating materials for VOC detection. Phosphonium ILs are known to have good chemical stability,
viscosity, and the IL trihexyltetradecylphosphonium, in particular, exhibits partial selectivity to a wide
range of VOCs [15,20,21]. Composite materials were then created using an IL-polymer blend with
the phosphonium ILs and polydimethylsiloxane (PDMS). PDMS is known to increase sensitivity of
gas sensors [22], and IL-polymer blends have been shown to increase discrimination of VOCs due to
enhanced viscoelastic properties [23,24]. In order to investigate the vapor sensing properties of each IL
and IL-PDMS composite, thin films of each were deposited on the surface of QCRs via electrospray
deposition and subsequently exposed to a set of five chlorinated VOCs. Each set of sensors (pure IL and
composites) exhibited cross reactive patterns and were determined to be suitable for MSA fabrication.
The resulting data from each set of sensors (pure IL sensors and composite sensors) were then used to
develop statistical models for discrimination of five VOCs. PCA was used to assess the dimensionality
of each data set and to obtain a visual representation of separation among the chlorinated VOCs.
DA was used to develop predictive models for discriminating chlorinated compounds. Lastly, each
composite sensor exhibited multiple harmonic responses and each data set was used to fabricate three
different VSAs.

2. Materials and Methods

2.1. Materials

Trihexyltetradecylphosphonium (P66614) chloride, sodium dodecylbenzenesulfonate (DBS),
chloropropane, chlorobutane, and tetrachloromethane were purchased from Sigma-Aldrich (St. Louis,
MO, USA). Sodium benzenesulfonate (BS) and polydimethylsiloxane (PDMS) were purchased from
Acros Organics (West Chester, PA, USA). Sodium 4-n-octylbenzenesulfonate (OBS) was purchased
from Alfa Aesar (Haverhill, MA, USA), dichloromethane (DCM) was purchased from BDH VWR
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Analytical (Radnor, PA, USA), and chloroform was purchased from Macron Fine Chemicals (Center
Valley, PA, USA). All chemicals were used as purchased without further purification.

2.2. Instrumentation

A Q-Sense QCM-D E4 system and associated QCRs were used for these studies and previously
purchased from Biolin Scientific (Stockholm, Sweden). Each QCR is an AT-cut gold-coated quartz
crystal with a diameter of 14 mm, thickness of 0.3 mm and fundamental frequency of 4.95 MHz± 50 kHz.
Both readout equipment (Model 5878) and mass flow controllers (Model 5850E) were obtained from
Brooks Instrument, LLC (Hatfield, PA, USA).

2.3. Synthesis and Characterization of ILs

Three ILs were synthesized using a biphasic ion exchange reaction. As an example of a typical
synthetic procedure, [Na][DBS] was dissolved in water, while [P66614][Cl] was dissolved in DCM at a 1:1
mole ratio. Prepared solutions were mixed together and allowed to stir for 48 h to obtain [P66614][DBS].
After completion of ion exchange, NaCl (byproduct) was removed from the DCM layer by washing
with water several times. To isolate the final product, DCM was removed using rotary evaporation
followed by lyophilization to remove any residual water. The reaction procedure referenced above
was used to obtain remaining ILs by reacting [P66614][Cl] with [Na][BS], and [Na][OBS] to obtain
[P66614][BS], and [P66614][OBS], respectively. All three ILs were colorless and viscous liquids. Structures
of starting materials are shown in Figure S2.

Electrospray ionization mass spectrometry (ESI-MS) and Fourier transform infrared spectrometry
(FT-IR) were used to characterize ILs. ESI-MS was accomplished using an Agilent 6210 system in positive
and negative ion modes. FT-IR was performed using a Bruker Alpha & Tensor 27 FT-IR instrument.

2.4. Preparation of IL Stock Solutions

Stock solutions of [P66614][DBS], [P66614][BS], and [P66614][OBS] (1 mg/mL) were prepared using
DCM in 20 mL borosilicate glass scintillation vials.

