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Abstract: Sensor nodes perform missions based on the effectual invariable coverage of events, and
it is commonly guaranteed by the determinate deployment for sensor nodes who deviate from the
optimum site frequently. To reach the optimal coverage effect with the lowest costs is a primary
goal of wireless sensor networks. In this paper, by splicing the sensing area optimally with cellular
grids, the best deployment location for sensors and the required minimum number of them are
revealed. The optimization problem of coverage rate and energy consumption is converted into a task
assignment problem, and a dynamic partition algorithm for cellular grids is also proposed to improve
the coverage effect when the number of sensors is variable. Furthermore, on the basis of solving
the multi-objective problem of reducing and balancing the energy cost of sensors, the vampire bat
optimizer is improved by introducing virtual bats and virtual preys, and finally solves the asymmetric
assignment problem once the number of cellular grids is not equal to that of sensors. Simulation
results indicate that the residual energy of sensors during redeployment is balanced notably by our
strategy when compared to three other popular coverage-enhancement algorithms. Additionally,
the total energy cost of sensor nodes and coverage rate can be optimized, and it also has a superior
robustness when the number of nodes changes.

Keywords: wireless sensor networks; coverage effect; dynamic partition; cellular grid; energy
consumption; task distributing; improved vampire bat optimizer

1. Introduction

With the rapid development of wireless communication technology, embedded computing
technology, sensor technology, and microelectronic technology, wireless sensor networks (WSNs)
which bring low-power, low-cost, distributed and self-organizing features to information perception
have emerged at this historic moment. They have greatly changed the way humans interact with
nature and established a bridge between the information and the physical world [1]. As a kind of
self-organized network formed by low-power microsensor nodes with the ability of sensing, data
processing and storing in wireless communication, WSNs, which are called one of the most influential
technologies in the 21st century, have become one of the most popular research fields due to their wide
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application in military applications, environmental monitoring and natural disaster prediction, smart
home, medical and health care, and even outer space exploration [2].

Coverage control and node deployment, which determine the ability to monitor the surrounding
physical world and the quality of service (QoS) of WSNs, are one of the core issues in WSNs research.
How to improve the QoS of sensing, monitoring, communication and other services by coverage
control and node deployment strategy, and eventually prolong the life-cycle of network, has been an
important challenge of WSNs in recent years. Sensor nodes perform missions based on the effectual
invariable coverage of events [3], hence the network reliability and monitoring quality of WSNs cannot
be improved unless monitoring events can effectively be detected by sensor nodes [4]. Given the energy
limitations of sensor nodes and the harsh, complex sensing area, the initial layout is usually formed by
random dispersal, such as an airdrop. However, some problems will be caused due to the irregular
deployment, for example, the low-density deployment will lead to monitoring blind areas, and the
high-density deployment will make the monitoring areas of sensor nodes overlap with each other,
which will lead to the mutual competition on the shared channel and communication interference
between nodes, that not only affects the reliability of data transmission, but also causes large energy
costs. Accordingly, the mobile sensors are redeployed to enhance their coverage effect.

Resource constraints are another major feature of WSNs, and also a major bottleneck that hinders
large-scale redeployment. Given that sensors are small embedded system devices, which are usually
equipped with radio transceivers, microcontrollers, and energy supplies (usually batteries), their
energy supply is often difficult to achieve due to the limitations of WSN application scenarios. This can
cause irreparable disasters in an entire network once the nodes fail due to energy exhaustion. Therefore,
it is necessary to reduce the node energy consumption as much as possible and prolong the working
cycle to the greatest extent [5]. The movement of sensor nodes and signal transmission between them
are two main aspects of energy consumption during redeployment, and the proportion of the former is
higher than that of the latter for mobile sensors. Accordingly, in addition to the coverage enhancement,
the optimization of moving distance is also an essential factor for mobile WSNs [6].

2. Related Works

Sensor nodes are abstracted as particles in force field by a virtual force algorithm (VFA), which is
the most popular and primitive algorithm when solving problems of coverage control. The predecessor
of VFA is virtual potential field, which was first used to solve the problem of path planning and obstacle
avoidance for robot according to the virtual force defined by the environment around. VFA was used
to solve the coverage enhancement problem of WSNs by Zou in [7], where all sensors are steered
by virtual attraction and repulsion and carry out virtual instead of physical moving task for each
iteration. When the sensors are closely deployed to each other, the virtual repulsion between them can
reduce redundant coverage, while the virtual gravity will make the global coverage more uniform
once they are too far apart. In addition, obstacles and priority monitoring areas also act as repulsive
and gravitational sources respectively. VFA is implemented in cluster heads with higher energy,
and all sensor nodes finally move linearly to the destination to enhance the coverage effect after the
coverage rate or the number of iterations exceeds the threshold. VFA has the advantages of simple
implementation, flexible application and obvious optimization effect, hence it has been improved by a
large number of researches [8–11]. Particle swarm optimization (PSO) and VFA are combined into a
new algorithm called virtual force-directed particle swarm optimization (VFPSO) in [9], by introducing
the virtual force to the update of moving speed of particles, the individual’s historical optimal position,
the global optimal solution and the virtual force drive the movement of particle together. The authors
of [11] embeds the definition of VFA and the Lévy flight strategy into the updating formula of grey
wolf’s position, which can accelerate the convergence speed, and it has a better performance in coverage
and moving distance. However, the algorithm based on VFA only considers the optimization of
coverage effect and ignores the optimization of moving distance. In addition, VFA cannot achieve the
best coverage effect in some cases even if the number of sensors is sufficient.



