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Abstract: Although access control based on human face recognition has become popular in consumer
applications, it still has several implementation issues before it can realize a stand-alone access control
system. Owing to a lack of computational resources, lightweight and computationally efficient face
recognition algorithms are required. The conventional access control systems require significant
active cooperation from the users despite its non-aggressive nature. The lighting/illumination change
is one of the most difficult and challenging problems for human-face-recognition-based access control
applications. This paper presents the design and implementation of a user-friendly, stand-alone
access control system based on human face recognition at a distance. The local binary pattern
(LBP)-AdaBoost framework was employed for face and eyes detection, which is fast and invariant
to illumination changes. It can detect faces and eyes of varied sizes at a distance. For fast face
recognition with a high accuracy, the Gabor-LBP histogram framework was modified by substituting
the Gabor wavelet with Gaussian derivative filters, which reduced the facial feature size by 40% of the
Gabor-LBP-based facial features, and was robust to significant illumination changes and complicated
backgrounds. The experiments on benchmark datasets produced face recognition accuracies of 97.27%
on an E-face dataset and 99.06% on an XM2VTS dataset, respectively. The system achieved a 91.5%
true acceptance rate with a 0.28% false acceptance rate and averaged a 5.26 frames/sec processing
speed on a newly collected face image and video dataset in an indoor office environment.

Keywords: artificial intelligence; access control; face identification; face recognition at distance; face
biometric; face recognition

1. Introduction

With significant advances in biometrics technologies, user authentication systems based on
biometrics, such as an iris, fingerprint, and human face, has increased markedly for providing more
efficient and secure access control compared to the conventional user authentication system, which uses
a password or an Integrated Circuit (IC) card. However, some biometric-based access controls, e.g.,
fingerprint- and iris-based authentication systems, require specialized and expensive equipment for
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acquiring biometric information. Furthermore, the system demands the active cooperation of a user.
To alleviate the aforementioned drawbacks of fingerprint- and iris-based access control, human face
recognition (HFR) has been increasingly applied to access control systems. The HFR-based access
control has desirable characteristics: (i) it does not require specialized optical equipment and (ii) it
provides user-friendly identification and authentication due to the non-intrusive and non-aggressive
nature of HFR [1,2]. Salvador et al. [3] proposed an automatic reception desk demonstration system with
regularized linear discriminant analysis (R-LDA)-based HFR for securing access control to facilities.

An HFR-based access control system using Fisher linear discriminating analysis (FDA) and
principal component analysis (PCA) was introduced in Xueguang and Xiaowei [4]. Hadid et al. [5]
developed an access control system based on face detection and face recognition with local binary
pattern (LBP) features. The multi-modal access control systems with RFID and HFR were proposed to
provide more strong secure access control [6,7].

Despite the desirable characteristics of HFR, a number of HFR-based access control systems do not
fully provide user-friendly authentication due to limited computational resources and deteriorating
environmental conditions. For example, some systems eliminate the face detection step by compelling
users to align their face with the fixed region to verify a user identity. Consequently, the active
cooperation of users is mandatory for user authentication. User-friendly face recognition has been
studied for developing biometric systems in uncontrolled environments [8]. In general, a user-friendly
HFR consists of a face detection step for facial image alignment, and face recognition for user
identification and authentication.

To realize a user-friendly HFR, it should be able to detect faces and eyes of varied sizes ranging
from small faces at a long distance to large faces at a short distance. At the Beijing 2008 Olympic
Games, access control systems based on user-friendly HFR [8] were used to verify the identities of
ticket holders. The system used AdaBoost and a multi-block local binary pattern (MB-LBP) for face
detection and extracted MB-LBP and Gabor features for facial image description. The self-quotient
image (SQI) technique was used to manage the illumination change problem.