2.5. Preparation of Composite Stock Solutions

Stock solutions of [P66614][DBS] (1 mg/mL) with PDMS (0.5 mg/mL), [P66614][BS] (1 mg/mL) with
PDMS (0.5 mg/mL), and [P66614][OBS] (1 mg/mL) with PDMS (0.5 mg/mL) were prepared using DCM
in 20 mL borosilicate glass scintillation vials.

2.6. Preparation of Sensing Films

Prior to coating, each QCR was cleaned using RCA standard clean 1 solution (5:1:1 deionized
water, 30% hydrogen peroxide, and ammonium hydroxide) [25]. An electrospray method was used
for deposition of ILs and composites onto each QCR surface. Parameters for electrospray remained
constant for each thin film: flowrate of 100 µL/min, current of 30 µA, voltage of 16.6 kV and a working
distance of 7 cm. After coating, films were dried with nitrogen and then stored in a desiccator prior
to use. The change in frequency between coated and uncoated QCRs in all of the studied ILs and
composites was maintained at ~ −2000 Hz. Once coated with materials, QCRs are referred to as sensors.

2.7. Data Collection

Each analyte was introduced at five different instrumentally controlled dilutions of flow rate ratios
(0.05, 0.1, 0.2, 0.3, and 0.4 Fs/Ftot) that correspond to 5%, 10%, 20%, 30%, and 40% of saturated vapor
pressure in a 20 mL vial of VOC and argon gas. To achieve this, a flow system that consisted of two
independent gas flow channels, one for analyte vapors and another for carrier gas, was used. Prior to
data collection, the system was purged with ultrapure argon to achieve a stable baseline. Subsequently,
a vial containing the VOC of choice was bubbled with argon to generate a sample of equilibrated
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headspace. The analyte and carrier channels merged to allow dilution of the analyte flow to yield
respective flow rate ratios [26]. The total flow rate was held constant at 100 sccm by using digital mass
flow controllers. VOC vapors mixed across 1-m length of tubing and then flowed over each sensor. To
remove analyte vapors, the system was purged with argon at room temperature until the baseline was
recovered. A schematic of the system described has been previously published and is provided in
Figure S3 [26].

2.8. Data Analysis

Multiple harmonic data were generated from vapor sensing studies expressed by change in
frequency (∆ f ) in units of hertz (Hz). PCA was used to assess the dimensionality of the observed
sensor data (MSA and VSAs) and to obtain a visual representation of separation among the chlorinated
compounds with respect to the principal components. DA was used to develop a predictive model for
distinguishing chlorinated VOCs, using the principal components as predictor variables.

3. Results

3.1. Characterization of ILs

Each IL was confirmed using ESI-MS (Figures S4–S6) and FT-IR (Figures S7–S9). All three ILs
were liquids at room temperature; thus thermal properties were not investigated.

3.2. Evaluation of IL Sensor Responses

Vapor sensing properties of [P66614][DBS], [P66614][BS], and [P66614][OBS] were evaluated by
inserting three QCM sensors coated with respective ILs into QCM-D chambers. Collectively sensors
were exposed to a set of five chlorinated VOCs, which included dichloromethane, chloroform,
chloropropane, chlorobutane, and tetrachloromethane, at five different instrumentally controlled
sample flow rate ratios (0.05, 0.1, 0.2, 0.3, and 0.4 Fs/Ftot). Changes in resonance frequency were
measured by exposing sensors to individual VOCs at indicated flow rate ratios for 3-min intervals
for a total exposure time of approximately 15 min. Three replicate measurements were completed
for each VOC. Sensor responses for [P66614][DBS], [P66614][BS], and [P66614][OBS] are presented in
Figure 1 expressed as change in frequency (∆f ) versus flow rate ratios. While each sensor exhibited
reversible sorption and a stable starting baseline, some sensor drift occurred over the course of the
experiment. Furthermore, all sensors exhibited reproducible responses with the exception of low flow
ratios (0.05 and 0.1), which resulted in large standard deviations (Figure 1). It should also be noted
that [P66614][OBS] exhibited poor reproducibility in response to dichloromethane across all flow ratios.
Based on pattern responses observed in Figure 1, fabrication of a MSA is possible, and these results are
discussed in Section 4.1. In an attempt to increase sensor response and reproducibility at low flow
ratios, incorporation of PDMS with ILs to create composite materials was investigated.
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Figure 1. Sensor response of chlorinated VOCs at five flow ratios for (A) [P66614][DBS], (B) [P66614][BS],
and (C) [P66614][OBS]. Error bars represent standard deviation for three replicate measurements.

