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ABSTRACT Antimicrobial resistance (AMR) is an ever-growing public health prob-
lem worldwide. The low rate of antibiotic discovery coupled with the rapid spread of
drug-resistant bacterial pathogens is causing a global health crisis. To facilitate the
drug discovery processes, we present a large-scale study of reference antibiotic chal-
lenge bacterial transcriptome profiles, which included 37 antibiotics across 6 mecha-
nisms of actions (MOAs) and provide an economical approach to aid in antimicrobial
dereplication in the discovery process. We demonstrate that classical MOAs can be
sorted based upon the magnitude of gene expression profiles despite some overlap
in the secondary effects of antibiotic exposures across MOAs. Additionally, using
gene subsets, we were able to subdivide broad MOA classes into subMOAs. Further-
more, we provide a biomarker gene set that can be used to classify most antimicro-
bial challenges according to their canonical MOA. We also demonstrate the ability of
this rapid MOA diagnostic tool to predict and classify the expression profiles of pure
compounds and crude extracts to their expression profile-associated MOA class.

KEYWORDS antimicrobials, antibiotics, drug discovery, E. coli, transcriptomics,
mechanism of action, dereplication

The Centers for Disease Control and Prevention estimates that 2 million individuals
in the United States will acquire an antimicrobial resistance (AMR) infection annu-

ally, leading to 23,000 expected mortalities (1). Globally, it is predicted that AMR
infections will lead to the deaths of 10 million people/year by 2050 (2). At present,
treatment options are limited and overused; thus, the search for new antibiotics with
novel chemistry using methods less costly than traditional analytical chemistry tech-
niques alone is critical. Transcriptomics can meet this need through the rapid binning
of global gene expression patterns into the following six classical mechanism of action
(MOA) categories: inhibitors of DNA replication (DNA synthesis [DS] and DNA gyrase
[DG]), RNA synthesis [RS], protein synthesis (50S [PS50] or 30S [PS30] subunit inhibitors),
cell wall biosynthesis (CW), cell membrane biosynthesis (CM), and fatty acid synthesis
(FAS). Using transcriptome profiling, novel compounds or extracts, which sort to the
desired target MOA, can be further investigated for novel chemistry using more costly
analytical chemistry techniques.

The current understanding of the biological activity of antibiotics is largely centered
on their primary cellular targets. However, when viewing an antibiotic-treated tran-
scriptome, the signature obtained is less that of genes associated with the direct effects
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of inhibiting the primary protein target and more representative of the downstream
secondary effects of antibiotic treatment (3). These secondary effects are often conver-
gent and are involved in a response to stress and the regulation of biochemical
pathways (4). As a result, antimicrobials with different MOAs have overlapping differ-
entially expressed genes (DEGs). Until now, there have been two large-scale transcrip-
tomic investigations that have provided a starting point for deconvoluting antibiotic-
treatment transcriptomes and predicting MOAs based upon the differential gene
expression profiles of Bacillus subtilis (5) and Mycobacterium tuberculosis (6). Both
studies used microarray technology to provide a high-throughput pipeline alternative
to analytical chemistry-based dereplication techniques. In this study, we use next-
generation sequencing technology to determine the transcriptomic signatures of E. coli
in response to 37 antibiotics with known mechanisms and predict the MOA of novel
antimicrobials based on expression profiling. This standardized approach can be im-
plemented in any laboratory setting at a low cost to provide useful MOA data,
preceding costlier chemical analysis.

RESULTS

Historically, Gram-positive bacteria were used in high-throughput antimicrobial
screens because they do not have the hard-to-penetrate outer cell membrane that is
characteristic of Gram-negative species (7). To overcome this limitation in a screening
approach with a Gram-negative bacterium, we used the efflux-deficient Escherichia coli
WO153 (parent strain AB1157; with additional mutations asmB1 ΔtolC::kan) (https://cgsc2
.biology.yale.edu/Strain.php?ID�4509) which is a strain with a compromised outer mem-
brane (8). This allowed us to observe an effect on the normally impervious Gram-
negative cells. The E. coli WO153 strain was treated with each of the 37 compounds at
a 1� MIC (Table 1) for 30 minutes, a time at which �60% of the population remains
viable. We used optical density at 600 nm (OD600) values of the treatment compared to
a solvent control as a rapid means to assess relative survivorship and a proxy for
viability (see Fig. S1 in the supplemental material). Subsequently, transcriptome se-
quencing (RNA-seq) library preparation, sequencing, and analysis were performed on
219 samples (Fig. 1; see Data Set S1 in the supplemental material).

Upon filtering with a �2-fold change in transcript level and �1% false discovery rate
(FDR), a method for identifying the rate of type I errors in null hypothesis testing when
conducting multiple comparisons, we observed a large range (average of 668, standard
deviation [stdev.] of �661) in the number of genes differentially expressed in response
to antibiotic treatment irrespective of MOA designation. Colistin and D-cycloserine did
not yield a significant number of DEGs due to the high FDR values (Table 1; see Fig. S2
in the supplemental material; see Data Set S2 in the supplemental material) and, thus,
were not included in portions of the analyses that require fold change cutoffs backed
by a defined FDR, but they were included in further predictive modeling.

To illustrate the underlying MOA-specific expression profiles amid transcriptomic
convergence, a network visualization of DEGs of compounds within each MOA was
generated using the Cytoscape program (9) (Fig. 2). The edge-weighted spring-
embedded layout in the Cytoscape platform was chosen to create the self-organized
network. This algorithm was initially generated by Kamada and Kawai to organize
undirected network structures (10). Based on this algorithm, each node is subject to
forces that are applied by the edges that act similar to metal springs. Edges were
defined as their presence or absence in each MOA. We additionally used edge weights
which were calculated as a ratio of the number of compounds that each DEG was
detected over the number of total of compounds that were included in a given MOA
(see Data Set S3 in the supplemental material). These edge weights determined the
magnitude of forces applied on each node in the network.