Sensors 2020, 20, 619 3 of 26

As one of the research fields of artificial intelligence, metaheuristic algorithms are an optimization
tool for solving large-scale optimization problems based on the idea of sacrificing solution accuracy for
solution efficiency, which is based on the division of labor and self-organization behavior of biological
groups [12–14]. A novel modified GWO with Lévy flight (LF) is proposed in [15], where the whole
wolf group is divided into four groups (α, β, δ and ω), and the first three groups are the best adaptive
wolves guiding other wolves (ω) to search for the target, which is similar to GWO. Compared with the
original GWO and other heuristic algorithms, the optimization performance of LGWO was effectively
improved in tackling engineering optimization tasks, which is mainly attributed to the integration
of LF and greedy selection strategy with improved hunting methods. In addition, by establishing
the relationship between wolves and cluster heads and dynamically setting the weights of different
grades of wolves, the authors in [16] improved GWO and finally applied it to optimize the clustering
routing protocol of WSNs. A Harmony Search (HS) algorithm was proposed in [17] to improve the
connectivity of the non-uniform density WSNs to increase network connectivity and enhance coverage
effect. Based on both probabilistic and binary monitoring models, by controlling the sensing range
and position of mobile sensor nodes and dynamically adjusting the number of activated sensors, a
Centralized Immune-Voronoi deployment Algorithm (CIVA) was proposed in [18] to enhance coverage
effect. In order to solve the coverage enhancement problem and optimize the maximum service life of
sensor nodes in WSNs, a distributed algorithm based on a generalization of the Cellular Automata
concept called Graph Cellular Automata (GCA) was proposed in [19]. Particle swarm optimization
(PSO) [20] is widely used in the process of multi-modal optimization because of its simple parameters,
strong optimization ability, fast convergence speed and low time complexity [21]. The particle swarm
optimization (PSO) has been used and improved by a number of surveys [22–24] to enhance cover
effect in WSNs. The authors in [25] combine PSO with Voronoi to optimize the coverage enhancement
of WSN, PSO is used to find the best deployment location, and Voronoi is responsible for evaluating
the excellence of the scheme. In [26], the artificial bee colony algorithm and PSO are combined to
optimize the efficient coverage strategy of sensor nodes, including the rotation working, and the
multi-objective function about the final coverage rate and the number of sensors. How to use the
collaboration of data fusion and deployed sensors to enhance the performance of coverage is ignored
in most existing surveys and analysis studies, the authors of [27] present a comprehensive summary
and classification of coverage optimization strategies based on data fusion. Based on the learning
automata and cellular learning automata models, an overall research framework is proposed, including
the confident information coverage (CIC)-based sensor scheduling for CIC-based deployment for
minimizing network deployment cost, maximizing network lifetime, and CIC-based coverage hole
detection and healing. In order to avoid the negative impact of coverage holes on network QoS,
by using the CIC model and taking full account of the energy consumption and communication
capabilities of the sensor nodes, [28] proposes an EICICHD for the coverage hole detection problem
from the perspective of energy saving. Based on the correlation of the internal spatial distribution of
the monitored variables and the cooperative perception between adjacent sensors, the efficiency of
CIC hole detection is improved, and the positions and number of CIC holes are effectively located
and determined.

Optimization strategies based on task assignment have the ability of quick convergence in addition
to escaping from local optima. A group-based mobile sensor dispatch algorithm was proposed in [29],
which groups the monitoring events by their positions. The sensors are dispatched to each cluster
of events to reduce and balance energy consumption during movement, and it greatly extends the
lifetime. Aimed at guaranteeing the task completion instantaneously and extending the life-cycle of
network, the authors in [30] presented an energy-efficiency node scheduling algorithm based on game
theory for WSNs, and the payoff function includes both the residual energy and local task load of the
sensor nodes. A Hungarian algorithm (HA) [31] is used to solve the NP-hard problem of deterministic
coverage enhancement with small time complexity [32], that is, the shortest moving scheme between
the initial position of each sensor node and the position to be deployed is determined by the maximum
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matching algorithm of bipartite graph [33,34]. The above algorithms based on task assignment all
ignore the optimization of reducing the maximum energy cost of sensors and balancing the residual
energy, which are exactly the keys that affect the life-cycle of WSNs.

The related works reveals that the derivative algorithms of VFA and GWO have relatively superior
performance in solving the problem of sensor coverage enhancement, but they have limitations such
as the upper limit of coverage optimization ability and the difficulty in optimizing mobile energy
consumption, hence a new strategy is proposed in this paper and compared with VFA, VFPSO and
LGWO which are the most representative algorithms. The central contributions of this paper are
as follows:

(1) We present a stacking strategy based on cellular grid (SSBCG) for splicing the two-dimensional
sensing area optimally with the length and width given.

(2) A cellular grids dynamic partitioning algorithm (CGDPA) is proposed to dynamically adjust the
size of the cellular grid based on the actual number of sensor nodes to optimize the coverage
effect when the number of sensors changes.

(3) The optimization problem of coverage enhancement and energy consumption is converted
into a task distributing problem of assigning cellular grids for sensor nodes. We improved the
vampire bat optimizer (IVBO), which has been introduced and discussed in [35], to solve the
asymmetric competition problem by introducing virtual bats and virtual preys, namely not only
the multi-objective problem of minimizing and balancing the energy cost of nodes, but also
the asymmetric assignment problem once the number of cellular grids is not equal to that of
sensor nodes.

(4) Simulation experiments are performed with MATLAB, and the proposed strategy is compared
with VFA, VFPSO and LGWO, and the reasons for their performance differences in energy cost of
nodes and final coverage rate are revealed and discussed.

The structure of the paper is as follows. The related concepts of two-dimensional deterministic
coverage problem are described in Section 3, mainly including energy consumption model, coverage
model and mathematical optimization model of deterministic coverage. In Section 4, a stacking strategy
based on cellular grid, an improved vampire bat optimizer for asymmetric assignment problem, and
a cellular grids dynamic partitioning algorithm are presented to solve the problem of deterministic
coverage enhancement when sensor nodes change. Simulation analysis and discussions of the reasons
that causing the performance differences of VFPSO, VFA, LGWO and the proposed strategy are given
and in Sections 5 and 6, respectively. Ultimately, we summarize the main contributions of this paper in
Section 7.

3. Problem Statement

3.1. Two-Dimensional Coverage Model of Sensors

The sensing area Ω can be symbolized by a two-dimensional area comprising K discrete points.
Note the sensing range of the sensor node in Ω as Θ, whose radius denotes the perceived range of the
sensor node. G j can be monitored by Si once the condition di, j ≤ RS is met, where Si represents the
i-th sensor node and its location (xSi , ySi), G j represents the centroid of the j-th discrete point and its
coordinates (xG j , yG j), the sensing radius of all sensors and the distance between Si and G j are denoted
as RS and di, j, respectively. The probability that G j covered by Si can be calculated by:

pi, j =

{
1, i f di, j ≤ RS
0, otherwise

. (1)

Given that G j may be covered by many sensors simultaneously, the condition that G j has been
successfully covered is that G j has been monitored by at least one sensor, and the coverage probability
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for G j can be calculated by p j = 1 −
∏

Si∈Sα

(
1− pi, j

)
, where Sα is the sensor set that covers G j.

Accordingly, the coverage rate (CR) of Ω can be calculated by
∑K

j = 1 p j/K.