HFR performance may deteriorate with changes in illumination, pose, and facial expression. Since
access control systems are installed in various environments that are both indoors and outdoors, this
inevitably involve changes in illumination, where effect of illumination constitutes the most challenging
issue for HFR-based access control systems. To manage the aforementioned problem, there are on-going
research efforts in the field of 3D face recognition and analysis. 3D face recognition methods are able to
accurately recognize the face and detect facial landmarks under an illumination change with varied
facial positions and expressions. For the acquisition of 3D facial data, specialized hardware equipment,
such as a 3D scanner and 3D camera, is required [9–12]. One of the most challenging issues in the
face recognition domain is to find an efficient and discriminative facial image descriptor. The most
widely used methods are based on subspace analysis and statistical learning, i.e., PCA and FDA. These
approaches are sensitive to varying illuminations, pose, and expression changes [13,14].

To manage difficulties in subspace analysis and statistical learning methods, non-statistical
learning methods, e.g., Gabor wavelet and LBP, have been employed for facial image descriptions.
The Gabor-wavelet-based facial features are robust to noise and local image transformations caused
by changes in lighting, occlusions, and head poses [15,16]. An LBP histogram is computationally
efficient, nonparametric, and invariant to monotonic changes in illumination [17]. Combinational
models consisting of a Gabor wavelet and an LBP histogram [18,19], namely Gabor-LBP histograms,
have received a considerable amount of attention. With the great success of Gabor wavelets
and LBP histograms in HFR, there are many variations of Gabor-wavelet- and LBP-based face
representation [16,20,21]. Despite these facial representations showing significantly good performance,
the dimensionality of the feature vector is too high.

As a summary, a user-friendly access control system based on HFR should satisfy the following
requirements: (i) it should be able to detect faces and eyes of varied sizes at a distance, (ii) it should
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be robust and invariant to changes in illumination, and (iii) the facial image descriptor should be
lightweight and discriminative.

The goal of this study is to provide a user-friendly face recognition approach for an access control
system that meets all the above system requirements for user-friendly access control. This study
employed our previous work on face detection algorithms based on the LBP and AdaBoost [22],
which are fast and robust to changes in illumination, and modified the framework to additionally detect
and localize eyes. Using multi-level pyramid images, the system could detect faces and eyes of varied
sizes at a distance. The proposed system uses a lightweight and effective face representation model
combining Gaussian derivative filters with the LBP histogram [20,22], which is invariant to changes
in illumination and complicated backgrounds. For fast and accurate face matching, the histogram
intersection is used as a score function. To validate the performance of the proposed system, we
conducted experiments using a benchmark dataset and video clips collected in an indoor environment.
The experimental results show that the proposed system achieved feasible accuracy for practical
applications and was straightforward to implement with a reasonable execution time.

The remaining parts of this paper are organized as follows. In Section 2, we provide the related
works. The proposed user-friendly face recognition approach for access control is provided in Section 3.
In Section 4, experimental results and discussion are provided. Finally, some concluding remarks are
given in Section 5.

2. Related Work

With the growing popularity of smart/embedded devices in consumer electronics, there has been
an increasing trend of using HFR to identify and to verify a person for consumer applications, such as
smart home appliances [23], security of a mobile device [24], and access/border control. Zuo and de
With [23] proposed a near-real-time face recognition system for embedding in smart home applications.
Kremic, Subasi, and Hajdarevic [24] implemented a client-server mobile application for face recognition
for identity authentication for access control and prevention of unauthorized mobile device usages.
An automatic reception desk demonstration system based on HFR was presented in Salvador and
Foresti [3]. An HFR-based access control system using Fisher linear discriminating analysis (FDA) and
principal component analysis (PCA) was introduced in Xueguang and Xiaowei [4]. Hadid, Heikkila,
Ahonen, and Pietikainen [5] developed an access control system based on face detection and face
recognition with the LBP features. The multi-modal access control systems with RFID and HFR were
proposed to provide stronger secure access control. For the Beijing 2008 Olympic Games, the access
control system based on HFR at a distance was used to verify the identities of the ticket holders [8].