3.3. Evaluation of Sensor Responses for Composites

It was hypothesized that incorporation of PDMS with phosphonium ILs would increase sensor
response to chlorinated compounds [22]. Thus, the vapor sensing properties of [P66614][DBS]-PDMS,
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[P66614][BS]-PDMS, and [P66614][OBS]-PDMS were evaluated using similar parameters as ILs studies.
Briefly, three QCM sensors coated with respective IL-polymer composites were inserted into QCM-D
chambers and exposed to the same set of chlorinated VOCs at identical flow ratios. Similar to IL studies,
sensors were exposed to VOCs at indicated flow ratios for 3 min intervals for a total exposure time of
approximately 15 min with three replicate measurements. Sensor responses for [P66614][DBS]-PDMS,
[P66614][BS]-PDMS, and [P66614][OBS]-PDMS are presented in Figure 2 expressed as change in frequency
(∆ f ) versus flow rate ratios. All sensors were found to be reusable, which is consistent with each
sensor exhibiting a stable baseline and reversible sorption, as shown in Figure S10. Moreover, each
sensor produced analyte specific response patterns as compared to each other, as well as to their
IL counterparts.

With respect to [P66614][DBS], [P66614][DBS]-PDMS exhibited similar response patterns; however,
there was an increase in overall sensor response, as well as smaller error bars with all analytes
except tetrachloromethane. Overall, response patterns generated from IL-PDMS composites showed
enhanced reproducibility and increased sensor response to chlorinated compounds, with the exception
of tetrachloromethane.

Observation of data from [P66614][BS]-PDMS showed an entirely different response pattern
as compared to [P66614][BS]. [P66614][BS]-PDMS exhibited both positive and negative changes in
frequency, whereas all responses were negative values for [P66614][BS]. Interestingly, sensor responses
for chloropropane and chlorobutane were negligible at lower flow ratios, whereas pure IL sensor
generated significantly larger responses. Notably, tetrachloromethane was the only compound to
achieve a negative changes in frequency over all five flow ratios. Similar to [P66614][BS]-PDMS,
[P66614][OBS]-PDMS exhibited positive and negative changes in frequency and tetrachloromethane
achieved negative values over all flow ratios. In contrast to [P66614][BS]-PDMS, [P66614][OBS]-PDMS
exhibited an overall lower sensor response. It is noted that composite sensors exhibited multiple
harmonic responses, which was not exhibited by pure IL sensors. Figures 3–5 depict sensor responses
across multiple harmonics for [P66614][DBS]-PDMS, [P66614][BS]-PDMS, and [P66614][OBS]-PDMS
respectively. The positive and negative shifts in resonant frequency can be attributed to incorporation
of PDMS, which changes the viscoelasticity of the sensor coating [27]. Based on pattern responses
observed in Figures 3–5 fabrication of a MSA and VSA are possible and these results will be discussed
in Sections 4.1 and 4.2.
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Figure 2. Sensor response of chlorinated VOCs at five flow ratios for (A) [P66614][DBS]-PDMS,
(B) [P66614][BS]-PDMS, and (C) [P66614][OBS]-PDMS. Error bars represent standard deviation for three
replicate measurements.
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Figure 3. [P66614][DBS]-PDMS sensor response to chlorinated VOCs at multiple harmonics at (A) 0.2 flow
ratio, (B) 0.3 flow ratio, and (C) 0.4 flow ratio. Error bars represent standard deviation for three
replicate measurements.
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Figure 4. [P66614][BS]-PDMS sensor response to chlorinated VOCs at multiple harmonics at (A) 0.2 flow
ratio, (B) 0.3 flow ratio, and (C) 0.4 flow ratio. Error bars represent standard deviation for three
replicate measurements.
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replicate measurements.
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4. Discussion