3.2. Coverage Enhancement

Sensor nodes perform missions based on the effectual invariable coverage of events, which is
commonly guaranteed by deterministically redeploying sensor nodes who deviate frequently from the
optimum site. To reach the optimal coverage effect with lowest costs is one of the primary goals of
WSNs. Assuming that all sensors have the same perceived radius, and can acquire location information
and reach any position in Ω, a coverage enhancement strategy can be regarded as the most efficient
once it can save the amount of sensors with the cover effect of Ω fully optimized, which is equivalent
to seeking a polygon who has the highest efficiency in stacking Ω [36]. The optimal coverage pattern is
the regular hexagon with the sensing range RS as its side length [37,38].

3.3. Energy Consumption During Coverage Enhancement

Given that the failure time of the node dead firstly is often considered as an important indicator to
measure the life-cycle of WSNs, and the movement of sensor nodes and signal transmission between
them are two main aspects of energy consumption during redeployment, which means the proportion
of the former is higher than that of the latter for mobile sensors, namely the moving distance is a
necessary factor for a mobile WSNs. Consequently, in addition to the coverage enhancement, the
optimization of energy cost is also an essential factor for mobile WSNs, which is equivalent to the
optimization of mobile distance of sensors.

After moving to G j, the residual energy of Si is defined as Ei, j = Eoi − e× di, j, the total energy

cost (TEC) of all sensors can be calculated by e
∑NS

i = 1 di, j, the maximum energy cost (MEC) of nodes
can be calculated by max

i = {1,2,··· ,NS}
e× di, j, and the uniformity of residual energy (URE) of all sensors can

be calculated by U =

√∑NS
i = 1

(
Ei, j −

1
NS

∑NS
i = 1 Ei, j

)2
, where Si’s initial energy is denoted as Eoi, and

its energy cost after deploying a movement of 1 m is denoted as e, and NS is the number of sensors.
The redeployment problem can be transformed to a task distributing problem of assigning NC

mobile destinations for NS sensor nodes, Figure 1 shows the bipartite graph model of it, whose weight
of the edge < Si, G j > is equivalent to di, j, DNS × NC can be presented as:

DNS×NC =


d1,1 · · · d1,NC

...
. . .

...
dNS,1 · · · dNS,NC

. (2)

The objective function can be defined as min(w1 f1 + w2 f2): f1 = 1
N

∑NS
i = 1

∑NC
j = 1 di, j × xi, j

f2 =
√

1
N

∑NS
i = 1

∑NC
j = 1 (di, j × xi, j − f1)

2 . (3)

and the constraint condition is:

s.t.



∑NS
i = 1 xi, j = 1, j = 1, 2, . . . , NC∑NC
j = 1 xi, j = 1, i = 1, 2, . . . , NS

xi, j =

{
1, G j is the destination o f Si

0, otherwise

, (4)

where f1 and f2 are the cost functions about TEC and URE of sensors during movement; w1 and w2 are
the weights of f1 and f2, respectively.
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{
S1, S2, . . . , SNS

}
and

{
G1, G2, . . . , GNC

}
represent the set of NS sensors and NC

grid points, respectively. The weight of the edge < Si, G j > denotes the distance between Si and G j .

4. Proposed Algorithm

4.1. Stacking Strategy Based on Cellular Grid

With the intention of maximizing the sensing range of all sensors, it is necessary to specify
the deployment location of each sensor, hence a stacking strategy based on cellular grids (SSBCG)
is proposed.

As the arrow shows in Figure 2, the perceived radius of sensor nodes is represented as the radius of
the circumcircle of the cellular grid, which is recorded as RC. Given that there is a geometric relationship

of |
→

BL2| =
√

3|
→

DL2| = 3RC/2, |
→

BL3| = |
→

L3L4|/2 = RC/2, and |
→

BL4| =
√

3|
→

L3L4|/2 =
√

3RC/2,
namely the relationship between RC and stacking interval ∆x and ∆y, which are as twice the length of

|
→

BL2| and |
→

BL4|, satisfies ∆x = 3RC and ∆y =
√

3RC, respectively; the coordinates of the cellular grid
B and D, which is the reference grid of the first and second type of cellular grids, are (RC/2, 0) and(
2RC,

√
3RC/2

)
, respectively.
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When using cellular grids with a radius of RC to seamlessly stack Ω with L and W as length and
width, all cellular grids can be classified into two categories according to their coordinates. The first
type of grid is based on the reference grid (RC/2, 0) and is extended in the horizontal and vertical
directions with ∆x and ∆y as the stacking interval, respectively. Accordingly, the centroids and the
locations of the first type of cellular grids are denoted as (RC/2 + n1∆x, n2∆y), ni ∈ {1, 2, . . . , Ni}:

Ni =

{
(L−RC/2)/∆x + 1, i = 1
W/∆y + 1 , i = 2

, (5)

where N1 and N2 are the minimum number of the first type of cellular grids required along axis X and
Y, respectively, when using the first type of cellular grids to stack Ω seamlessly. The distance from the
centroid of cellular grid B to the edge of Ω along axis X and Y can be expressed as L−RC/2 and W
due to the coordinates of point B, hence the number of remaining cellular grids required along axis X
and Y can be expressed as (L−RC/2)/∆x and W/∆y. The number of all cellular grids required along
axis X and Y is [(L−RC/2)/∆x + 1] and W/∆y + 1, respectively, since cellular grid B should be also
included. The number of sensor nodes can be economized by rounding down the result.

Analogously, with the same stacking interval as the first type of cellular grids, and regarding the
centroid

(
2RC,

√
3RC/2

)
as the reference grid, the centroids and the locations of the second type of

cellular grids are denoted as
(
2RC + n3∆x,

√
3RC/2 + n4∆y

)
, ni ∈ {1, 2, . . . , Ni}:

Ni =

 (L− 2RC)/∆x + 1 , i = 3(
W −

√
3RC/2

)
/∆y + 1 , i = 4

. (6)

N3 and N4 are the minimum number of the second type of cellular grids required along axis X
and Y, respectively, when using the second type of cellular grids to stack Ω seamlessly. Therefore, the
calculation formula of the minimum number of required cellular grids to stack Ω seamlessly is:

Nmin = N1N2 + N3N4. (7)

By using cellular grids with a radius of RC = 5.25 m to stack Ω with a size of 50 m × 50 m
seamlessly, the minimum number of cellular grids can be calculated by Equations (5)–(7), which is 42.
The stacking effect is shown in Figure 3, the blue cellular grids are the first type of grids based on the
1-st grid, and the remaining cellular grids are the second type of grids based on the 7-th grid.
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4.2. Improved Vampire Bat Optimizer

Based on SSBCG proposed in Section 4.1, the coverage effect can be enhanced by deploying N
sensor nodes to the centroids of the N cellular grids. However, how the moving destination of each
sensor node should be allocated has not been resolved, which is related to the movement trajectory
of the nodes and even the energy cost during redeployment. Inspired by the vampire bat’s egoism
and altruism, we have introduced and discussed vampire bat optimizer (VBO) in [35], aiming at
maximizing the benefits of the whole generation of vampire bats and balancing the health status of
individual. Eventually, VBO is used for reducing TEC, MEC, and URE of sensors during deployment.