Saraf et al. [25] proposed an approach for an automatic stand-alone door access control system
based on face recognition, which was developed by using a Raspberry Pi electronic development
board and was operated on a battery power supply and wireless internet connectivity by using a USB
modem. Boka et al. [26] developed a hardware and software system for access monitoring, which was
implemented on a Raspberry Pi with two portable cameras using the Intel Movidius Neural Compute
System. They used a deep learning model, namely FaceNet. Baksshi et al. [27] proposed the real-life
application of a security lock system using a principal-component-based face recognition approach.
They implemented the proposed system on an Arduino Uno microcontroller using an integrated
webcam and MATLAB for the GUI. Sagar et al. [28] presented a smart locking system that chooses
the algorithm for face detection and recognition based on the intensity of light at that time. They
employed basic principal component analysis, linear discriminant analysis, and its variations for
face detection and recognition. Sajjad et al. [29] proposed a Raspberry-Pi- and cloud-assisted face
recognition framework, which employed bag of words for the extraction of oriented Features from
Accelerated Segment Test (FAST) and rotated Binary Robust Independent Element Features (BRIEF)
points [30] from the detected face, and a support vector machine for the identification of suspects.

The core steps of HFR are the face/eyes detection [31,32] and face representation [15–21]. Face
and eyes detection are significant elements of HFR at a distance and are used for facial image
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alignment. The boosted cascade structure [21] proposed by Viola and Jones is most widely used for
face and eyes detection. Gabor-wavelet- and LBP-based face representations have achieved great
success in face recognition applications. Gabor-wavelet-based facial features are robust to noise
and local image transformations due to lighting changes, occlusions, and pose variations [20]. The
LBP histogram is computationally efficient, nonparametric, and invariant to monotonic illumination
changes [17,33,34]. The combinational models including Gabor wavelets and LBP histograms [18,19],
namely Gabor-LBP histograms, have received significant attention. With the great success of Gabor
wavelets and LBP histograms in HFR, there are many variations of Gabor-wavelet- and LBP-based face
representation [20,21].

A deep learning approach, a convolutional neural network (CNN) in particular, has been widely
applied to facial image recognition applications. Zhang et al. [35] proposed a deep cascaded multitask
framework for face detection and alignment in an unconstrained environment. The proposed approach
exploits the inherent correlation between detection and alignment, and also leverages a cascaded
architecture with three stages of deep convolutional networks to predict face and landmark location in a
coarse-to-fine manner. Schroff et al. [36] presented a unified system, called FaceNet, for face verification,
recognition, and clustering, which is based on learning a Euclidean embedding per image using a
deep convolutional neural network. With FaceNet embedding as a feature vector, face verification,
recognition, and clustering can be easily solved using standard techniques, such as thresholding,
k-NN classification, and k-means clustering. Chen et al. [37] proposed an efficient CNN model, called
MobileFaceNets, for accurate real-time face verification on mobile devices. The proposed method uses
no more than 1 million parameters.

On the other hand, 3D face recognition has been studied in various application domains, such
as surveillance, homeland security, entertainment, and medical domains. With the fast evolution of
3D sensors, 3D face recognition could overcome the fundamental limitations of conventional 2D face
recognition. The geometric information of a 3D facial dataset could not only improve the recognition
accuracy under unconstrained conditions, which are difficult for 2D face recognition, but could also be
used for medical analysis [9,10]. For example, Marcolin et al. [11] proposed a 3D landmarking algorithm
that is able to extract eyebrows and mouth fiducial points in multi-expression face analysis. By extracting
the eyebrows and mouth landmarks from various face poses, they provide the possibility of the robust
and pose-independent facial analysis in the field of medical application. Moos et al. [12] provide
a study on computer-aided morphological analysis for maxilla-facial diagnostics, which compares
the 3D morphometric methods, such as conventional cephalometric analysis (CCA) and generalized
Procrustes superimposition (GPS), with principal component analysis (PCA), thin-plate spline analysis
(TPS), multisectional spline (MS), and clearance vector mapping (CVM), while applying them to a case
study of five patients affected by the malocclusion pathology.

