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Abstract

Background: There is consensus that early childhood lead exposure causes adverse cognitive 

and behavioral effects, even at blood lead levels (BLL) below 5 μg/dL. What has not been 

established is to what extent the effects of childhood lead exposure persist across grades.

Objective: To measure the effects of early childhood lead exposure (BLL 1-10 μg/dL) on 

educational performance from grades 3-8; to determine if effects in lower grades persist as a child 

progresses through school; and if so, to characterize the pattern of persistence.

Methods: We examine data from 560,624 children living in North Carolina between 2000-2012 

with a BLL ≤ 10 μg/dL measured between age 0-5 years. Children are matched to their 

standardized math and reading scores for grades 3-8, creating an unbalanced panel of 2,344,358 

student-year observations. We use socio-economic, demographic, and school information along 

with matching techniques to control for confounding effects.

Results: We find that early childhood exposure to low lead levels caused persistent deficits in 

educational performance across grades. In each grade (3-8), children with higher blood lead levels 

had, on average, lower percentile scores in both math and reading than children with lower blood 

lead levels. In our primary model, we find that children with BLL = 5 μg/dL in early childhood 

ranked 0.90 – 1.20 (1.35 – 1.55) percentiles lower than children with BLL ≤ 1 μg/dL on math 

(reading) tests during grades 3-8. As children progressed through school, the average percentile 

deficit in their test scores remained stable.

Conclusions: Our study shows that the adverse effects of early childhood exposure to low lead 

levels persist through early adolescence, and that the magnitude of the test-score percentile deficit 

remains steady between grades 3-8.
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Introduction

Children are exposed to lead through a variety of sources, including lead paint, consumer 

products, and contaminated soil and water. While environmental policy has drastically 

reduced lead emissions from 1970 levels (U.S. EPA (2013)), many children in the United 

States continue to exhibit elevated blood lead levels (BLLs). The Flint, Michigan, drinking 

water crisis of 2014 was a stark reminder that lead exposure poses an ongoing threat.

There is consensus that childhood lead exposure leads to adverse health outcomes, including 

cognitive and behavioral deficits (Aizer et al. (2018); Bellinger et al. (1992); US EPA 

(2013); Evens et al. (2015); Lanphear et al. (2005); Magzamen et al. (2015); NTP (2012); 

Pocock et al. (1994); Reyes (2015a, 2015b)). What is less well understood is the persistence 

of the adverse effects, particularly at low BLLs, and whether the effects attenuate (or 

amplify) as children age. The first recorded case of lead poisoning in children was in 1892. 

The prevailing wisdom at that time was that if “the child recovered from the acute phase [of 

poisoning], no lasting effects would occur” (Needleman (1989)). In the 1940s, it was shown 

that children who survived acute lead poisoning continued to have significantly elevated lead 

levels and damage to their central nervous systems (Needleman (1989)).

Early studies on the effects of lead on children focused on IQ and the Bayley Mental 

Development Index for infants. These are small-sample studies of populations exposed to 

much higher mean or peak lead levels than are typically observed in today’s child population 

(BLL > 10 μg/dL). These studies uniformly found statistically significant, negative 

correlations between early childhood lead exposure and IQ (Pocock et al. (1994)). These 

studies did not address the issue of persistence in the effects of lead.

More recent literature has used individual-level blood lead surveillance data and public-

school records to examine the relationship between BLL and achievement test scores. 

Achievement test scores reflect both intelligence and traits such as conscientiousness and 

neuroticism -- characteristics strongly associated with later-in-life outcomes (Borghans et al. 

(2016)). These studies found that higher BLLs led to significantly lower test scores in grades 

3 or 4, but they did not examine the effects in later grades (Miranda et al. (2007, 2009); 

Magzamen et al. (2013, 2015), Evens et al. (2015); Aizer et al. (2018)). Zhang et al. (2013) 

and Elliott et al. (2015) found a positive relationship between less-than-proficient test scores 

and lead levels in grades 3, 5, and 8, but neither study examined the heterogeneity of lead’s 

effect by grade.

A few longitudinal studies have examined the effects of lead on longer-term outcomes using 

small cohorts. Studies examining IQ or education found negative correlations between early 

childhood lead levels and cognitive performance measured in later childhood or adulthood 

(Bellinger et al. 1992; Mazumdar et al. 2011, Needleman et al. 1990; Reuben et al. 2017). 