However, VBO can only solve the problem of symmetric assignment, namely the problem of
coverage enhancement that the number of sensor nodes is equal to that of mobile destinations. VBO
is not applicable once they are not equal. For the case that the number of cellular grids is not equal
to that of sensor nodes, we propose an improved VBO (IVBO) to solve the asymmetric competition
problem by introducing virtual bats and virtual preys for the asymmetry of competition process. IVBO
solves not only the multi-objective problem of minimizing the TEC and URE of sensor nodes, but
also the asymmetric assignment problem once the assignment matrix is not square, which has the
following steps.

4.2.1. Seeking the Favorite Prey

As a unique blood-eating mammal, the feeding habits of vampire bats vary widely. Whether they
are interested in a prey depends not only on their own taste and hunger degree, but also on the blood
volume and hunting risk of the target prey. Assuming that the number of bats and prey is Nb and Np

respectively, and they are not necessarily equal. For convenience, the j-th prey and the i-th bat are
denoted as p j and bi, respectively. The risk rate of p j, the gene of bi, and the interest rate of bi in p j are
denoted as rt

j, gt
i and It

i, j, respectively.
Before the whole generation of vampire bats starts hunting, the Nb bats will calculate the income

of the intended hunting according to their interest in prey and the risk of capturing the Np prey. For
example, Bt

i, j = It
i, j − rt

j can characterize the benefits of bi to capture p j during the t-th round of hunt,
and the benefit matrix is defined as:

Bt
Nb,Np

=


Bt

1,1 · · · Bt
1,Np

...
. . .

...
Bt

Nb,1 · · · Bt
Nb,Np

. (8)

If Nb is greater than Np, the competition problem is transformed into a symmetrical assignment
problem by adding Nb −Np virtual preys, which is equivalent to adding Nb −Np columns of zero
element to the right of matrix Bt

Nb,Np
and expanding it to a square matrix of Nb ×Nb as shown in

Equation (9). Namely Np bats can capture prey and suck blood eventually with the remaining Nb −Np

bats starved until the second part of IVBO:

Bt
Nb,Nb

=


Bt

1,1 · · · Bt
1,Np

...
. . .

...
Bt

Nb,1 · · · Bt
Nb,Np

∣∣∣∣∣∣∣∣∣∣∣
0 · · · 0
...

. . .
...

0 · · · 0

. (9)

If Np is greater than Nb, the competition problem is transformed into a symmetrical assignment
problem by adding Np −Nb virtual bats, which is equivalent to adding Np −Nb rows of zero element
to the top of matrix Bt

Nb,Np
and expanding it to a square matrix of Np ×Np as shown in Equation (10).



Sensors 2020, 20, 619 9 of 26

Namely Nb bats can capture prey and suck blood eventually with the remaining Np −Nb preys escaped
and survived:

Bt
Np,Np

=



Bt
1,1 · · · Bt

1,Np
...

. . .
...

Bt
Nb,1 · · · Bt

Nb,Np

__________________
0 · · · 0
...

. . .
...

0 · · · 0


. (10)

The reason for augmenting Bt
Nb,Np

with zero elements is that we try to accomplish symmetric
assignment by adding virtual prey or bats in the competition process, but these prey and bats cannot
really exist in reality, namely during the process of competition, the Nb −Np virtual preys added will
become the best prey for Nb −Np bats once Nb is greater than Np, and Np −Nb virtual bats will also
participate in competing for Np −Nb preys once Np is greater than Nb. However, the real bats cannot
take any advantage from the virtual prey and the real prey will not be captured by the virtual bat
after the end of assignment. If non-zero values is added instead of zero elements for the weighted
maximum matching problem of asymmetric bipartite graph where the elements of Bt

Nb,Np
are all

positive, some virtual bats or preys will be actually assigned to the actual prey or bat once the value of
an element added is greater than the minimum element of Bt

Nb,Np
, which will affects the assignment

result obviously. Similarly, a very large number (greater than the largest element of the efficiency
matrix) should be used to replace the zero element to achieve the same purpose once it is a weighted
minimum matching problem of asymmetric bipartite graph.

Each bat then explores one of its most favorite prey and is ready to compete for it, which is
equivalent to seeking the largest element of each row in Bt

N,N. For instance, the favorite prey for bat bi

can be determined by pt
best f orbi

= arg max
o∈{1,2,...,N}

Bt
i,o, N = max

{
Nb, Np

}
.

4.2.2. Predation Competition

Given that the favorite prey of vampire bat is likely to conflict, namely multiple bats compete for
the same prey often occurs, which is called the phenomenon of predation conflict, hence they have to
start a predator competition. The biological behavior of bats participating in predatory competition
for their favorite prey is one of the biological characteristics of vampire bats, which is famous as
the egoism.

The prey robbed by bats are denoted as Φt
prey. Taking pα in Φt

prey as an example, all bats participated
in robbing pα are represented as Φt

bat. The updating formula of bi’s interest value for pα is:

It+1
i,α = It

i,α −
(
ϕt

1 −ϕ
t
2 + ε

)
. (11)

where ϕt
1 and ϕt

2 are the maximum and secondary benefits of the bats in Φt
bat hunting pα, respectively.

In order to prevent the update failure of It
i,α due to the equality of ϕt

1 and ϕt
2, we added ε to ensure the

update process runs smoothly.
Predation conflicts no longer occur once each bat has the favorite prey, and the vampire bats begin

to suck blood from its favorite prey. The amount of blood sucked by bi are denoted as zi. the benefits
of the whole generation of vampire bat have been maximized, and we call the process from 4.1.1 to
4.1.2 the first part of IVBO.
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4.2.3. Back Feeding

As discussed in Section 4.2.1, few bats will fail to hunt once there are more bats than prey.
Universally, not every bat can draw enough blood to sustain life since predatory competition occurs
frequently. Vampire bats will starve to death if they can’t suck enough blood for three consecutive
nights [39]. Nevertheless, the life of most vampire bats does not end there, as one of the biological
characteristics of vampire bats [40], the biological behavior of sharing extra food with hungry vampire
bats according to their kinship, which is famous as the altruism.