3. User-Friendly Face Recognition

3.1. Face Recognition Methods for Access Control

This subsection provides the lightweight and computationally efficient face recognition method
for access control, which consists of a face detection and eye localization step for facial image alignment,
a pre-processing step for facial image normalization and illumination normalization, a facial feature
extraction step, and a face recognition and user identification step. The proposed approach is invariant
to complicated illumination changes and backgrounds. The details of each step are provided in the
following subsections. The overall procedure is illustrated in Figure 1.
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Figure 1. Overall process of the face recognition for a stand-alone access control system. RFID: ???,
SQI: self-quotient image.

3.2. Face Detection and Eye Localization

Facial image alignment is a significant step in HFR systems and consists of face detection and eye
localization. The facial region of the input image is detected to reduce the region of interest (ROI) for
eye detection. The precise eye positions are detected in the reduced ROI for eye localization. Using
the localized eye positions, facial images are aligned to apply the face recognition algorithm. To
provide user-friendly access control, the capability of face and eye detection at a distance with less user
cooperation is required. It should be able to detect faces and eyes of varied sizes ranging from small
faces at a long distance to large faces at a short distance.

The proposed system uses the LBP-AdaBoost approach [17,32,38] for face detection and eye
localization. This method follows the boosted cascading structure of Viola and Jones [17,39], and adopts
the LBP histogram as feature vectors, and the two-class LDA as weak classifiers, respectively. With
multi-level pyramid images (i.e., resized input images), it is possible to detect faces and eyes of varied
sizes at a distance. The local texture and shape of face images are presented as LBP features obtained
the through the LBPu2

8,R operator. We used 21 multi-level pyramid images from original input images
with 256 by 256 pixels. The size of the pyramid image at a certain level can be obtained using:
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(resised width, resized height) =
(width, height)

exp
, (1)

where exp = scale(pyr_level−1).
In this paper, we set the scale to 1.1 and varied the pyr_level from 10 to 30. The proposed approach

could detect faces of not less than 32 by 32 pixels and of not less than 16 by 16 pixels in each pyramid
image. We used LDA for discriminative weak classifier, which represents the local image structure of
the sub-region within a face image [32,38,39]. We designed 30 weak classifiers in a similar fashion to
Viola’s approach [32,39].

By employing the LBP features, it is invariant to monotonic changes of illumination and is
computationally efficient. The overall architectures of LBP-AdaBoost for face and eye detection are
illustrated in Figure 2. Figure 3 presents the examples of positive and negative training sets for face
and eyes detection.
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Figure 3. Examples of a training dataset for face and eye detection: (a) positive training set for
face detection, (b) negative training set for face detection, (c) positive training set for eye detection,
and (d) negative training set for eye detection.

3.3. Face Recognition Based on a Gaussian Derivative Filter-LBP Histogram

Once the face and eyes have been detected, the facial region of the input image is normalized to a
fixed size based on the localized eye positions. For a rotated face, the image is rotated such that the
eyes are horizontal. The distance between the eyes is normalized to 32 pixels and the face is cropped to
a 64-by-64-pixel size. Although LBP-histogram-based face representation has desirable characteristics,
such as computational efficiency, non-parametric operation, and invariance to monotonic changes
of illumination, it is sensitive to random noise and non-monotonic changes of illumination [16]. To
overcome the effects of complicated illumination changes and backgrounds, a self-quotient image
(SQI) [40] is used for the pre-processing of normalized facial images. SQI is defined as the ratio of the
input image and its smooth versions, which is derived from one image and has the same quotient form
as that in the quotient image method.

The Gabor-LBP histogram framework [18,19] was modified to enhance the representation power
of the spatial histogram. Forty Gabor wavelet filters were replaced with eight first-order and eight
second-order Gaussian derivative filters in the face representation framework since their parameters
are easier to manipulate, and better recognition performances have been shown with a smaller number
of filters [20]. The first-order and second-order Gaussian derivative filters for a facial image description
are derived as follows [20,22]: a two-dimensional Gaussian function G(x, y) is given as:

G(x, y) = exp

− x2

2σ2
x
−

y2

2σ2
y

, (2)

where σx and σy are the standard deviation parameters.
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From Equation (2), the first-order (Equation (3)) and second-order (Equation (4)) Gaussian
derivative filters in the θ–orientation can be obtained using:

F(x, y,θ) = −
xθ
σ2

x
exp

− x2
θ

2σ2
x
−

y2
θ

2σ2
y

, (3)

S(x, y,θ) =

x2
θ − σ

2
x

σ4
x

 exp

− x2
θ

2σ2
x
−

y2
θ

2σ2
y

, (4)

where xθ = x cosθ− y sinθ and yθ = x sinθ− y cosθ.
Using Gaussian derivative filters, the dimensions of the facial features can be reduced by 60%

compared with the Gabor wavelet filters. The derived first-order and second-order Gaussian derivative
filters are illustrated in Figure 4.
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Figure 4. First-order and second-order Gaussian derivative filters for facial feature descriptions. The
figures in the first row are first-order Gaussian derivative filters, and those in the second row are
second-order Gaussian derivative filters.

A facial image is presented as a histogram sequence using the following steps. First, the multiple
Gaussian derivative filter images are transformed by convolving the normalized facial images with
the first-order and second-order Gaussian derivative filters. Let I(x, y) be the input facial image; its
convolution with the Gaussian derivative filters GFd,θ(x, y) can be defined as:

ConvI,GF(x, y, d,θ) = I(x, y) ∗GFd,θ(x, y), (5)

where d and θ are the order of the derivative and orientation, respectively.
The GFd,θ(x, y) can be either Equation (3) or Equation (4) with respect to the order of the

derivatives. The symbol ∗ denotes the convolution operator. Figure 5 shows examples of multiple
Gaussian derivative filter images.
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Second, each Gaussian derivative filter image is converted into an LBP map image using the LBP
operator. The LBP operator [17] labels the image pixels by thresholding the 3 × 3-neighborhood of each
pixel Pi (i = 0, 1, 2, . . . , 7) with the center value Pc and by considering the result as a binary number:

T
(
pi − p j

)
=

{
1, pi ≥ pc

0, pi < pc
(6)

The LBP patterns at each pixel can then be achieved by summing the threshold values weighted
by a power of two, which characterizes the spatial structure of the local image texture:

LBP =
7∑

i=0

T(pi − pc) · 2i (7)

Figure 6 shows examples of the LBP map images obtained by applying the LBP operator to the
multiple Gaussian derivative filter images shown in Figure 5.
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Finally, each LBP map image is divided into non-overlapping sub-regions with a predefined bin
size, and the histograms of the sub-regions are computed. A total of 36 subregions for each LBP map
image are used. The LBP histograms of the sub-regions are concatenated to form the final histogram
sequence, which serves as the face representation.

For face matching, the histogram intersection [16,20,41] is used as a score matching function of
two facial features since it is simple, fast, and shows good recognition performance. The final decision
for user identification is made by thresholding the matching score:

FM(HA, HB) =
∑subregions

i=1
min(HA(i), HB(i)), (8)

where HA and HB denote the facial features, i.e., the sequence of histogram, and i represents the
ith subregion.

3.4. User-Friendly Access Control System

This subsection presents the overall architecture of the proposed user-friendly access control
system based on dual-factor authentication i.e., RFID token and HFR, which verifies the identity of the
RFID card holder to prohibit an unauthorized user from gaining access by obtaining an authorized
RFID card. The system mainly consists of four parts: (i) face detection at a distance, (ii) facial feature
extraction, (iii) user ID recognition, and (iv) user authentication as shown in Figure 7.

The system provides two different operation modes, i.e., user registration mode and user
authentication mode. In user registration mode, the facial images of a user are acquired by a camera,
and then the face and eyes detector finds the facial region and localizes the eyes’ positions. The
detected face images are normalized with localized eyes positions. From a normalized face image,
the facial feature is extracted by means of Gaussian derivative filters and a LBP histogram. While the
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facial feature is extracted, the system reads the user ID from the RFID card that is held by the user. The
extracted facial features and user ID are stored in the database (DB) for user authentication.