Out of 4,140 protein-coding genes, there were 3,852 DEGs with a �2-fold change in
transcript level and �1% FDR represented in at least one treatment (see Fig. S3 in the
supplemental material; Data Set S3). These cutoffs were selected to be inclusive to
capture the differing levels of DEGs across antibiotic treatments. In total, the network
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was composed of 3,860 nodes (3,852 gene nodes and 8 MOA nodes due to the
separation of the DS/DG and PS30/PS50 subMOA group) and 14,205 edges. The
placement of 8 MOA nodes within the network illustrates that the global transcriptomic
responses of the CW-FAS, PS30-PS50, and DG-DS-RS split according to similarity (Fig. 2).
An overlay of MOA-specific coloring to the network reveals the striking similarity
between specific groups, where 31.1% (601) of the DEGs were shared between the FAS
and CW inhibitor groups and 44.5% (1,137) of the nodes were shared between the PS30
and PS50 inhibitor groups (Fig. 2). DS, DG, and RS inhibitor groups displayed a
dispersed pattern, with 534 DEGs shared among the three MOAs. In addition, there
were 445 DEGs that were significant in only 1 MOA classification (Data Set S3). Overall,

TABLE 1 List of antibioticsa used in this study

Inhibitor by type
MIC (�g/ml)
in MHBIIb Antibiotic class(es)

Total no.
of DEGs

No. of
upregulated
DEGs

No. of
downregulated
DEGs

Cell membrane
Valinomycin 400 Depsipeptides 650 446 204
Polymyxin 0.0625 Lipopeptides 48 45 3
Monactin 4 Macrotetrolide 1,500 751 749
Colistin 0.125 Lipopeptides 0 0 0

Cell wall synthesis
Vancomycin 64 Glycopeptides 309 233 76
Teixobactin 2.5 Depsipeptide 173 63 110
Ramoplanin 8 Glycolipodepsipeptide 347 218 129
Phosphomycin 16 Organic phosphonic acid 113 60 53
penicillin G 16 Beta-lactams (penicillins) 104 81 23
Meropenem 0.25 Beta-lactams (carbapenem) 112 57 55
Flavomycin 2 Phosphoglycolipids 172 96 76
D-cycloserine 64 Analog of D-alanine 0 0 0
Ceftriaxone 0.015625 Beta-lactams (cephalosporins), 3rd generation 13 11 2
Cefotaxime 0.03125 Beta-lactams (cephalosporins), 3rd generation 9 6 3
Bacitracin 125 Peptides 828 393 435

DNA gyrase
Novobiocin 0.5 Coumarin-glycosides 1,899 892 1,007
Norfloxacin 0.015626 Fluoroquinolone 17 17 0
Naldixic acid 1 Quinolone 12 10 2
Ciprofloxacin 0.003906 Fluoroquinolone 25 21 4

DNA synthesis
Trimethoprim 0.25 Pyridine/pyrimidine 396 143 253
Sulfamethoxazole 400 Sulfonamides 74 25 49
Metronidazole 800 Nitroimidazole 398 109 289
Doxorubicin 0.5 Anthracycline 691 373 318

Fatty acid synthesis
Triclosan 0.007813 Chlorophenol 929 463 466
Isoniazid 900 Pyridinecarboxylic acids 294 143 151
Cerulenin 16 Oxirane carboxylic acids 627 238 389

Protein synthesis (30S ribosomal subunit)
Tetracycline 0.5 Tetracyclines 1,050 544 506
Doxycycline 0.125 Tetracyclines 404 109 295

Protein synthesis (50S ribosomal subunit)
Thiostrepton 8 Thiopeptides 1,354 565 789
Retapamulin 0.015625 Pleuromutilin 1,718 796 922
Linezolid 4 Oxazolidinones 1,072 420 652
Erythromycin 0.25 Macrolides 1,497 663 834
Chloramphenicol 1 Nitrobenzenes, amphenicols 1,755 858 897

RNA synthesis
Rifapentine 1 Rifamycins 2,106 1,004 1,102
Rifampin 0.0625 Rifamycins 836 585 251
Fidaxomicin 0.125 Macrocyclic 6 6 0
Actinomycin D 32 Cyclic depsipeptides 1,850 851 999

aPresented with MIC values and number of DEGs with |log2(FC)| of �1 and FDR of �0.01 as the cutoffs.
bMHBII, cation-adjusted Mueller-Hinton II broth.
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our results suggest that while there are shared expression patterns across certain MOA
classifications, MOA-specific patterns do exist.

To further evaluate the MOA-specific and convergent trends in the data set, an
unsupervised clustering of the 37 antibiotic profiles (including colistin and cycloserine)
was performed. This approach again demonstrates that antibiotic treatments do not
cluster exclusively according to their MOA designation (Fig. 3A; see Fig. S4 in the
supplemental material). However, three expression signatures were identified, namely,
two for cell wall inhibitor compounds and one for FAS inhibitors. The magnitude of
expression for the transcripts of one such cluster was able to discriminate between
MOA classes (Fig. 3A). This pronounced expression signature had an over 30-fold
upregulation across a group of cell wall inhibitor compounds, namely, ramoplanin,
bacitracin, and vancomycin (Fig. 3A, gene cluster 1; see Data Set S4 in the supplemental
material). These compounds belong to the Lipid II cycle inhibitor subgroup, which
block peptidoglycan synthesis through substrate sequestration and tight binding to
Lipid II at the extracellular surface of the cytoplasmic membrane (11). As many as 30%
of the upregulated genes are members of the wca gene cluster (locus ID: b2042-b2062)
with a role in polysaccharide export and colanic acid biosynthesis (12). Additional
members of this first gene expression signature included yjbFG (b4027 and b4028),
ymgDG (b1171 and b1172), and cbrABC (b3690, b3716, and b3717).