4.1. Evaluation of MSAs

Based on pattern responses observed in Figures 1 and 2, fabrication of two MSAs to discriminate
between the chlorinated compounds was possible. The first MSA was developed using sensor
responses from pure IL sensors, [P66614][DBS], [P66614][BS], and [P66614][OBS]. The second array was
developed using sensor responses from composite sensors, [P66614][DBS]-PDMS, [P66614][BS]-PDMS,
and [P66614][OBS]-PDMS. To achieve the first array, the raw ∆ f data collected from the pure IL sensors
of the first harmonic were used to develop a predictive model using DA. The hypothesis that the
covariance matrices associated with the three sensor variables were the same across all VOCs was
strongly rejected (p-value < 0.0001). Thus, quadratic DA (QDA) was used, which fits a model that
estimates the covariance matrices separately for each VOC [26]. The composite MSA was achieved
using the same parameters.

For pure IL MSA, the first two principal components accounted for 99.3% of the variability in the
three predictors. The first principal component, which accounted for 92.6% of the variability, represents
the sum of the three sensor responses. While the second principal component represents a comparison
between [P66614][BS] and [P66614][OBS] responses, which accounted for 6.7% of the total variation.
Figure 6 depicts a plot of the first two principal component scores, where some visual separation
between DCM, chloroform, and tetrachloromethane is provided. However, the first two principal
components do not provide any visual separation between chlorobutane and chloropropane, and there
is severe overlap between chlorobutane, chloropropane and remaining VOCs.
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Figure 6. Principal component plot for discrimination of five chlorinated VOCs with respect to a three
sensor MSA. The plot considers 75 total measurements consisting of three replicate measurements at
five different flow ratios for each VOC (15 measurements per sample) using pure IL sensors.

Based on this plot, it is suggested that there will be difficulty distinguishing between these VOCs,
especially between chlorobutane and chloropropane with the model produced by DA. The values for
the first two principal components were used as predictor variables in QDA. The QDA predictive model
resulted in 30 misclassifications, corresponding to an error rate of 40%. Of these misclassifications,
six DCM measurements were misclassified as chlorobutane, two as chloropropane, one chloroform
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measurement was misclassified as chlorobutane, one as chloropropane, four as tetrachloromethane,
nine chloropropane measurements were misclassified as chlorobutane, one as DCM, one chlorobutane
was misclassified as chloropropane, and five tetrachloromethane measurements were misclassified as
chlorobutane. This corresponded to an overall accuracy of 60%. With an excess of misclassifications
and low accuracy, the discriminate scores from the QDA model were further investigated. It was
found that majority of these classifications were occurring in the 0.05 and 0.1 flow ratios across all
VOCs. Thus, new principal components using ∆f measurements from 0.2, 0.3, and 0.4 flow ratios were
evaluated and used to develop an optimized QDA model.

Data obtained from 0.2–0.4 flow ratios demonstrated that the first two principal components
accounted for 99% of the total variability in the three predictors. The first principal component
accounted for 87.9% of the variability and similar to the original principal components, represents the
sum of the three sensor measurements. Similar to the original principal components, the optimized
second component represents a comparison between [P66614][BS] and [P66614][OBS] measurements,
but accounts for 11.1% of the total variability. Based on optimized PCA plot shown in Figure 7, an
improvement in visual separation between tetrachloromethane and DCM, tetrachloromethane and
chloroform, and between DCM and chloroform is provided. However, the optimized components are
still unable to provide visual separation between chloropropane and chlorobutane, and an overlap
of chlorobutane, chloropropane, DCM and tetrachloromethane is observed. This optimized PCA
plot suggests that there may be difficuly discriminating between these VOCs, but improvement in
discrimination as compared to the original PCA plot in Figure 6. To test this theory, optimized principal
components were used as predictor variables in QDA. The optimized QDA model resulted in a total of
seven misclassifications, which corresponds to an error rate of 15.55%. Misclassifications consisted of
one DCM measurement classified as chloropropane, four chloropropane classified as chlorobutane, one
chloropropane classified as DCM, and one chlorobutane classified as chloropropane. Overall accuracy
of the optimized QDA model was 84.45%, which was a large improvement as compared to the original
model. It should be noted that all tetrachloromethane and chloroform measurements were accurately
classified as suggested using the PCA plot in Figure 7.
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Upon examination of the composite MSA, 99.5% of the total variability in the three predictors was
accounted for using the first two principal components. The first principal component accounted for
81.1% of variance and represented the sum of the three sensor responses. The second principal
component, which accounted for 18.4% of the variability, represented a comparison between
[P66614][DBS]-PDMS and [P66614][BS]-PDMS responses. Based on Figure 8, it was proposed that using
the predicative QDA model will result in VOCs being misclassified as chloropropane or chlorobutane.
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different flow ratios for each VOC (15 measurements per sample) using composite sensors.