After the end of predation, vampire bats began to look for a hungry bat for back feeding according
to kinship. For example, b j will get the excess blood from bi once the latter is full and the former is
hungry and the genes of them are similar enough, which is called a back-feeding condition as shown
in Equation (12). Differences in kinship and starvation between bi and b j are measured by τ1 and τ2,
respectively: {

|gi − g j| < τ1

zi − z j > τ2
, j ∈ {1, 2, . . . , N} (12)

Given that there may be more than one vampire bat meeting the back-feeding condition, hence
we regard b j as the optimal transfusion target for bi if the attribute value of b j is the largest, which can
be calculated by

Ai, j =
ew1×(zi−z j)

w2 × |gi − g j|
, (13)

where the weights for differences in kinship and starvation between bi and b j are denoted as w1 and w2.
The back-feeding process will end once no bats need back feeding, and the blood absorption of

the whole bat population is effectively balanced and the benefits of each bat have been balanced. We
call the process in 4.1.3 the second part of IVBO.

4.3. Cellular Grids Dynamic Partitioning Algorithm

The residual energy of nodes and the total energy cost along with the cover effect can be optimized
only for a specific number of sensor nodes by SSBCG and IVBO proposed in 4.1 and 4.2, which has
mediocre performance when the number of sensors changes. In order to enhance the robustness
of the proposed strategy, a cellular grids dynamic partitioning algorithm (CGDPA) is proposed to
dynamically adjust the size of the cellular grid based on the actual number of sensor nodes to enhance
the coverage effect when the number of sensors changes.

Regarding the sensor’s perceived radius RS as the radius RC of the cellular grid, the minimum
number Nub of cellular grids required for stacking Ω seamlessly can be calculated by Equations (5)–(7),
which is also the minimum number of sensors required to cover Ω completely.

As shown in Figure 4a, by regarding the sensing area of the sensors as the circumscribed circle of
the cellular grids and denoting the radius of the cellular grids as RC = Rlb, the minimum number
of cellular grids required for stacking Ω seamlessly, which is denoted as Nub, can be calculated by
Equation (7) once the length and width of Ω and the sensing radius of the sensor are given.

If the number of sensor nodes is equal to Nub, the optimal cover effect as shown in Figure 5a can
be achieved; if the number of sensor nodes is more than Nub, the coverage rate of Ω can be increased
to 100% in spite of the remaining NS −Nub sensors being redundant, which is shown in Figure 5b;
however, if the number of sensor nodes is less than Nub, on the one hand, Nub −NS cellular grids will
turn into monitor blind area, on the other hand, the overlap of the sensing area of NS sensors will be
redundant, which finally leads to the inferior monitoring effect shown in Figure 6a.
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grids is not adjusted. (b) The problem of the monitoring blind area is effectively improved by adjusting
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In order to adapt to the circumstances that the number of sensor nodes is not equal to Nub, a cellular
grids dynamic partitioning algorithm (CGDPA) is proposed to dynamically adjust the radius of the
cellular grids according to the actual number of sensor nodes. Specifically, the radius of the cellular
grid is dynamically adjusted by:

RC =


Rlb , NS ≥ Nub

Rub −
Rub−Rlb
Nub−Nlb

× (NS −Nlb) , Nlb < NS < Nub

Rub , NS ≤ Nlb

. (14)

RC is the radius of the adjusted cellular grid (dependent variable); Rub and Rlb are the radius of
the cellular grid as shown in Figure 4a,b, where the sensing area of the sensor node is the inscribed
and circumscribed circle of the cellular grid, respectively; Nlb and Rub are the number of cellular
grids calculated by Equations (5)–(7) when Rub and Rlb are regarded as the radius of the cellular grid,
respectively; NS is the actual number of sensor nodes (the only independent variable).

The size of the cellular grid will be adjusted in the range shown in Figure 4 according to the
number of sensor nodes. When the condition of Nlb < NS < Nub is satisfied, as shown in Figure 6b, RC
will be increased with the decrease of NS, the distance between sensor nodes will be increased, and the
redundant coverage area will be effectively reduced; when the critical condition NS = Nub is met, the
optimal cover effect can be achieved without adjusting the size of the cellular grid; when the NS > Nub
is satisfied, the coverage rate can be increased to 100% in spite of few sensors being redundant, hence
there is no need to adjust the cellular grid size.

4.4. Energy-Efficient Coverage Enhancement Strategy for WSNs

The SSBCG, IVBO and CGDPA proposed in Sections 4.1–4.3 are combined into an energy efficient
coverage enhancement strategy for WSNs, which is called improved vampire bat optimizer based on
dynamic cellular grids (IVBODCG), and its flowchart is shown in Figure 7. After the amount, the
sensing radius, the position of sensors, and the size of the monitoring area are initialized, the first step
is to calculate the radius of the cellular grid which is suitable for the actual number of sensors, and
divide the monitoring area into cellular grids according to SSBCG, then calculate the distance matrix
and expand it based on the relationship between the actual number of nodes and cellular grids, which
corresponds to Section 4.4.1. The second step which corresponds to Section 4.4.2 is to find the best
mobile destination for sensors by regarding the centroid of cellular grids as the mobile destination of
them. The sensor nodes compete for the mobile destination until the best mobile destination of sensors
no longer conflicts in the third step, which corresponds to Section 4.4.3. The fourth step calculates
the mobile task of the sensors after the end of the competition, then judging whether there are any
exchangeable mobile tasks according to the Theorem of task exchange and selecting the most suitable
sensor, and it corresponds to Section 4.4.3. The final redeployment task will be carried out once there is
no longer any exchangeable task. The detailed process of each section is as follows.
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4.4.1. Calculating the Radius of Cellular Grids and the Distance Matrix

NC and RC can be calculated by Equations (5)–(7) and (14), respectively, based on the relationship
between the actual number of nodes and Nub. The distance matrix DNS×Nub can be calculated by
Equation (2). Then we regard the sensors and cellular grids as vampire bats and as prey, respectively.

The number of bats is equal to that of prey when NS = Nub is satisfied, which means DNS×Nub is
a square matrix, which can be transformed into a symmetric assignment problem. The number of
bats is not equal to that of prey when NS = Nub is not satisfied, which means DNS × Nub is no longer a
square matrix and it belongs to the asymmetric assignment problem, and it can be transformed into a
symmetric assignment problem by adding NS −Nub virtual cellular grids when NS > Nub and adding
Nub −NS virtual sensors when NS < Nub, which is equivalent to adding zero elements of NS −Nub
columns to DNS×Nub and extending it to a square matrix when NS > Nub, and adding zero elements of
Nub −NS rows to DNS×Nub and extending it to a square matrix when NS < Nub.