To assess the potential use of the wca genes as biomarkers in high-throughput
screening for cell wall inhibitor activities, a comparison of the capsule synthesis wca
gene expression per antimicrobial treatment was made (Fig. 3B; see Fig. S5 in the
supplemental material; Data Set S4). In addition to the strong upregulation found in
ramoplanin, bacitracin, and vancomycin, moderate upregulation was detected in the
following three additional cell wall inhibitors: flavomycin (Lipid II transglycosylation),
penicillin (transpeptidation), and meropenem (transpeptidation). The wca loci, how-
ever, is not diagnostic of all CW compounds; the CW compounds ceftriaxone and
cefotaxime did not induce upregulation. Additionally, outside the cell wall group,
upregulation of the wca operon was observed in polymyxin (CM), monactin (CM),
novobiocin (DG), actinomycin D (RS), and rifapentine (RS).

FIG 1 Sample processing overview.
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The second profile observed was a unique cell wall gene signature in phosphomycin
(Fig. 3A, gene cluster 2; Data Set S4). Phosphomycin blocks cell wall synthesis through
inhibition of the enzymatic conversion of the peptidoglycan precursor UDP-N-
acetylglucosamine to UDP-N-acetyl-muramic acid (13). A massive downregulation (90-
fold) of iron assimilation genes, including enterobactin biosynthesis (ent) and transport/
export (fep), was detected. Genes involved in nucleotide metabolism (nrdEFH) and a
membrane protein (yhjX) were also strongly downregulated. The phosphomycin gene
signature is highly specific to phosphomycin, although a modest level of downregu-
lation for this gene set was observed with erythromycin (PS50; 5-fold) and tetracycline
(PS30; 8-fold).

The third observed signature was shared among the fatty acid synthesis inhibitors.
Triclosan and isoniazid both block the reduction step of the fatty acid synthesis
pathway by inhibiting an enoyl-ACP reductase (fabI), whereas cerulenin inhibits a
�-ketoacyl-ACP synthase (fabB) (14). The bioABFCD genes involved in biotin biosynthe-
sis were upregulated in triclosan (83-fold) and isoniazid (21-fold) and to a lesser degree
in cerulenin (6-fold) treatments (Fig. 3A, gene cluster 3; Data Set S2). In E. coli, fatty acid
synthesis is carried out to assemble the pimelate precursor for entering the biotin
synthetic pathway (15), where biotin is a cofactor crucial for key enzymes in metabolic
and cellular processes (16). Here, the biotin gene cluster was upregulated by 3-fold in
metronidazole (DS), bacitracin (CW), valinomycin (CM), and polymyxin (CM) and was
not detected in the remaining antimicrobial compounds.

Next, we performed the first of the two supervised approaches to assess whether
antibiotics within a given MOA can be further classified into subMOAs based upon DEG
patterns. We present two examples here and provide the overlap and clustering results
for the DEGs of all MOA subgroups in Fig. S6 and S7 and Data Set S5 in the
supplemental material. The five PS50 antibiotics (thiostrepton, retapamulin, linezolid,
erythromycin, and chloramphenicol) and two PS30 antibiotics (tetracycline and doxy-

FIG 2 Network view of the 3,852 DEGs generated using the edge-weighted spring-embedded network in Cytoscape v3.7.
Nodes representing DEGs and MOAs were colored according to the MOA, as follows: CM, red; CW, orange; DG, yellow; DS,
green; FAS, cyan; PS30, blue; PS50, purple; and RS, pink.
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cycline) could be stratified by the magnitude of their transcriptomic response for a
subset of 174 DEGs common to the subMOAs (Fig. 4). Furthermore, the 50S inhibitors
clustered according to their role as early- or late-stage protein synthesis inhibitors (Fig.
4). In this 174-gene list, a majority of the upregulated transcripts were associated with
either the 50S or the 30S ribosomal subunit (Data Set S5).

FIG 3 Unsupervised clustering. (A) Hierarchical clustering analysis of 37 antimicrobial-induced transcriptomes identified three distinct gene signatures. Gene
expression fold change values (log2) are shown with genes as rows and antimicrobial compounds as columns. The three distinct signatures are colanic acid gene
cluster (top), iron-assimilation genes (middle), and biotin synthesis gene cluster (bottom). (B) Colanic acid-associated gene expression is shown in log2FC values
across the wca gene cluster for antimicrobial compounds ramoplanin (CW), vancomycin (CW), bacitracin (CW), flavomycin (CW), polymyxin (CM), monactin (CM),
rifapentine (RS), and novobiocin (DG).
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Unlike the PS data set, no DEGs were shared across the eight DS-inhibiting antibi-
otics. However, principal-component analysis (PCA) of the union set of genes (Data Set
S5) shows that the transcriptomic responses will split according to whether the
antibiotic is a DNA gyrase/topoisomerase IV inhibitor or acts indirectly to inhibit DNA
synthesis (Fig. 5A). Novobiocin and doxorubicin appear as transcriptomic outliers within
their respective subMOA. Novobiocin is the only DG inhibitor in our data set which
targets the DNA gyrase subunit B rather than subunit A, whereas doxorubicin is a very
potent DNA intercalator, unlike the other DNA-binding or nucleotide synthesis inhib-
itors in our data set. It is also a potent reduction/oxidation (redox) agent that forms
reactive oxygen species. These two antibiotics also have the highest number of DEGs,
with 1,899 and 691 DEGs for the MOA (Table 1). The observed transcriptomic response
could also be explained by the chemistries of these compounds (Fig. 5B; see Data Set
S6 in the supplemental material).