This hypothesis is the result of significant overlap of chloropropane and chlorobutane with
DCM, chloroform, and tetrachloromethane. This proposal was evaluated using the first two principal
components as predictor variables in QDA. The QDA model had an error rate of 36%, which accounted
for 27 misclassifications. These misclassifications were comprised of five DCM measurements classified
as chlorobutane, six chloroform measurements classified as tetrachloromethane, nine chloropropane
measurements classified as chlorobutane and three as DCM, one chlorobutane classified as DCM, and
three tetrachloromethane measurements classified as chlorobutane. This model was found to have an
accuracy of 64%, which lead to further investigation of the discriminate scores. Similar to the original
pure IL MSA, most of the misclassifications were due to the lower flow ratios (0.05 and 0.1). Therefore,
new principal components using ∆ f measurements from 0.2, 0.3, and 0.4 flow ratios were evaluated
and used to develop an optimized QDA model.

In this examination, the first two principal components accounted for 99.6% of the total variability
in the three predictors and represented the same factors as the original components. The optimized first
principal component accounted for 89.3% of the variability, while the second component accounted for
10.3%. An optimized PCA plot is depicted in Figure 9, where enhanced visual separation between
tetrachloromethane, chloroform, and DCM is provided. Nonetheless, poor visual separation persisted
between chlorobutane and chloropropane of the optimized principal components.

The optimized principal components were used as predictor variables to develop the optimized
QDA model. With the exception of two measurements, this model accurately discriminated between
the five chlorinated VOCs and resulted in an error rate of 4.44%. The misclassification was due
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to two chloropropane measurements being classified as chlorobutane. As previously mentioned,
chloropropane and chlorobutane overlapped in the optimized PCA plot (Figure 9). Thus, this
misclassification was not alarming. The overall accuracy of this model was determined to be 95.56%,
which is a drastic improvement over the original QDA model as well as the pure IL QDA model.
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4.2. Evaluation of VSAs

[P66614][DBS]-PDMS, [P66614][BS]-PDMS, and [P66614][OBS]-PDMS exhibited sensor responses
across multiple harmonics, as shown in Figures 3–5 respectively. To evaluate the capability of VSAs
for discrimination of chlorinated VOCs, each sensor was analyzed as an independent system. To
accomplish this task, raw changes in frequency (∆ f ) data collected from each sensor across multiple
harmonics was used to develop a predictive model using QDA. [P66614][DBS]-PDMS exhibited five
harmonics (1st, 3rd, 5th, 7th, and 9th), [P66614][BS]-PDMS exhibited four harmonics (1st, 3rd, 5th, and
7th), and [P66614][OBS]-PDMS exhibited six harmonics (1st, 3rd, 5th, 7th, 9th, and 11th). For each sensor,
the hypothesis that the covariance matrices associated with the five, four, and six sensor variables,
respectively, were the same across all VOCs was strongly rejected (p-value < 0.0001). Thus, QDA was
used, which fits a model that estimates the covariance matrices separately for each VOC [26]. Based on
optimization of the composite MSA, these QDA models consider only ∆ f measurements for 0.2, 0.3,
and 0.4 flow ratios.