Given that IVBO is used to optimize the total energy cost of sensors, which can effectively solve
the maximum matching problem when considering only the predation competition of vampire bats.
However, the purpose of reducing the total energy cost of nodes is to find the minimum value. Therefore,
the benefit matrix should be calculated by BN×N = −DN×N. We then proceed to Section 4.4.2.

4.4.2. Seeking the Optimal Moving Destination for Sensors

We traverse all sensors and cellular grids to seek the optimal moving destination for each sensor.
We define G j as the best moving destination for Si if G j is closest to Si. The optimal moving destination
for Si on the t-th iteration is calculated by Gt

best f orsi
= arg max

j∈{1,2,...,N}
Bt

i, j, where Bt
i, j is the benefits of Si

when moves to G j on the t-th iteration.
We determine whether the optimal moving destination of the sensors is in conflict; if there is no

conflict, then the moving task matrix can be calculated by Taskt
N×N = −Dt

N×N

⊗
Xt

N×N, where Dt
N×N

is the distance matrix calculated in 4.4.1, and the meaning of xt
i, j ∈ Xt

N×N is shown in Equation (4). We
then proceed to Section 4.4.4; if there is a conflict, then proceed to Section 4.4.3.

4.4.3. Competition

When multiple sensor nodes compete for the same cellular grid, we denote the conflicting cellular
grid robbed by multiple nodes as a popular grid set Φt

girds. For instance, taking Gt
α in Φt

girds as an

example, sensors participated in robbing Gt
α are represented as Φt

sensors. The updating formula of Si’s
benefit in moving to Gt

α is:
Bt+1

i,α = Bt
i,α −

(
ϕt

1 −ϕ
t
2 + ε

)
, (15)

where ϕt
1 and ϕt

2 are the maximum and secondary benefits of the nodes in Φt
sensors moving to the Gt

α,
respectively. In order to prevent the update failure of Bt

i,α due to the equality of ϕt
1 and ϕt

2, we added
ε to ensure the update process runs smoothly. All popular grids and the conflicted sensors will be
traversed to update the benefit matrix Bt

N × N. Then return to Section 4.4.2.

4.4.4. Exchanging the Moving Tasks

So far, the benefits of all sensors have been maximized but the differences have not been minimized.
We traverse all nodes to exchange their moving tasks based on the theorem of task exchange; then
proceed to Section 4.4.5:

• Condition of task exchange: Given that sensors Si and Sm with G j and Gn as their moving
destination, the task exchange condition is: dt

i,n < dt
i, j

dt
m, j < dt

i, j
. (16)
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• Lemma of task exchange: The benefit of Si and Sm can be balanced by Equation (17) once they
satisfy the condition of task exchange: 

xt
i,n = 1

xt
m, j = 1

xt
i, j = 0

xt
m,n = 0

(17)

• Theorem of task exchange: n schemes can be found once n sensors satisfying the condition of
task exchange simultaneously based on the lemma of task exchange. We define Sξ as the optimal
exchangeable sensor for Si once it has the largest fitness value among n sensors, which can be
calculated by:

f itξ =
e−µ1×(Taskt

i,n+Taskt
ξ, j)

µ2 × |Taskt
i,n − Taskt

ξ, j|
. (18)

where µ1 and µ2 are the weights of the summary and difference of the benefit of them, respectively.

For Si and its moving destination G j shown in Figure 8, both Sm1 and Sm2 satisfy the condition of
task exchange. The fitness value of Sm1 and Sm2 can be calculated by Equation (18), and the former is
bigger than the latter; thus, we exchange the moving task of Si and Sm1 rather than that of Si and Sm2 .
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is determined by the theorem of task exchange.

Taking a Ω of 50 m× 50 m as an example, when calculating the movement scheme of 42 sensors
with a perceived radius of 5.25 m, the comparison before and after the task exchange is shown in
Figure 9, and it can be seen that the distant moving tasks as shown by red arrows in Figure 9a are
balanced in Figure 9b, which is shown by green arrows.
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positions of nodes, respectively. The lines connecting them are the moving trajectories of sensors.

4.4.5. Redeployment

The energy-efficient redeployment can be completed by moving sensors according to the matrix
TaskN × N.

5. Simulation Results

5.1. Parameter Setting

Simulations were performed with MATLAB R2019a on a computer with a 2.7 GHz frequency and
8 GB memory to evaluate the performance of our proposed strategy IVBODCG, and the MATLAB
code is detailed in the supplementary file. We compared the performance of VFA, VFPSO, LGWO and
IVBODCG about final coverage rate (FCR), total energy cost (TEC) of all sensors, uniformity of residual
energy (URE) and maximum energy cost (MEC) of sensors under the same experimental conditions,
which are shown in Table 1.

Table 1. Simulation parameters.

Parameters Value

Length of sensing area 60 m
Width of sensing area 50 m

Perceived radius of sensors 5 m
Number of grids (to calculate coverage) 601 × 501

Number of sensors 30~80
Single step moving distance during actual movement 1 m

Energy cost by moving unit distance 50.4 J/m
Radius of cellular grids 5 m~5.72 m
Initial energy of sensors 3000 Joules

Distance threshold of virtual force 8.58 m
Weight of TEC 0.2
Weight of URE 0.8
Updating factor 0.1

Maximum number of iterations 100
Amount of wolfs 20

Number of particles 20
Inertial factor 0.8

Individual cognitive coefficient 2
Global cognitive coefficient 2
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5.2. Simulation Results

The differences in final locations, moving trajectories, and cover effect of sensor nodes by four
algorithms are presented as Figure 10.
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Figure 10. Coverage enhancement effects and movement trajectories of VFPSO, VFA, LGWO and
IVBODCG after 28 rounds of movement. The circular areas with the solid points at the center are the
perceived ranges of sensors. (a1) to (d1) are the initial positions of the four algorithms, and (a3) to (d3)
are the final coverage effects of them. The 53 hollow and solid points in (a2) to (d2) are the final and
initial locations of 53 nodes, respectively. The lines connecting them are the actual mobile trajectories
of sensors.
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The figures from (a1) to (d1) show the initial locations of nodes for algorithms for fairness of
comparison, and it can intuitively show that our proposed strategy IVBODCG is superior than VFA,
VFPSO and LGWO when considering the actual moving distance, the final coverage effect, and the
uniformity of the mobile distance of sensors.