In user authentication mode, the system extracts facial features (namely, probe facial features)
from acquired facial images of a user in precisely the same way as the user registration mode while a
user is approaching the system. When a user is close to the system, i.e., from three meters to one meter,
the system reads the user ID from the RFID card and validates it. If the user ID is in the registration lists
of the system, the corresponding facial features (namely, gallery facial features) stored in the DB are
loaded for user authentication. Otherwise, the user access is denied. The system is able to authenticate
a user while he or she is walking. The authentication range is from three meters to one meter according
to the user’s walking speed. Finally, the system matches the gallery facial features and the probe facial
features, and computes the matching score as a similarity measurement. The final decision for granting
the access right is made by thresholding the matching score.
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on human face recognition at a distance with RFID.

The hardware configuration of the proposed stand-alone access control system is provided in
Figure 8. It consists of an optical camera, remote controller, RFID reader, proximity sensor, control
button interface, audio codec, speaker, and memory devices. This study used an optical camera with a
USB interface as an image acquisition device to get high quality face images. It also used an active-type
RFID reader with a proximity sensor to provide a user-friendly interface. A user does not need to
touch the RFID reader to gain access rights because the system reads the user ID from the active RFID
card at a distance when the proximity sensor detects a user. The remote controller emits the signal
to open the gate when an authorized user is close to the system. The distance between a user and
the system is computed via calibration of the proximity sensing values. The system alerts significant
events, such as user registration completion, user denial, and user authorization using audio voices.
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4. Experimental Results

4.1. Experimental Setup

The proposed user-friendly, stand-alone access control system based on HFR at a distance with
RFID was implemented using the embedded evaluation board with a dual core CPU, 2.50 DMIPS/MHz
per core. The mockup of the proposed system, viz. BioGate access control system, is provided in
Figure 9. The system used a camera with a USB interface as an image acquisition device to obtain
high-quality facial images. It also uses an active RFID reader equipped with a proximity sensor to
provide a user-friendly interface. The remote controller transmits the signal to open the gate once the
user has been authorized.
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Figure 9. The mockup of the proposed user-friendly, stand-alone access control system based on HFR
at a distance with RFID, viz. the BioGate access control system: (a) system configuration of the mockup
system, (b) example of user registration, (c) example of user authentication, and (d) example of the
experimental environment.
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We employed the true acceptance rate (TAR), the false rejection rate (FRR), the false acceptance
rate (FAR), and the equal error rate (EER) [38,42–46] as performance evaluation measurements. The
TAR is defined as the frequency at which the system correctly verifies a true claim of authorization.
The FRR is the frequency of the system rejecting a true claim of authorization. The FAR is defined as
the frequency of the system incorrectly accepting an unauthorized user [38,46–52]. The ERR is defined
as the error rate when FAR and FRR are equal for a particular threshold [44]. FNMR(t) and FMR(t)
are defined as the distribution of the false non-match rate (FNMR) and false match rate (FMR) with
threshold value t varying from 0.0 to 1.0. FNMR is the fraction of genuine comparisons (a user is
compared with gallery images of her/himself) that produce a matching score of less than threshold
value t. FMR is the fraction of impostor comparisons (a user is compared against gallery images of all
other users) that produce a matching score greater than or equal to threshold value t [45,46].

To evaluate the general face recognition performance of the proposed approach, experiments were
conducted on the E-face [16] and XM2VTS [47] datasets. The E-face dataset consisted of 55 subjects
with 20 images of each subject. The facial images were taken under different conditions, i.e., different
lighting conditions, variations in pose and facial expression, and with or without spectacles. Ten
images per subject were used as gallery images, whereas the rest of the images were used as probe
images. The XM2VTS dataset is one of the most widely used benchmark datasets and consists of 295
subjects with eight images per subject. Four images per subject were used as gallery images and the
rest were used as probe images. In this experiment, the k-nearest neighborhood classifier with the
histogram intersection similarity metric was employed.