In regards to [P66614][DBS]-PDMS, four principal components were used as predictor variables to
develop the QDA model. This model resulted in 100% accuracy in discriminating the five chlorinated
VOCs. In contrast, [P66614][BS]-PDMS, used three principal components as input variables for
QDA, which resulted in 91.11% discrimination accuracy. These misclassifications consisted of one
chlorobutane measurement being classified as chloropropane, and three chloropropane measurements
classified as chlorobutane. Lastly, [P66614][OBS]-PDMS used five principal components as predictor
variables for development of the QDA model, which resulted in 100% accuracy. Due to these models
using more than two principal components, and hence three-dimensional or more, it is not possible
to illustrate the score plots. For simplicity, two-dimensional QDA canonical plots for each VSA are
provided in Figures S11–S13.
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5. Conclusions

In this study, two novel phosphonium ILs and one previously reported phosphonium IL were
synthesized and their vapor sensing properties were investigated using a QCM based MSA. To further
evaluate the vapor sensing properties of these ILs, PDMS was incorporated to create composite
materials. The incorporation of PDMS resulted in significantly different sensor responses from pure
ILs. Ultimately, composite materials vapor sensing properties were investigated using a QCM based
MSA and VSA. It was found that pure ILs and composite materials were not useful for vapor detection
of chlorinated VOCs at low flow ratios (0.05 and 0.1). However, by employing the composite MSA,
five chlorinated VOCs were accurately discriminated at 95.56%, which was an increase in accuracy
as compared to pure ILs MSA (84.45%). It should be noted that pure ILs were not capable of VSA
fabrication, while composite sensors were capable. With the exception of [P66614][BS]-PDMS (91.11%),
VSAs exhibited higher accuracies than the MSA at 100%. Although further studies need to be
investigated to fully understand vapor interaction with sensing materials, these studies have provided
greater insight into benefits of incorporating polymers for enhanced discrimination accuracies of QCM
based sensor arrays. These sensor arrays are currently in the basic research stage; however, they show
promise for potential use in laboratories where color additives and inks are produced to monitor
chlorinated VOC exposure to employees.
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Figure S13. Canonical plot for discrimination of five chlorinated VOCs with respect to a six sensor VSA.

Author Contributions: Conceptualization, I.M.W. and S.R.V.; methodology, S.R.V.; software, S.R.V.; validation,
S.R.V.; formal analysis, S.R.V.; investigation, S.R.V.; resources, I.M.W.; data curation, S.R.V.; writing—original draft
preparation, S.R.V.; writing—review and editing, S.R.V., R.L.P., P.C., and I.M.W.; visualization, S.R.V.; supervision,
R.L.P., P.C., and I.M.W.; project administration, S.R.V.; funding acquisition, I.M.W. All authors have read and
agreed to the published version of the manuscript.

Funding: This material is based upon work supported by the National Science Foundation under
Grant No. CHE-1905105 and partially supported by the National Institutes of Health under award number R25
GM069743. Any opinions, findings, and conclusions or recommendations expressed in this material are those of
the author(s) and do not necessarily reflect the views of the National Science Foundation or National Institutes
of Health.

Conflicts of Interest: There are no conflicts of interest to declare.

References

1. Kampa, M.; Castanas, E. Human health effects of air pollution. Environ. Pollut. 2008, 151, 362–367. [CrossRef]
[PubMed]

2. Adgate, J.L.; Church, T.R.; Ryan, A.D.; Ramachandran, G.; Fredrickson, A.L.; Stock, T.H.; Morandi, M.T.;
Sexton, K. Outdoor, indoor, and personal exposure to VOCs in children. Environ. Health Perspect. 2004, 112,
1386–1392. [CrossRef]

3. Delgado-Rodríguez, M.; Ruiz-Montoya, M.; Giraldez, I.; López, R.; Madejón, E.; Díaz, M.J. Use of electronic
nose and GC-MS in detection and monitoring some VOC. Atmos. Environ. 2012, 51, 278–285. [CrossRef]

4. Gardner, J.W.; Bartlett, P.N. A brief history of electronic noses. Sens. Actuators B Chem. 1994, 18, 210–211.
[CrossRef]