Studies examining other neurological or behavioral effects, including reduced brain volume 
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and criminal arrests, also found long-term effects from early life lead exposure (Cecil et al. 

2008; Brubaker et al 2009; Brubaker et al. 2010; Wright et al. 2008). While these studies 

showed that adverse effects of early childhood lead exposure persisted later in life, most did 

not quantitatively assess how the magnitude of those effects varied by age or grade. The 

exception is Reuben et al. (2017), who examined the change in IQ from childhood to 

adulthood among adults in New Zealand whose blood lead levels were measured as children. 

They observed that higher childhood BLL was associated with steeper declines in IQ from 

childhood to adulthood, but this analysis did not adjust for covariates.

In this study we estimate the effects of early childhood, low-level lead exposure on 

standardized test performance across grades in both math and reading. We study a cohort 

similar to that used by Miranda et al. (2007, 2009), but we follow those students every year 

from third through eighth grade, which allows us to estimate the change in trajectory of 

student performance across grades due to lead exposure. Our dependent variable is the 

student’s percentile score on their achievement test, which allows us to compare a student’s 

performance relative to their cohort. We focus our attention on two groups of children -- 

those with a maximum BLL ≤ 10 μg/dL and those with a maximum BLL ≤ 5 μg/dL. We use 

coarsened exact matching to construct “treatment” (children with BLL 2-5 μg/dL) and 

“control” (children with BLL ≤ 1 μg/dL) groups that have a better distributional balance 

across multiple covariates, improving our ability to identify the effect of BLL on test 

performance. Our research contributes to the literature in three ways: it adds to the 

understanding of how low-level BLL (≤ 5 μg/dL) affects a student’s performance relative to 

their cohort; it addresses how BLL affects the educational trajectory as children age; and it 

helps to inform the development of public policies to minimize the adverse effects of lead 

exposure.

Methods

Data and Summary Statistics

This research was conducted under an agreement with the Children’s Environmental Health 

Initiative (CEHI) at Rice University according to a research protocol approved by the 

University’s Institutional Review Board. CEHI provided BLL data from the North Carolina 

Childhood Lead Poisoning Prevention Program surveillance registry. As in most other states, 

BLL testing in North Carolina is not universal. North Carolina state guidelines require 

screening for all children participating in Medicaid and recommend screening for other “at-

risk” children (Dickman & Safer Chemicals, Healthy Families, 2017). Approximately 

20-30% of one- and two-year old children were screened in North Carolina in the 1990s and 

2000s (North Carolina Childhood Lead Poisoning Prevention Program, 2004). We do not 

formally address selection bias in this study, but it is an important caveat when interpreting 

our results.

Our sample begins with all children who were born between 1990 and 2004 and were 

screened for lead in North Carolina at least once during age 0–5. The dataset includes 

information about the child’s birthdate, Medicaid enrollment status, BLL test date, blood 

sample method (capillary, venous), and the name of the laboratory responsible for the blood 

analysis. The majority of children in the registry were screened between the ages of 1-2 
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years using capillary (“finger prick”) blood samples analyzed by the North Carolina State 

Laboratory of Public Health. While capillary samples are easier to collect than venous 

samples, they are also more susceptible to contamination (Caldwell et al. 2017) and 

therefore may be a potential source of measurement error in statistical analysis. 

Approximately 95% of the observed blood lead measurements were from capillary blood 

samples, whereas the other 5% were from venous blood samples. Venous samples are 

typically used as follow-up tests to confirm an elevated BLL.1

While the majority of the children that we study had only a single blood lead test during 

childhood (61%), for children with multiple BLL tests, we take the geometric mean over all 

tests to create a single BLL measure. Aizer et al. (2018) found that using the child’s 

geometric mean BLL resulted in a larger estimated effect of BLL on test scores than a single 

random draw, suggesting that utilizing information from multiple tests can reduce 

attenuation bias coming from measurement error in a single BLL test result. North 

Carolina’s Department of Health and Human Services recognizes a level of detection for 

blood lead at 1 μg/dL, so children with a reported BLL below the level of detection were 

assigned a value of 1 μg/dL in the state database. Children with a BLL at or below the 

detectable level make up the counterfactual group in the empirical analysis. All other BLL 

values were rounded to the nearest integer by the North Carolina Childhood Lead Poisoning 

Prevention Program before being entered into the surveillance registry.