Lastly, to evaluate the use of transcriptomic signatures to predict the MOA of an
unknown compound, we evaluated a simple prediction model using correlation. In this
model, a Pearson correlation (r) value is computed between the unknown compound
and each of the reference compounds based on gene expression values of a selected
set of diagnostic genes. The MOA of the unknown compound is predicted as the MOA
of the reference compound with the highest correlation value. We explored three
different approaches for selecting diagnostic genes, which are regulated differently
either at the compound level (approaches 1 and 2) or the MOA level (approach 3). The

FIG 4 MOA-specific patterns. Venn diagram of the overlapping DEG for the PS50 and PS30 overlap, and hierarchical
clustering of 174 overlapping DEG genes for the PS50 and PS30 overlap.
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three approaches were as follows: (1) select genes that have the highest variance across
37 compounds, (2) select genes that are the most significantly up/downregulated in
each of 37 compounds, and (3) select genes whose fold change values are the most
different between MOAs based on ANOVA analysis, which was used in a previous study
(17) (details in Materials and Methods section). Based on the overall prediction accu-
racy, approach 2 showed the best performance (84% accuracy, i.e., 31 compounds with
correct MOA prediction out of 37) compared with approaches 1 (70%) and 3 (81%). This
could be because the set of genes collected by approach 2 better represents the unique
transcriptome profile of every compound in our data set. This best-performing ap-
proach used a combined list of the top 20 most significantly differentially expressed
genes collected from each compound (i.e., genes with the smallest FDR while requiring
the FDR of �0.1% and not limited by an arbitrary fold change cutoff) (see Data Set S7
in the supplemental material). Hierarchical clustering of the 447-gene diagnostic set
better resolved the antibiotics into their classical MOA designations (see Fig. S8 in the
supplemental material). We validated the gene selection approach using a leave-one-
compound-out cross-validation method (details in Materials and Methods section). The
predicted MOA for the individual antimicrobial compounds and accuracy for each MOA
are shown in Table 2. Here, we achieved 100% prediction accuracy for the protein
synthesis, fatty acid synthesis, and cell wall inhibitors (see Fig. S9 in the supplemental
material).

Our MOA predictive model based on the 447-gene diagnostic set (Data Set S7) was
further tested using the transcriptome profiles of E. coli WO153 exposed to crude
extracts from bacterial strains producing antimicrobials in the training set. The overall
accuracy for the crude extract validation set was 80%, with an average Pearson
correlation coefficient of 0.79 (Table 2). The incorrect predictions were between the
highly related CW and CM MOAs. Specifically, we observed that the two cell wall
inhibitors (vancomycin and bacitracin) were predicted to the cell membrane MOA.

As a final experiment, we took the transcriptomic profiles for five crude extracts and

FIG 5 MOA-specific patterns. (A) PCA of all DEGs for DNA synthesis/DNA gyrase and (B) hierarchical clustering of the
molecular descriptors for DS/DG inhibitors (below).
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one pure compound with a prior confirmed antimicrobial activity but unknown MOA
and queried them against our predictive model. Independently, chemical dereplication
was used to identify the active compounds within these crude extracts, and none of
these compounds were included in the training set. Generally, the model failed to make
predictions with a Pearson correlation coefficient greater than 0.5 for these compounds
(3 out of 5) (Table 2). In addition, the crude extract containing ADC56 was assigned to
CW instead of CM, a common problem with the existing model. ADC56, also known as
darobactin, has recently been described as a BamA inhibiter, where BamA is an
essential outer membrane protein (18). However, the crude extract containing desota-

TABLE 2 MOA predictions for pure compounds and crude extractsa

Sample type
MOA or compound
dereplicated Test compound or extract Closest compound

Pearson
correlation
coefficient

Predicted
MOA

Same as
known
MOA

Reported MOA
of chemically
dereplicated
compound

References RNA synthesis RS.Rifapentine RS.Rifampin 0.71 RS Yes
RS.Rifampin RS.Rifapentine 0.72 RS Yes
RS.Fidaxomicin CW.Phosphomycin 0.18 CW No
RS.ActinomycinD RS.Rifapentine 0.67 RS Yes

Protein synthesis PS50.Thiostrepton PS50.Retapamulin 0.95 PS Yes
PS50.Retapamulin PS50.Thiostrepton 0.95 PS Yes
PS50.Linezolid PS50.Thiostrepton 0.93 PS Yes
PS50.Erythromycin PS50.Chloramphenicol 0.92 PS Yes
PS50.Chloramphenicol PS50.Erythromycin 0.92 PS Yes
PS30.Tetracycline PS50.Erythromycin 0.88 PS Yes
PS30.Doxycycline PS50.Thiostrepton 0.84 PS Yes

Fatty acid synthesis FAS.Triclosan FAS.Cerulenin 0.71 FAS Yes
FAS.Isoniazid FAS.Triclosan 0.56 FAS Yes
FAS.Cerulenin FAS.Triclosan 0.76 FAS Yes

DNA synthesis DS.Trimethoprim PS30.Doxycycline 0.72 PS No
DS.Sulfamethoxazole DS.Metronidazole 0.64 DS Yes
DS.Metronidazole PS30.Doxycycline 0.68 PS No
DS.Doxorubicin DS.Trimethoprim 0.54 DS Yes

DNA gyrase DG.Novobiocin RS.Rifapentine 0.56 RS No
DG.Norfloxacin DG.Ciprofloxacin 0.92 DG Yes
DG.Nalidixic_acid DG.Ciprofloxacin 0.84 DG Yes
DG.Ciprofloxacin DG.Norfloxacin 0.92 DG Yes

Cell wall CW.Vancomycin CW.Ramoplanin 0.90 CW Yes
CW.Teixobactin CW.Meropenem 0.85 CW Yes
CW.Ramoplanin CW.Bacitracin 0.95 CW Yes
CW.Phosphomycin CW.Penicillin 0.30 CW Yes
CW.Penicillin CW.Vancomycin 0.76 CW Yes
CW.Meropenem CW.Flavomycin 0.88 CW Yes
CW.Flavomycin CW.Meropenem 0.91 CW Yes
CW.Cycloserine CW.Teixobactin 0.47 CW Yes
CW.Ceftriaxone CW.Cefotaxime 0.84 CW Yes
CW.Cefotaxime CW.Ceftriaxone 0.85 CW Yes
CW.Bacitracin CW.Ramoplanin 0.95 CW Yes