5. Gardner, J.W.; Bartlett, P.N. Electronic noses. In Principles and Applications; IOP Publishing: Bristol, UK, 2000.
6. Toniolo, R.; Pizzariello, A.; Dossi, N.; Lorenzon, S.; Abollino, O.; Bontempelli, G. Room temperature

ionic liquids as useful overlayers for estimating food quality from their odor analysis by quartz crystal
microbalance measurements. Anal. Chem. 2013, 85, 7241–7247. [CrossRef]

http://www.mdpi.com/1424-8220/20/3/615/s1
http://dx.doi.org/10.1016/j.envpol.2007.06.012
http://www.ncbi.nlm.nih.gov/pubmed/17646040
http://dx.doi.org/10.1289/ehp.7107
http://dx.doi.org/10.1016/j.atmosenv.2012.01.006
http://dx.doi.org/10.1016/0925-4005(94)87085-3
http://dx.doi.org/10.1021/ac401151m


Sensors 2020, 20, 615 16 of 16

7. Liu, Y.-L.; Tseng, M.-C.; Chu, Y.-H. Sensing ionic liquids for chemoselective detection of acyclic and cyclic
ketone gases. Chem. Commun. 2013, 49, 2560–2562. [CrossRef]

8. Rehman, A.; Hamilton, A.; Chung, A.; Baker, G.A.; Wang, Z.; Zeng, X. Differential solute gas response in
ionic-liquid-based QCM arrays: Elucidating design factors responsible for discriminative explosive gas
sensing. Anal. Chem. 2011, 83, 7823–7833. [CrossRef]

9. Schäfer, T.; Di Francesco, F.; Fuoco, R. Ionic liquids as selective depositions on quartz crystal microbalances
for artificial olfactory systems—A feasibility study. Microchem. J. 2007, 85, 52–56. [CrossRef]

10. Liang, C.; Yuan, C.-Y.; Warmack, R.J.; Barnes, C.E.; Dai, S. Ionic Liquids: A New Class of Sensing Materials
for Detection of Organic Vapors Based on the Use of a Quartz Crystal Microbalance. Anal. Chem. 2002, 74,
2172–2176. [CrossRef]

11. Earle Martyn, J.; Seddon Kenneth, R. Ionic liquids. Green solvents for the future. Pure Appl. Chem. 2000, 72,
1391–1398. [CrossRef]

12. Galpothdeniya, W.I.S.; McCarter, K.S.; De Rooy, S.L.; Regmi, B.P.; Das, S.; Hasan, F.; Tagge, A.; Warner, I.M.
Ionic liquid-based optoelectronic sensor arrays for chemical detection. RSC Adv. 2014, 4, 7225–7234.
[CrossRef]

13. Tseng, M.-C.; Chu, Y.-H. Chemoselective gas sensing ionic liquids. Chem. Commun. 2010, 46, 2983–2985.
[CrossRef] [PubMed]

14. Holbrey, J.D.; Seddon, K.R. Ionic Liquids. Clean Prod. Processes 1999, 1, 223–236. [CrossRef]
15. Jin, X.; Yu, L.; Garcia, D.; Ren, R.X.; Zeng, X. Ionic liquid high-temperature gas sensor array. Anal. Chem.

2006, 78, 6980–6989. [CrossRef]
16. Yu, L.; Garcia, D.; Ren, R.; Zeng, X. Ionic liquid high temperature gas sensors. Chem. Commun. 2005, 17,

2277–2279. [CrossRef]
17. Xu, X.; Li, C.; Pei, K.; Zhao, K.; Zhao, Z.K.; Li, H. Ionic liquids used as QCM coating materials for the

detection of alcohols. Sens. Actuators B Chem. 2008, 134, 258–265. [CrossRef]
18. Speller, N.C.; Siraj, N.; Regmi, B.P.; Marzoughi, H.; Neal, C.; Warner, I.M. Rational Design of QCM-D Virtual

Sensor Arrays Based on Film Thickness, Viscoelasticity, and Harmonics for Vapor Discrimination. Anal. Chem.
2015, 87, 5156–5166. [CrossRef]