For our analysis, we study two overlapping groups of children. The first consists of children 

who had a maximum BLL ≤ 10 μg/dL between the ages of 0-5 (96% of the lead surveillance 

registry). This sample allows us to examine the effects of early childhood lead exposure by 

grade across a wide range of relevant exposure levels. We also consider a second, more 

restrictive sub-sample of children, who had a maximum BLL ≤ 5 μg/dL (74% of the 

surveillance registry). This smaller sample allows us to examine the effects of low-level BLL 

on a more representative sample of children, as it is estimated that less than 1% of the US 

population age 1 through 5 had a BLL exceeding 5 μg/dL as of 2013-2016.2

Our focus on these two groups helps isolate the impact of lead exposure from the potentially 

confounding effect of medical interventions that may be implemented for children with an 

elevated BLL. During our study period, North Carolina guidelines indicated that children 

who presented a BLL > 10 μg/dL must be re-tested.3 If their second test confirmed a BLL > 

10 μg/dL then the child was eligible for a medical intervention. Finally, if the child also was 

determined to be living in housing with lead poisoning hazards, remediation would be 

required.4 During our sample period, children with a BLL ≥ 10 μg/dL were considered by 

the Centers for Disease Control and Prevention (CDC) as having a blood lead “level of 

concern.” For those children, the CDC recommended interventions such as conducting an 

environmental assessment and a detailed personal history to determine potential sources of 

lead exposure; providing nutritional counseling to increase calcium and iron intake to 

remove lead from the body; bowel decontamination if necessary; and oral chelation therapy 

1http://slph.ncpublichealth.com/hemachem/childhoodleadtesting.asp
2https://www.childstats.gov/americaschildren/tables/phy4a.asp.
3http://www.alamance-nc.com/envhealth/wp-content/uploads/sites/9/2013/10/Lead.pdf
4https://www.ncleg.gov/EnactedLegislation/Statutes/PDF/BySection/Chapter_130A/GS_130A-131.9C.pdf
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in the case of dangerously high levels of lead. On the other hand, children having a BLL 

below the “level of concern,” were not eligible for any medical intervention.5 By examining 

samples of children with BLL values of 10 μg/dL and 5 μg/dL and below, we minimize this 

potentially confounding issue.

Every year, children living in North Carolina in grades 3 through 8 are administered end-of-

grade standardized achievement tests in reading and mathematics. The North Carolina 

Education Research Data Center (NCERDC) maintains a database with records of those test 

scores. The NCERDC database also contains information on each student’s school, grade, 

gender, race, age, and enrollment status in a free/reduced-price school lunch. (Students 

enrolled in free/reduced-price lunch are hereafter referred to as “economically 

disadvantaged.”) We link students to their test results for each grade from 2000-2012, 

creating an unbalanced panel. We then merge the test-score panel data to the birth certificate 

records, provided by CEHI from the North Carolina Department of Health and Human 

Services, based on a common child identifier created by CEHI for matching purposes. The 

common child identifier used to link birth certificate records to student test records was 

created using combinations of first, middle, and last name, date of birth, and school district/

county. Finally, we link the BLL data to the birth certificate records as well, which allows us 

to link the BLL data to our test-score panel data set. The birth certificate data includes the 

child’s birthdate and race, as well as the mother’s age, marital status, and mother’s self-

reported smoking and alcohol use during pregnancy.6 Parental education level at child’s 

birth is also available from the birth certificate records.

Table 1 presents summary statistics for the different samples we study. The primary sample 

of children (BLL ≤ 10 μg/dL) consists of 560,624 students from 2000-2012, which 

represents 53% of the lead surveillance registry with BLL ≤ 10 μg/dL, and 2,344,358 

student-year observations.7 The average BLL in the sample is 3.66 μg/dL. Based primarily 

on birth certificate information, students in this sample are 51% non-Hispanic White, 36% 

non-Hispanic Black, and 13% all other racial or ethnic groups. Consistent with the focus on 

screening at-risk children, 44% of the sample were enrolled in Medicaid at the time of the 

blood test, 59% were considered economically disadvantaged, and 43% were born to single 

mothers. 2,211 public schools are represented in the dataset. Our restricted sample of 

children with BLL ≤ 5 μg/dL includes 438,604 children with a mean BLL of 2.89 μg/dL.