Cell membrane CM.Valinomycin CM.Colistin 0.57 CM Yes
CM.Polymyxin CW.Penicillin 0.69 CW No
CM.Monactin RS.ActinomycinD 0.65 RS No
CM.Colistin CM.Valinomycin 0.59 CM Yes

Crude extracts from
antimicrobial-producing
bacterial strains

Cell membrane CM.VALINOMYCIN.producer CM.Monactin 0.88 CM Yes
Cell wall CW.BACITRACIN.producer CM.Valinomycin 0.75 CM No

CW.PENICILLIN.G.producer CW.Vancomycin 0.84 CW Yes
CW.TEIXOBACTIN.producer CW.Teixobactin 0.59 CW Yes
CW.VANCOMYCIN.producer CM.Monactin 0.86 CM No

DNA gyrase DG.NOVOBIOCIN.producer DG.Novobiocin 0.84 DG Yes
Protein synthesis PS50.CHLORAMPHENICOL.producer PS50.Chloramphenicol 0.73 PS Yes

PS.50.ERYTHROMYCIN.producer PS50.Chloramphenicol 0.78 PS Yes
RNA synthesis RS.ACTINOMYCIN.D.producer RS.ActinomycinD 0.79 RS Yes

RS.Rifampin.producer RS.Rifampin 0.82 RS Yes

Crude extracts with a
prior confirmed
antimicrobial activity

Desotamide NB_E_0263 RS.ActinomycinD 0.54 RS RS
Streptonigrin NB_E_0328 DG.Ciprofloxacin 0.4 DG DS
Nybomycin NB_E_0196 DS.Doxorubicin 0.28 DS DG
LI-F05 series and

Polymyxin
NB_E_0275 FAS.Cerulenin 0.49 FAS CM

Darobactin ADC56 CW.Penicillin 0.66 CW CM
aCorrelation-based prediction results for antimicrobial reference compounds by leave-one-compound-out cross-validation and correlation-based prediction results for
crude extracts of antimicrobial-producing microbial strains.
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mide was accurately predicted to be an RS inhibitor, albeit with a low correlation
coefficient (0.54) (Table 2).

DISCUSSION

The ability of transcriptomic profiling to provide an antibiotic fingerprint has
inspired multiple studies to use the transcriptomic profiles of bacterial strains chal-
lenged with antimicrobial compounds to avoid the rediscovery of known compounds.
Prior to the current study, the largest transcriptome screening panels involved antibi-
otic treatments of B. subtilis and M. tuberculosis (5, 6). Both studies used the microarray
platform to evaluate a transcriptomic response to antibiotic treatment. Experimenta-
tion in the Gram-positive bacterium B. subtilis demonstrated the predictive power of
transcriptomic signatures. This study also used the transcriptomic profiles of 37 anti-
biotics within 6 MOAs to demarcate antibiotic MOA classes from one another and
allowed for a blind prediction (�80% accuracy) of what class an antibiotic belonged to
by transcriptomic response alone (5). Similar experiments in M. tuberculosis demon-
strated that antibiotics, which fall under a particular MOA, could be identified by a
subset of coordinately regulated gene clusters (6). Furthermore, they found that the
expression signature of the pure compound was similar to that of the crude extract
obtained from the producer organism for that compound. An RNA-seq study in
Staphylococcus aureus concluded that such profiling methods could discriminate be-
tween the bacteriostatic and bactericidal compounds within the same MOA class (17).
These studies suggest that it is possible to prioritize crude extracts harboring novel
compounds over crude extracts harboring known compounds without the need for
prior fractionation or characterization by analytical chemistry or biochemical tech-
niques. Therefore, expression profiling is invaluable to the antibiotic discovery process
as it simultaneously allows for dereplication and provides a detailed profile of the
mechanism of action.

Here, we provide the largest and most comprehensive data set to use RNA sequenc-
ing technology for the purpose of characterizing the bacterial response to antibiotic
treatment. We present a standardized approach which uses the efflux-deficient, outer
membrane-compromised E. coli strain WO153 to build our reference data set, as it
represents a composite of both the Gram-negative and Gram-positive prokaryotic cell
types from the perspective of antibiotic access to the cell interior. Due to the unique
background of this test strain, it is likely that some of the results, like diagnostic genes,
are not transferable to experiments in different strains. In our study, a 1� MIC challenge
condition was selected with a 30-minute exposure to observe the compound-specific
response of each antibiotic while avoiding the indirect effects of the exposure. Each
compound was exposed at a minimum of three biological replicates to ensure the
reproducibility of the transcriptomic signatures observed. We selected a chemically and
structurally diverse set of antibiotics to get the largest spread of transcriptomic
responses within a reasonable number of antibiotics. This resulted in the selection of 37
antibiotics comprising the 6 MOA classes, which include DNA replication, RNA synthe-
sis, protein synthesis, cell wall biosynthesis, cell membrane function, and fatty acid
synthesis inhibition.