To validate the proposed method’s robustness to changes in illumination, the experiment was
conducted on the PF07 [48] database. The PF07 dataset includes 100 male and 100 female subjects with
320 images per each subject. The images were captured for five different poses under sixteen types of
illumination with four different facial expressions. This experiment used facial images with a frontal
facial pose, neutral facial expression, and sixteen illumination variations. One image (with no lighting)
per subject was used as a gallery image, and fifteen images (with fifteen different lighting conditions)
per subject were used as probe images. Examples of the E-face, XM2VTS, and PF07 face datasets are
given in Figure 10.Sensors 2020, 20, 785 13 of 20
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To evaluate the overall performance of the proposed system, facial images for registration (as a
gallery dataset) and videos for testing (as a probe dataset) were collected in an indoor environment, as
illustrated in Figure 11. The newly collected dataset consisted of ten subjects with ten still images and
one video sequence of each subject. The still images were captured at a two-meter distance from the
system camera, and the videos were recorded while the subject was walking toward the system from a
five-meter distance. The videos were recorded a few days after the still images were captured. Ten still
images per subject were used as the gallery dataset, and twenty image frames per video were used as
the probe dataset.

Figure 10. Cont.
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Figure 10. Examples of face databases for experiments: (a) examples in the E-face database; (b) examples
in the XM2VTS face database; and (c) examples in the PF07 database with frontal face pose, neutral face
expression, and 16 illumination variations.

To evaluate the overall performance of the proposed system, facial images for registration (as a
gallery dataset) and videos for testing (as a probe dataset) were collected in an indoor environment,
as illustrated in Figure 11. The newly collected dataset consisted of ten subjects with ten still images
and one video sequence of each subject. The still images were captured at a two-meter distance from
the system camera, and the videos were recorded while the subject was walking toward the system
from a five-meter distance. The videos were recorded a few days after the still images were captured.
Ten still images per subject were used as the gallery dataset, and twenty image frames per video were
used as the probe dataset.
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4.2. Experimental Evaluations

To show the face recognition performance of the proposed method, we compared our method
with the Gabor-LBP histogram-based approach. Table 1 shows that the proposed face recognition
approach achieved a better recognition accuracy with smaller facial feature vectors compared with the
Gabor-LBP histogram-based approach. As shown in Figure 10a, the E-face dataset contains complicated
backgrounds and variations of facial image conditions, such as illumination changes, small variations
of pose and facial expression, and the presence or absence of spectacles. This experiment indicated
that the proposed approach was more invariant to complicated backgrounds and variations of facial
image conditions than the Gabor-LBP histogram-based approach.

The cumulative accuracies on E-face and XM2VTS face databases are shown in Figure 12. The
experimental results showed that the proposed method was suitable for not only face identification,
but also face retrieval application.



Sensors 2020, 20, 785 14 of 18

Table 1. Recognition rate (%) of the proposed face recognition approach compared with the Gabor-LBP
histogram-based approach on the E-face and XM2VTS face databases.

Face Database (DB) Gabor-LBP Histogram Proposed Method

E-face Database 95.64% 97.27%
XM2VTS Face Database 98.05% 99.06%
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Table 2 provides a performance evaluation of the proposed approach on the PF07 database. The
system achieved a TAR of 99.53%, an FRR of 0.47%, and a FAR of 0.08%. The threshold value t was set
to 0.64. Figure 13 illustrates the results of the performance evaluation on the PF07 database.

Table 2. Performance evaluation of the proposed face recognition approach on the sampled PF07
database containing sixteen different illuminations using the following criteria: TAR—true acceptance
rate, FRR—false rejection rate, FAR—false acceptance rate, EER—equal error rate.

Performance Criterion TAR FRR FAR EER

Performance 99.53% 0.47% 0.08% 0.28%
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The distribution of the false non-match rate (FNMR) and false match rate (FMR) with threshold
value t varying from 0.0 to 1.0 is presented in Figure 13a. The proposed method achieved an EER
of 0.28%, as shown in Table 2 and Figure 13a. The receiving operation curve (ROC) is shown in
Figure 13b. The FNMR is plotted as a function of FMR, and the curve is drawn at a log-log scale for
better comprehension.
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Table 3 shows the results of an evaluation of the overall performance of the proposed system on
newly collected facial images (for a gallery dataset) and videos (for a probe dataset) under an indoor
office environment, as shown in Figure 11. The system achieved a TAR of 95.0%, an FRR of 5.0%, an
FAR of 0.0%, and an EER of 2.33% at the acceptance threshold value t = 0.63.