IVBODCG reaches an FCR of 100% while that of LGWO, VFA and VFPSO are only 92.70%, 93.56%
and 95.44%, which is compared in Figure 11a. Since there are obvious differences in FCR by the end of
redeployment, the TEC is compared in Figure 11b when four algorithms all reach a coverage rate of
92.70%. The TEC of VFPSO, LGWO and VFA is 1.8306 × 104, 2.8991 × 104 and 2.2132 × 104 Joules when
the coverage rate of them all reach 92.07%, respectively, and they are worse than that of IVBODCG by
49.39%, 136.58% and 80.61%, and the former even consume more energy when the latter achieves full
cover effect. In addition, IVBODCG achieved an FCR of 100% with a TEC of 1.6148 × 104 Joules while
the coverage rate of LGWO, VFA and VFPSO only reached 80.6%, 85.8% and 89.2%, respectively, with
the same energy cost.
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Figure 11. Coverage rates and energy cost of four algorithms. (a) shows the relationship between
final coverage rate and process of movements. (b) shows the relationship between final coverage rate
and total energy cost. Compared with VFA, VFPSO and LGWO, IVBODCG can achieve the optimal
coverage effect with the least energy cost and the fewest rounds of movements.

The energy cost of each sensor of IVBODCG, VFPSO, VFA and LGWO are compared in Figure 12,
LGWO has the worst performance when considering TEC of nodes, and VFPSO along with VFA are
slightly better than LGWO, and IVBODCG are obviously better than all of them. In addition, URE and
MEC of nodes of IVBODCG is effectively optimized when compared with other three algorithms, as a
result of that they only care about the cover effect and the convergence speed with the optimization of
energy cost ignored.

The performance differences of MEC of nodes of four algorithms are presented in Figure 13a.
The node with the maximum energy cost of IVBODCG, VFPSO, VFA and LGWO reaches the optimal
location after 13, 17, 29 and 33 rounds of deployment, and consume 590.83, 829.08, 1406.32 and 1533.47
Joules of energy, respectively. In addition, URE of IVBODCG, VFPSO, VFA and LGWO are 144.51,
183.29, 261.56 and 350.69 Joules after the final rounds of movements, which are shown in Figure 13b.
It indicates that VFPSO, LGWO and VFA performs worse than IVBODCG by 26.84%, 142.6% and
81.00%, respectively. Unfortunately, our strategy is worse than the other three algorithms during the
first 10 rounds of movement. Given that URE is related to the difference in distance moved by each
sensor, namely, the higher the uniformity of residual energy, the greater the difference of moving
distance of each node during the movement since the actual moving speed by single step is the same.
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Figure 12. Energy cost for 53 sensors of IVBODCG, VFPSO, VFA and LGWO. The yellow, green, light
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redeployment. The bars from right to left in a given bar graph represent the energy cost of nodes 1–53
of the corresponding algorithm.
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Figure 13. Comparison of MEC and URE of nodes of four algorithms. (a) shows the relationship
between uniformity of residual energy and process of movements. (b) shows the relationship between
the maximum energy cost and process of movements. Compared with LGWO, VFA and VFPSO,
the IVBODCG’s MEC and URE is the best after the final round of movement.

Obviously, the sensor nodes driven by each algorithm have not all moved to the destination by
the end of the 10th round of movement, hence the reason why the URE of IVBODCG during the first
10 rounds is higher is that a large number of sensor nodes have reached the best destination early while
other nodes are still moving, and the sensor nodes of the other three algorithms have not arrived the
destination and are moving at a speed of 1 m by single step, and it is consistent with the phenomenon
shown in Figure 10d2, which shows that our proposed strategy IVBODCG has a large number of
sensor nodes with short moving distances when compared to VFPSO, VFA and LGWO.

By initializing different positions for sensors, 200 independent simulation experiments are
performed to evaluate the stability and reliability of IVBODCG. The initial positions of the sensors
were randomly generated, and the other parameters were the same in every simulation experiment.
The performance comparison about FCR of IVBODCG, VFA, VFPSO and LGWO is shown in Figure 14a,
which can be seen that LGWO is the worst one that floating around 92%, and VFA is close to 93% which
is slightly superior than LGWO. Our proposed strategy can reach an FCR of 100% by every single
experiment while VFPSO can only reaches 95%. Figure 14b compares the TEC of the four algorithms
after completing the moving task, which is consistent with the experiment result presented in Figure 12.
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VFPSO, LGWO, and VFA fluctuate around 2.0 × 104, 2.8 × 104 and 2.5 × 104 Joules, respectively, while
IVBODCG is close to 1.6 × 104 Joules. Figure 14c,d compare the performance differences in MEC and
URE, and our proposed strategy is the best among them.
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Figure 14. Comparison of energy cost and final coverage rate by 200 independent experiments. (a–d)
show the final coverage rate, total energy cost, the maximum energy cost and uniformity of residual
energy of four algorithms in 200 independent experiments, respectively. The curve is the fitting result
of the tenth polynomial of the data points.

The mean value of 200 simulation experiments are presented in Table 2. IVBODCG can balance
the URE of sensors by 48.36%, 41.51% and 24.73%, and also reduce the MEC of nodes by 48.66%, 41.98%
and 24.94%, when compared to LGWO, VFA and VFPSO. Besides, it can reduce the TEC of nodes by
42.03%, 34.73% and 18.25%, and also have a superior performance when considering the FCR.

Table 2. Performance comparison of 200 simulation experiments with the average results.

Performance Index LGWO VFA VFPSO IVBODCG

FCR 92.47% 93.46% 95.51% 100%
TEC/Joules 28,447.5 25,266.8 20,172.1 16,490.5
MEC/Joules 1362.8 1205.8 932.1 699.6
URE/Joules 299.4 264.3 205.4 154.6

Given that conclusions based on the means are generally misleading, and it is hard to find whether
there is any statistically significant difference between the approaches without the indication of error,
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the difference in the statistical results of the performance of the four algorithms in each performance
indicator is presented in Figure 15 and Table 3.
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of residual energy of four algorithms, respectively.

Table 3. Performance comparison of 200 simulation experiments in standard deviation.