Previous work has highlighted the challenge of evaluating transcriptomic data sets.
It is recognized that despite having knowledge of the primary target of each antibiotic,
off-target responses, such as the turning on of protective stress response networks,
tend to predominate in transcriptomic profiles (19). Due to the convergence of these
downstream effects, antimicrobials from separate classes of antibiotics have overlap-
ping gene expression patterns (3). We have observed this phenomenon in our data set,
where antibiotics from different MOA classes have overlapping gene profiles; yet, due
to the size of our data, set we are able to identify MOA-specific trends from a reduced
gene set. Taking this approach, we found 3 major signatures among the 37 transcrip-
tomic profiles when filtering for the top 400 genes with the largest standard deviation
on log-fold change values. First, we observed the upregulation of the colanic acid
synthesis gene cluster (wca), where colanic acid is a special class of capsule polysac-
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charide that coexpresses with some K or O antigens among E. coli strains (20). The role
of colanic acid was unclear for decades, until it was demonstrated that select beta-
lactam antibiotics could induce colanic acid formation in E. coli and, in turn, trigger
capsule production. We found that although the response is shared across MOAs, genes
from the wca operon could be favorable candidate markers for identifying antimicrobial
activities targeting the Lipid II pathway and peptidoglycan synthesis inhibition by their
differential gene expression patterns, although not with absolute fidelity. Additional
members of this first gene expression signature included yjbFG (b4027 and b4028),
ymgDG (b1171 and b1172), and cbrABC (b3690, b3716, and b3717), which have putative
functions in exopolysaccharide biosynthesis, biofilm modulation, and bacteriocin resis-
tance, respectively (21, 22). The RcsAB transcription complex regulates capsule biosyn-
thesis (wca), biofilm formation (yjb), periplasmic and membrane proteins, and autoreg-
ulation of rcsA, all of which were observed in our Lipid II cell wall inhibitor
transcriptome analysis. Taken together, these results suggest that the observed up-
regulation in the wca gene cluster is a secondary response of the bacterium to
antibiotic treatment, as it is regulated by the RcsBC envelope stress response. Despite
being a secondary effect of antibiotic treatment, the magnitude (or degree of up or
downregulation) in the transcriptomic response of E. coli can help to resolve antibiotics
to their associated MOA.

As the majority of the gene expression profiles do not neatly cluster according to
MOA, we looked at each MOA in isolation. For the protein synthesis inhibitors, clus-
tering of the overlapping DEGs for PS50 and PS30 inhibitors allowed for the indepen-
dent sorting of the two subMOAs. The genes in this overlap are mostly upregulated and
code for the components of the ribosomal subunits, and the majority of the down-
regulated genes are associated with various metabolic processes (23). This has been
observed before in E. coli, Haemophilus influenzae (24), and Streptococcus pneumoniae
(23), where the inhibition of one facet of the ribosomal target will result in an attempt
to overcompensate for the loss of the primary target. Conversely, compounds repre-
sentative of the same MOA do not always have overlapping DEGs when using pre-
scribed fold change and FDR cutoffs. For instance, DS-DG inhibitors have no overlap
across the DEGs for the individual transcriptomic profiles. However, the use of all log2

fold change (FC) values across all DEGs for this MOA allows for the sorting of the
subMOAs. For instance, DEGs of the DS set were enriched for Gene Ontology (GO) terms
associated with DNA unwinding, DNA topoisomerase activity, and response to stress;
whereas DEGs of the DG set included the genes involved SOS response and response
to DNA damage.

Finally, we aimed to find a global gene list that would encompass subMOA resolu-
tion within MOA-level resolution. The final model uses 447 genes and predicts the MOA
of pure previously observed compounds with 84% accuracy. The incorrect MOA
assignments were for the following antibiotics with Pearson correlation coefficient
ranging from 0.56 to 0.72 to a profile outside their MOA designations: novobiocin (a DS
to RS, rifapentine), polymyxin (a CM assigns to CW, penicillin), monactin (a CM assigns
to RS, actinomycin D), trimethoprim (a DS assigns to PS30, doxycycline), and metroni-
dazole (a DS to PS30, doxycycline). The incorrect assignments for novobiocin, poly-
myxin, and monactin are most likely due to their expression profiles for genes involved
with colanic acid biosynthesis. This is apparent due to their high correlation to
inhibitors which also upregulate wcb genes. The high correlation of trimethoprim and
metronidazole to doxycycline, a PS30 inhibitor, is likely due to the shared ability to
affect the DNA binding, outer membrane, and metabolism-associated genes within the
subset gene list.

For crude extracts from antimicrobial-producing bacterial strains, CW inhibitors are
classified incorrectly as CM inhibitors. For crude extracts containing previously unob-
served compounds, the classifier model does not perform well (20% accuracy). This
highlights the need to expand the training data. We expect that we could improve this
resolution by including additional pure compounds and crude extracts of the strains
which produce these pure compounds to better simulate noise in the reference data
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set. However, at the current status, we are able to triage antibiotics and crude extracts
to their nearest transcriptome associate MOA bin using the prescribed 447-biomarker
gene set. Ultimately, we attained a gene set with remarkable accuracy for determining
MOA when considering the existing data set and show that extracts containing known
compounds can be rapidly deprioritized. It is, however, clear that MOAs that are “clean,”
with single-enzyme targets (DG), are easier to predict than those that have numerous
anthropomorphically assigned target groups (DS). Breaking up these artificial catego-
ries requires additional experimentation with compounds with defined targets, which
is a logical next step.

MATERIALS AND METHODS
Strains, media, chemicals, and growth conditions. The 1� MICs of all antibiotics were determined

using the CLSI broth dilution methods. In the MIC assay, 2 �l of an antibiotic dilution series (beginning
at 64 �g/ml) was used to treat 100 �l of a culture with an OD600 of 0.001 (diluted from cells in exponential
growth phase) and then was incubated without shaking for 18 hours before MIC determination. The MIC
value is the lowest concentration at which bacterial growth is fully arrested. For antibiotics with greater
than 64-�g/ml MICs, we assessed up to 1 mg/ml in 100-�g/ml step-downs.