In Figure 1 we plot the average student performance deficit in math and reading in grade 3 

and grade 8 by BLL for our main sample (BLL ≤ 10 μg/dL). For our measure of 

performance, we transform raw test scores into percentile ranks relative to the population of 

5https://www.cdc.gov/nceh/lead/acclpp/blood_lead_levels.htm
6Out of 1.6 million births from 1990-2004, the smoking variable is missing for 0.16% of the births, and the alcohol consumption 
variable is missing for 0.38% of the births. There is a high rate of overlap between missing observations.
7Approximately 1,036,500 children born between 1990 and 2004 were screened for BLL by age 5. We were able to link 78% of these 
children (approximately 806,900) to the North Carolina birth certificate data. We then were able to link roughly 585,400 to the North 
Carolina education database. Approximately 17,000 students had missing test score data, so they had to be dropped from our sample. 
24,100 students who we matched to the North Carolina education database had at least one BLL measurement > 10 μg/dL, so were 
also dropped from our sample. Finally, roughly 1,800 students were missing one or more of the following control variables: gender, 
economically disadvantaged status, mother’s marital status, smoking and/or drinking behavior during pregnancy. This led us to a final 
sample of 560,624 students (approximately 54% of the lead surveillance registry) and 2,344,358 student-year observations in North 
Carolina between 2000-2012.
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all students in the state of North Carolina who took the exam in a given grade and year. The 

“percentile deficit” is the average percentile difference between the various “treatment” 

groups (students with an early childhood BLL = 2, 3, 4, …, 10 μg/dL) and the “control” 

group (students with an early childhood BLL ≤ 1 μg/dL). First, we observe that on average, 

children with higher BLLs rank lower than children with lower BLLs. In addition, between 

third and eighth grade, children with higher BLLs do not improve their performance relative 

to their cohort. In math, a child with a BLL of 5 μg/dL has an average score that is 6.90 

percentiles lower than a student with a BLL ≤ 1 μg/dL in third grade. By eighth grade, this 

differential worsens; a student with a BLL of 5 μg/dL is 8.40 percentiles below a student 

with a BLL ≤ 1 μg/dL. A similar pattern exists for reading test scores. The data suggest a 

strong pattern of persistence in the effects of lead exposure on school performance. These 

associations, however, are not adjusted for any student, mother, or school characteristics that 

may confound the relationship between BLL and achievement test scores.

Empirical Model

While Figure 1 suggests there may be a persistent pattern of educational deficit across 

grades associated with early childhood lead exposure, it does not provide evidence of a 

causal relationship or rule out the possibility that the observed pattern is due to spurious 

correlations. To better understand the effect of lead exposure on school performance across 

grades after controlling for other confounders, we start by estimating the following model:

Percentile Scoreigst = β0 + dgstθ + Xitβ1 + BLLiγ1 + εigst (1)

where Percentile Scoreigst is the math or reading percentile score for student i, in grade g, at 

school s, in year t, normalized based on the population of all North Carolina students in 

grade g and year t. BLL enters as a vector of dummy variables denoting each BLL integer 

above 1 μg/dL, so the effect of BLL on percentile rank is allowed to vary non-linearly across 

BLLs. The omitted category in the vector BLL is students who had a BLL coded as 1 μg/dL 

in the data. This value reflects students whose early childhood lead exposure was at or below 

the detectable limit. This group serves as the counterfactual in our analysis.

Control variables include a vector of characteristics of both the student and the student’s 

parents (Xit). In particular, we account for the child’s sex, race/ethnicity, economically 

disadvantaged status, Medicaid enrollment, birth month, and age upon entry to grade 3. We 

also include the mother’s age, marital status, and self-reported alcohol and tobacco use and 

parents’ highest educational achievement at the time of the child’s birth. Mother’s age enters 

our model as a set of two binary variables to allow for a potential nonlinear relationship with 

school performance. For parental education, we include separate dummy variables indicating 

whether at least one parent had some high school, had graduated high school, had some 

college, or had graduated college at the time of the child’s birth, relative to the omitted 

category of having attended no more than middle school.

It would be ideal to include a vector of dummy variables representing the specific classroom 

each student was assigned to in a given year to control for teacher quality, peer effects, 

geographic effects, and other factors affecting educational quality which could affect a 

student’s test performance. Our dataset, however, lacks complete data on class or teacher 
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assignments, so we instead include a vector of dummy variables (dgst) representing each 

unique school, grade, and year combination.8 The coefficient vector θ includes separate 

intercepts for each school-grade-year combination. The use of school-grade-year dummy 

variables allows us to estimate the effect of BLL on a student’s percentile rank relative to the 

average student in the same grade, same school, and during that same year, minimizing the 

effect of potential confounders.