Performance Index LGWO VFA VFPSO IVBODCG

FCR 0.85% 0.66% 0.54% 0.00%
TEC/Joules 2742.1 2537.6 2333.1 2533.9
MEC/Joules 226.1 181.6 144.4 102.6
URE/Joules 36.8 33.4 26.3 20.5

Considering that the actual number of sensors may not be the optimal number which is 53,
a vertical comparison is made by changing the number of sensors in order to test the universality of
our proposed strategy. Figure 16 compares the performance of four algorithms when the number of
sensors varies from 30 to 80. It can be seen from Figure 16a that the FCR of the four algorithms is
increasing with the increase of the number of sensors, and our proposed strategy is superior than that
of LGWO and VFA when the number of sensors is the same, and FCR of IVBODCG reaches 100% when
the number of sensors exceeds 53. Figure 16b shows that TEC of LGWO, VFA and VFPSO increases
obviously with the increase of the number of sensors, and that of our strategy is slightly increasing
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before the number of nodes increases to 53, and is lower than that of LGWO, VFA and VFPSO when
the number of sensors is the same. Figure 16c,d indicate that the MEC and URE of sensors of LGWO
and VFA is gradually increasing with the increase of the number of sensors, and that of VFPSO is
slightly rising while IVBODCG is constant and even gradually reduced when the number of sensors is
greater than 53, and it also has superior performance when the number of sensors is the same.
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Figure 16. Comparison of four algorithms when the number of sensors changes. (a–d) show the final
coverage rate, total energy cost, the maximum energy cost and uniformity of residual energy of four
algorithms, respectively.

Surprisingly, the TEC, MEC and URE of IVBODCG are almost constant or slightly increasing
when the number of sensors is less than 53, and are decreasing rather than increasing as the number
of sensors increases beyond 53 as shown in Figure 16b–d, which is different from the other three
algorithms. However, this is not without reason, which is precisely thanks to the virtual grids and
virtual sensors introduced in Section 4.4.1. The TEC, MEC and URE of sensors are almost constant
or slightly increasing when the number of sensors is less than 53, which is due to the game theory
of IVBO, namely it can always find a scheme to optimize the moving distance. Regardless of the
number of sensors, it can assign sensor nodes to the cellular grid in close proximity. Analogously,
when the number of sensors is greater than 53 and continues to increase, the number of cellular grids
produced by CGDPA and SSBCG will stay at 53 instead of increasing, namely the number of sensors
will be greater than the number of cellular grids, which causes the assignment problem to become
asymmetrical. However, the existence of virtual grids transforms it into a symmetric assignment
problem, and some of the sensor nodes will correspond to these virtual grid points, and they are
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assigned only in the IVBO instead of moving actually during redeployment. Therefore, IVBO obtains
the rights of option for picking 53 nodes out of all sensor nodes to move, rather than moving all of
them. As the number of sensors continues to increase, the sensors that are extremely close to cellular
grids, predictably, can be found for redeployment, hence the moving distance so as to the TEC, MEC
and URE is optimized.

6. Discussion

As the derivative algorithms of VFA, such as the strategies proposed in [8–11], their basic principle
is to fill unmonitored areas and separate overlapping nodes. During each iteration, the virtual moving
effect of a sensor is influenced by the threshold of the repulsion between the nodes, the threshold of the
attraction from grid points to sensors, and the single-step moving speed. Therefore, the threshold of
repulsion, attraction and the virtual moving speed by single-step have a significant impact on FCR; the
optimal coverage effect will not be obtained if the best parameters cannot be determined. In general,
VFA-based approaches involve a number of parameters to decide the magnitude of the force and to
prevent sensors from oscillation, which means, that it is usually difficult to find the suitable values for
these parameters in different cases. In addition, just similar to other swarm intelligence, PSO and GWO
save the calculation time by sacrificing the accuracy of the solution, hence the convergence speed and
the performance of the convergence value are poor for large scale problems, for example, optimizing
the coverage effect. Conversely, the performance of IVBO is insensitive to its parameters thanks to it
transforming the sensor coverage enhancement problem to a task-assignment problem, it ensures an
optimum coverage rate after the movements, which is the reason that FCR of VFA, LGWO and VFPSO
are lower than that of IVBODCG in 200 simulation experiments as shown in Figures 14 and 15 and
Tables 2 and 3. Although the parameters of the former are adjusted repeatedly, the effect cannot be
improved significantly.

The virtual movements of nodes in each iteration, similarly, the moving path of the nodes and the
moving energy consumption, are affected by the defects of VFA and its derivative algorithms, which
means it is difficult to account for the optimization of TEC, MEC and URE of sensors by VFA and
VFPSO, not to mention LGWO. The task distributing model of IVBO results in that the first part of it is
to optimize TEC on the basis of a full coverage rate. Therefore, IVBODCG has a superior performance
in terms of energy cost, which is shown in Figure 11 and Table 2.

The first part of IVBO can minimize the TEC of sensors while ensuring the best coverage, just
as it can optimize the benefits of the generation of vampire bats. However, the significances of the
IVBO are far greater. The reverse blood-transfusion process in the second part of IVBO guarantees the
balance volume of blood sucked by vampire bats, which means the moving task of a nodes with a long
distance of movement is exchanged by another sensor. Thus, IVBODCG is undoubtedly superior than
VFA, VFPSO, and LGWO when considering MEC and URE of sensors. As an example, energy-efficient
coverage enhancement problem is merely one of the numerous applications of IVBO, and it may
perform better than the general integer programming method when solving a large category of task
assignment problems with the goal of equilibrium.

7. Conclusions

In this paper, by using cellular grids to stack the sensing area seamlessly, and the optimization
problem of coverage enhancement and energy consumption is converted into a task distributing
problem. In addition, CGDPA is proposed to improve the coverage effect for different numbers of
sensors. Furthermore, IVBO is presented to tackle the asymmetric competition problem by introducing
virtual bats and virtual preys, which solves not only the multi-objective problem of minimizing and
balancing the energy consumption of sensor nodes, but also the asymmetric assignment problem when
the number of sensor nodes is not equal to that of cellular grids. We combine SSBCG, CGDPA and
IVBO that proposed into an energy-efficient coverage enhancement strategy IVBODCG for WSNs.
Simulation results show that, compared with three classical algorithms, the strategy proposed shows
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improved performance in terms of FCR, TEC, MEC and URE, and it also has a superior robustness
when the number of nodes changes. However, there are some limitations, for example, the same
perception radius of sensor nodes and the disk coverage model, which are too simplistic and ideal to
be used in realistic applications, some other related coverage models such as confident information
and data fusion based coverage model which define coverage concept from the view of reconstruction
and estimation should be considered. Additionally, some true experiments instead of theoretical
simulations of IVBO in WSNs will be our research focus in future.
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