For the antibiotic challenge experiments, 3 ml of E. coli WO153 (AB1157; asmB1 ΔtolC::kan) (https://
cgsc2.biology.yale.edu/Strain.php?ID�4509) (8) at an OD600 of 0.5, representing mid-log phase, was
exposed to each antibiotic in biological triplicate at a 1� MIC for 30 minutes. Due to potential inoculum
effects, the MIC for drugs added at an OD600 of 0.5 may not be the same as in the MIC assay format;
however, all treatments were subject to the same discrepancy. After 30 minutes of exposure to a 1� MIC
concentration of an antibiotic, 100 �l of the cells was removed for each exposure to be evaluated for
their OD600 values and CFU/ml counts. We ensured that the antibiotic-treated sample had an OD600 value
and CFU/ml counts less than that than of the untreated control. The remainder of the cells were
immediately pelleted at 4°C by centrifugation for 10 minutes at 2,000 rpm in 1-ml aliquots. The
supernatants were removed, and samples were immediately frozen in liquid nitrogen at �80°C until they
were processed for total RNA isolation.

RNA isolation. Total RNA was extracted by automation using the NucleoMag RNA extraction kit on
the EpMotion robotic liquid handler. For the resulting total RNA, RNA integrity number (RIN) values were
obtained to check for RNA quality using the 2200 TapeStation instrument from Agilent Genomics.
Acceptable values to proceed to rRNA depletion were above a RIN of 5.

rRNA depletion. rRNAs were subtracted from the total RNA to yield only mRNA for library construc-
tion using a New England BioLabs (NEB) bacterial rRNA depletion kit at half reactions, with a total RNA
input maximum of 400 ng. The rRNA-depleted samples were quality checked using an Agilent bioana-
lyzer with the Agilent Pico chip for RNA detection for less than 0.5% of rRNA remaining in each sample.

RNA-seq. A total of 2 to 5 ng of the rRNA-depleted samples was used as the input material to
construct each cDNA library for RNA sequencing using the NEBNext Ultra directional RNA library prep kit
from Illumina. The resulting libraries were quality checked using Agilent high-sensitivity DNA chips to
ensure proper library size distribution and the absence of small adapters. Libraries were quantified and
normalized by quantitative PCR (qPCR) and then sequenced using the NextSeq 500 high-output kit at
150 cycles, producing approximately 9 million, 75-base pair paired-end reads for each library.

Mapping of RNA-seq data. Because the laboratory strain WO153 used in this study was derived from
the E. coli K-12 strain AB1157 (https://cgsc2.biology.yale.edu/Strain.php?ID�4509) and harbored few
genomic differences (asmB1 ΔtolC::kan), a surrogate reference genome from the wild-type E. coli K-12
strain MG1655 (GenBank assembly accession number GCF_000005845.2) was used as the reference
genome for read mapping. Adapter trimming was done by AdapterRemoval (v2.1.7) using two identified
adapter sequences. Quality trimming was done by Trimmomatic (v0.36). The surviving paired-end (PE)
reads were mapped to reference genome of the E. coli K-12 MG1655 strain using BWA-MEM (v0.7.17).
Mapped read pairs were counted for each gene using featureCounts (v1.6.1). The focus of this study was
the transcriptome response of the E. coli protein-coding genes (see Data Set S8 in the supplemental
material). Several regulatory noncoding RNAs have also been shown to be involved in response to
antibiotic treatment (25) and will be investigated in future studies.

Statistical tests. E. coli exposures were performed at a minimum of three exposures per treatment
to obtain statistically significant P values and FDRs for each gene. RNA-seq analysis was performed on
219 samples (Data Set S1). All packages used default statistical parameters unless otherwise noted.

Significance analysis of RNA-seq data. A total of 219 samples (replicated treatment and control
samples) remained after discarding samples with less than 0.4 million read pairs. For the final analysis,
4,007 protein-coding genes were included requiring at least 3 cpm in 3 or more samples. The trimmed
mean of M-value (TMM) normalization was used for library size normalization (26). Mean-variance
relationship modeling and gene-wise linear modeling were done using limma R package to rank genes
in order of evidence for differential expression (27). Differentially expressed genes (DEGs) were selected
using |log2(FC)| of �1 and FDR of �0.01 as cutoffs (Data Set S2).

Network analysis. Network analysis was performed using Cytoscape v3.7 (9). A total of 3,852 genes
that exhibit differential expression in at least 1 treatment were used for network analysis. Edges were
defined as their presence or absence in each MOA. The edge-weighted spring-embedded layout in the
Cytoscape platform (9) was chosen to create the self-organized network. This algorithm was initially
generated by Kamada and Kawai to organize undirected network structures (10). Based on this algorithm,
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each node is subject to forces that are applied by the edges that act similar to metal springs. We
additionally used edge weights which were calculated as a ratio of number of compounds that each DEG
was detected over the number of total of compounds that were included in a given MOA (Data Set S3).
These edge weights determined the magnitude of forces applied on each node in the network. A total
of 14,205 edges were included in the network. For the DEGs that were downregulated, edge weight was
multiplied by �1 to indicate negative regulation. For the DEGs that had conflicting regulation within a
given MOA (i.e., positive in one compound and negative in other), edge weight was multiplied by 0 to
remove the weight and retain the association. The edge-weighted spring-embedded layout was used to
visualize the network.

Unsupervised clustering analysis. Unsupervised clustering analysis used genes whose fold change
values are most different across 37 compounds by selecting 400 genes with the largest standard
deviation on log-fold change values. A clustered heatmap of the 37 compounds and 400 genes was
generated based on log-fold change values, with a distance metric of the Pearson correlation and the
complete linkage clustering method using the “pheatmap” (v1.0.12) R package.