Table 3. Performance evaluation of the proposed access control system on newly collected facial images
and videos in an indoor office environment.

Performance Criterion TAR FRR FAR EER

Performance 95.00% 5.0% 0.00% 2.33%

The average execution time of the proposed system for processing one image frame is presented
in Table 4. The input image was a gray image of 640 × 480 pixels. The total execution time included
the I/O processing times of the peripheral devices. The proposed system was able to process at 5–6 fps.

Table 4. The average execution times (millisecond) of the proposed access control system for processing
one image frame.

Process Average Execution Time

Face and Eyes Detection 102 ms
Face Verification 53 ms

Total Execution Time 190 ms

We summarize the quantitative and qualitative analysis with existing methodologies in Table 5.
The deep-learning-based approach [26] shows superior performance in terms of accuracy over the
other approaches. To apply a deep-learning-based approach to an embedded system, a specialized
neural computing device, such as the Intel Movidius Neural Compute Stick, is needed. Many systems
are implemented using Raspberry Pi and employ handcrafted features.

Table 5. Comparison with the stand-alone access control systems based on facial image recognition.

Criteria Saraf et al. [25] Boka et al. [26] Bakshsi et al. [27] Sagar et al. [28] Sajjad et al. [29] Proposed Method

Embedded
H/W Raspberry Pi

Raspberry Pi with
the Intel Movidius
Neural Compute

Stick

Arduino Uno Renesas board
(RL78 G13)

Raspberry Pi 3
model B, ARM
Cortex-A53, 1.2
GHz processor,
video Core IV

GPU

Cortex dual core
CPU, 2.50

DMIPS/MHz per
core

Camera Single camera Two cameras Single camera Single camera Raspberry Pi
camera Single camera

Face
detection

Haar cascade
method

Haar-feature
based approach N/A

PCA, LDA,
histogram

equalization

Viola Jones
Method AdaBoost with LBP

Facial
feature LBP histogram FaceNet

Global feature
with principal

component
analysis

PCA, LDA,
histogram

equalization

Bag of words
with oriented

FAST and
rotated BRIEF

Gaussian derivative
filter-LBP histogram

Face
identification N/A k-NN Euclidean

Distance N/A Support vector
machine

Histogram
intersection

Execution
time N/A N/A N/A 10 sec for

authentication
9 s for first 10

matches 190 ms per image

Overall
accuracy N/A 99.60% accuracy

on LFW dataset N/A 90.00% accuracy
on own dataset

91.33% average
accuracy on

Face-95 dataset

95.00% true accept
rate on own video

stream dataset

5. Conclusions

This paper presented the design and implementation of a multimodal, stand-alone access control
system based on human face recognition at a distance with RFID technology to provide a user-friendly
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interface and more secure access control. First, the implementation issues of stand-alone access control
systems based on human face recognition were introduced as follows: (1) lack of computational
resources, (2) the requirement of active user cooperation, and (3) sensitivity to illumination changes. To
manage these implementation issues, a fast and lightweight face recognition approach was proposed,
which consists of a face and eyes detection step and a face recognition step. For the face and eyes
detection, this paper adopted the LBP-AdaBoost approach that is fast and robust to illumination changes.

The proposed method could detect the face and eyes of various image sizes at a distance in
a way that made the system more user-friendly. The system combined Gaussian derivative filters
with LBP histograms for face representation, which is lightweight and invariant to complicated
illumination changes and background compared with the Gabor-LBP-based facial features. The
proposed system achieved a true acceptance rate of 95.0%, with a false acceptance rate of just 0.0%,
and an average processing speed of 5.26 fps regarding newly collected facial images and video datasets
in an indoor environment.
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