19. Sauerbrey, G. Use of quartz vibration for weighing thin films on a microbalance. Z. Phys. 1959, 155, 206–212.
[CrossRef]

20. Ramnial, T.; Ino, D.D.; Clyburne, J.A. Phosphonium ionic liquids as reaction media for strong bases.
Chem. Commun. 2005, 325–327. [CrossRef]

21. Regmi, B.P.; Galpothdeniya, W.I.S.; Siraj, N.; Webb, M.H.; Speller, N.C.; Warner, I.M. Phthalocyanine-and
porphyrin-based GUMBOS for rapid and sensitive detection of organic vapors. Sens. Actuators B Chem. 2015,
209, 172–179. [CrossRef]

22. Wenzel, S.W.; White, R.M. Flexural plate-wave gravimetric chemical sensor. Sens. Actuators A Phys. 1990, 22,
700–703. [CrossRef]

23. Regmi, B.P.; Speller, N.C.; Anderson, M.J.; Brutus, J.O.; Merid, Y.; Das, S.; El-Zahab, B.; Hayes, D.J.;
Murray, K.K.; Warner, I.M. Molecular weight sensing properties of ionic liquid-polymer composite films:
Theory and experiment. J. Mater. Chem. C 2014, 2, 4867–4878. [CrossRef]

24. Regmi, B.P.; Monk, J.; El-Zahab, B.; Das, S.; Hung, F.R.; Hayes, D.J.; Warner, I.M. A novel composite film for
detection and molecular weight determination of organic vapors. J. Mater. Chem. C 2012, 22, 13732–13741.
[CrossRef]

25. Kern, W. The evolution of silicon wafer cleaning technology. J. Electrochem. Soc. 1990, 137, 1887–1892.
[CrossRef]

26. Vaughan, S.R.; Speller, N.C.; Chhotaray, P.; McCarter, K.S.; Siraj, N.; Pérez, R.L.; Li, Y.; Warner, I.M. Class
specific discrimination of volatile organic compounds using a quartz crystal microbalance based multisensor
array. Talanta 2018, 188, 423–428. [CrossRef]

27. Speller, N.C.; Siraj, N.; Vaughan, S.; Speller, L.N.; Warner, I.M. Assessment of QCM array schemes for mixture
identification: Citrus scented odors. RSC Adv. 2016, 6, 95378–95386. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1039/c3cc39255d
http://dx.doi.org/10.1021/ac201583c
http://dx.doi.org/10.1016/j.microc.2006.06.001
http://dx.doi.org/10.1021/ac011007h
http://dx.doi.org/10.1351/pac200072071391
http://dx.doi.org/10.1039/C3RA47518B
http://dx.doi.org/10.1039/b924286d
http://www.ncbi.nlm.nih.gov/pubmed/20386844
http://dx.doi.org/10.1007/s100980050036
http://dx.doi.org/10.1021/ac0608669
http://dx.doi.org/10.1039/b501224d
http://dx.doi.org/10.1016/j.snb.2008.04.039
http://dx.doi.org/10.1021/ac5046824
http://dx.doi.org/10.1007/BF01337937
http://dx.doi.org/10.1039/b411646a
http://dx.doi.org/10.1016/j.snb.2014.11.068
http://dx.doi.org/10.1016/0924-4247(89)80061-5
http://dx.doi.org/10.1039/C3TC32528H
http://dx.doi.org/10.1039/c2jm31623d
http://dx.doi.org/10.1149/1.2086825
http://dx.doi.org/10.1016/j.talanta.2018.05.097
http://dx.doi.org/10.1039/C6RA16988K
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Materials 
	Instrumentation 
	Synthesis and Characterization of ILs 
	Preparation of IL Stock Solutions 
	Preparation of Composite Stock Solutions 
	Preparation of Sensing Films 
	Data Collection 
	Data Analysis 

	Results 
	Characterization of ILs 
	Evaluation of IL Sensor Responses 
	Evaluation of Sensor Responses for Composites 

	Discussion 
	Evaluation of MSAs 
	Evaluation of VSAs 

	Conclusions 
	References