Visualizations using Venn diagrams and heatmaps. Each of the 4,007 protein-coding genes for
the transcriptomic profiles for each antibiotic were filtered using |log2(FC)| of �1 and FDR of �0.01 as
cutoffs. Venn diagrams were visualized using the Bioinformatics and Evolutionary Genomics (BEG) Venn
tool (http://bioinformatics.psb.ugent.be/webtools/Venn/). Inputs for the analysis were all DEGs that made
these cutoffs for each antibiotic within a MOA class or subMOA. Inputs for DS/DG molecular descriptor
analysis were 88 molecular descriptor values obtained using Bioclipse software (25) for the evaluation of
3D .sdf files obtained from PubChem (Data Set S6). Hierarchical clustering used the “hclust” tool
(fastcluster v1.1.25) with defaults in R. Heatmaps were generated using the union set of genes for each
MOA. The union set includes all genes represented at least in one treatment, with a �2-fold change in
transcript level and �1% false discovery rate (FDR) cutoff. A clustered heatmap of the MOA-specific
compounds was generated based on log-fold change values with a distance metric of the Pearson
correlation and a complete linkage clustering method using the “pheatmap” (v1.0.12) R package.

GO term enrichment analysis. Given a list of genes determined by clustering or overlapping
differentially expressed gene lists, GO term enrichment analysis was done using the Fisher’s exact test
implemented in the “topGO” R package. Terms were collapsed using Revigo (28).

Correlation/prediction analysis. In the leave-one-compound-out cross-validation approach, 1 com-
pound is selected as a test compound, and from the remaining 36 compounds, a set of diagnostic genes
are selected. The Pearson correlation coefficient is calculated using the log-fold change values between
the test compound and each of the remaining 36 compounds. The MOA of the compound closest to the
test compound (i.e., the compound with the highest Pearson correlation coefficient) is assigned to the
test compound, and the predicted MOA is compared with the known MOA of the test compound. This
procedure is repeated for all 37 compounds, and the overall accuracy is estimated by the number of
correct predictions.

Three different methods for selecting diagnostic genes were tested, as follows: (i) genes whose fold
change values are most different across 37 compounds, (ii) genes that are most significantly up/
downregulated in any of 37 compounds, and (iii) genes whose fold change values are most different
between MOAs. In method 1, the genes with the largest standard deviation on log-fold change values
across 37 compounds were selected. The number of genes from 10 to 4,000 was tested. In method 2, the
genes most significantly differentially expressed in terms of FDR were collected from each of the
compounds with a fixed number of genes (from 10 to 4,000). In method 3, analysis of variance (ANOVA)
was used to test whether log-fold change values are different between any 7 MOAs, and top n genes in
terms of P values were selected for an n of 10 to 4,000.

Crude extract production of antimicrobial-producing microbial strains. To further test the
diagnostic gene sets, strains producing known antibiotics were fermented and the whole broth was
processed to produce crude extracts. Strains from the USDA NRRL collection (https://nrrl.ncaur.usda.gov/)
were used to produce extracts of valinomycin (Streptomyces roseochromogenes B-1233), bacitracin
(Bacillus licheniformis B-1001), penicillin (Streptomyces clavuligerus NRRL 3585), vancomycin (Amycolatop-
sis orientalis NRRL 2450), novobiocin (Streptomyces spheroids NRRL 2449), erythromycin (Saccharopolys-
pora erythraea B-24071), and rifampin (Amycolatopsis mediterranei B-3240). Strains from NovoBiotic
Pharmaceuticals internal collection were used to produce extracts of teixobactin (Eleftheria terrae L3383),
chloramphenicol (Streptomyces sp. strain X4251), and actinomycin D (Streptomyces canus C4087).

Strains were inoculated from a frozen glycerol stock onto SMSR4 agar plates (0.125 g casein, 0.1 g
potato starch, 1 g Casamino Acids, 100 ml R4 fermentation medium, and 20 g Bacto agar in 1 liter water).
Morphology was confirmed under �10 magnification using a Zeiss Stemi 2000 microscope, and cultures
inoculated into 20 ml of Modsb (15 g glucose, 10 g malt extract, 10 g soluble starch, 2.5 g yeast extract,
5 g Casamino Acids, and 0.2 g CaCl2-2H2O per 1 liter deionized H2O [pH 7.0]) in a 250-ml flask, shaken
at 150 rpm at 28°C for 2 to 5 days. Upon robust growth, the biomass was diluted 1:20 into 500 ml of
production medium R4 (10 g glucose, 1 g yeast extract, 0.1 g Casamino Acids, 3 g proline, 10 g
MgCl2-6H2O, 4 g CaCl2-2H2O, 0.2 g K2SO4, 5.6 g N-tris(hydroxymethyl)methyl-2-aminoethanesulfonic acid
[TES]-free acid [2-[[1,3-dihydroxy-2-(hydroxymethyl)propan-2-yl]amino]ethanesulfonic acid] per 1 liter
deionized H2O [pH 7]) for all strains except X4251. X4251 was diluted 1:20 into 500 ml of production
medium (20 g glucose, 10 g organic soy flour [Bob’s Red Mill], 10 g pharmamedia [Traders Protein], 1 g
(NH4)2SO4, 10 g CaCO3, and 20 g glycerol per 1 liter deionized H2O). Activity was monitored by bioassay,
and the active cultures were harvested between 4 and 7 days of growth in the production medium at
150 rpm at 28°C. Crude extracts were generated by extracting the whole broth culture with an equal
volume of water-saturated n-butanol for 3 h at room temperature and sonicating the culture in a water
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bath for 20 min prior to clarifying the butanol/aqueous layers with centrifugation. The n-butanol layers
were removed into clean tubes and dried in a Savant Speedvac concentrator heated to 45°C under
vacuum. The dried substances were reconstituted and concentrated in 100% dimethyl sulfoxide (DMSO)
at 10� the original volume. Crude extracts were divided into 500-�l aliquots, tested for MIC against
WO153, and kept frozen until used for exposures to produce transcriptomes. The production of known
compounds was confirmed with mass spectrometry, high-performance liquid chromatography (HPLC)
retention time, and/or spectrum of activity against resistant and sensitive test strains. Crude extracts were
shipped on dry ice from NovoBiotic Pharmaceuticals to J. Craig Venter Institute overnight.

Data availability. The data are available under NCBI BioProject number PRJNA532938.
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