To explore whether the educational trajectory of children across grades is affected 

differentially by early childhood lead exposure, we interact BLLi with the variable Gg, 

where Gg = 0 if the student is in third grade, 1 if the student is in fourth grade, through Gg = 

5 if the student is in eighth grade.

The model we estimate is:

Percentile Scoreigst = β0 + dgstθ + Xitβ1 + (Xit × Gg)β2 + BLLiγ1 + (BLLi
× Gg)γ2 + εigst

(2)

The parameter vector γ2 captures how educational outcomes change with grade at different 

levels of early childhood lead exposure. The interaction term Xit × Gg is included to allow 

the effects of other covariates to vary by grade, thus controlling for how educational 

outcomes evolve with other characteristics, irrespective of any lead exposure, as a student 

progresses through the grade levels.

Finally, to consider whether the effects of early childhood lead exposure across grades vary 

by race or socioeconomic characteristics, we add interaction terms between BLLi, Gg, and a 

subset of variables found in Xit, which we denote Zit:

Percentile Scoreigst = β0 + dgstθ + Xitβ1 + (Xit × Gg)β2 + BLLiγ1 + (BLLi
× Gg)γ2

+ (BLLi × Zit)γ3 + (BLLi × Zit × Gg)γ4 + εigst .
(3)

β1 captures the effect of various child and mother characteristics on percentile rank, and γ3 

allows the effect of BLL on percentile rank to differ across a subset of these characteristics. 

Of particular interest, estimates of γ4 shed light on whether the effects of early childhood 

lead exposure by grade are consistent across different racial and socioeconomic groups.

Coarsened Exact Matching

To interpret the coefficients on BLL as the causal effect on student test performance, the 

coefficient estimators must be unbiased. For this to be the case, there cannot be unobserved 

factors that directly affect percentile rank that are both correlated with early childhood BLL 

and are omitted from equations (1), (2), and (3). Such unobserved factors could include 

8For example, this vector includes a dummy variable set equal to one for all test scores from 3rd graders attending Charlotte Lab 
School in 2002 and set equal to zero for all other observations in the database. There are 70,548 unique school-grade-year 
combinations represented among the full sample of 2,344,358 student-year observations with BLL ≤ 10 μg/dL.

Shadbegian et al. Page 7

Environ Res. Author manuscript; available in PMC 2020 November 01.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



innate student ability, wellness, educational or medical interventions, and a supportive 

household.

We cannot completely eliminate the potential for bias due to such unobserved factors. 

However, we attempt to minimize any possible bias by pre-processing our data using a 

many-to-one coarsened exact matching (CEM) algorithm that is designed to better balance 

the distributions between the “treated” and “control” groups simultaneously for a set of 

observables that may affect percentile rank (Iacus, King & Porro, 2012). One motivation for 

this matching procedure is that if these two sub-samples are more balanced in terms of 

observed characteristics, then they may be more comparable in terms of unobserved 

characteristics as well. In addition, CEM provides a way to control non-parametrically for 

the observed characteristics.

CEM allows us to focus our analysis only on students who are similar in terms of key 

observed characteristics that may affect school outcomes (other than the variable of interest, 

BLL), thereby isolating the effect of BLL on percentile rank from that of other 

characteristics which may, themselves, be correlated with BLL. Balance is achieved by 

“pruning” observations in the control and treatment groups that cannot be matched and by 

using weights to balance the number of observations in each stratum across the groups. We 

define the “treated” group as students who had a geometric mean BLL > 1 μg/dL in early 

childhood. The “control” group again consists of children with a BLL ≤ 1 μg/dL. We use 1 

μg/dL as our cutoff as this is the stated minimum level of detection by the State Laboratory 

(Miranda et al. 2007). Because the treatment variable is dichotomous, we focus on the ≤ 5 

μg/dL sample for the CEM analysis. Children with higher BLLs become increasingly less 

comparable to the control group of children with BLL ≤ 1 μg/dL.9

The covariates we use for exact matching are race/ethnicity (non-Hispanic White, non-

Hispanic Black, and all other categories); economically disadvantaged status; mother’s 

marital status at the time of birth (married or unmarried); enrollment in Medicaid at the time 

of the blood lead test; and school-grade-year indicators. We also match on mother’s age at 

the time of the child’s birth coarsened into three bins (less than 20 years, 20-29 years, and 30 

years and above), and parent’s highest educational attainment at the time of the child’s birth 

coarsened into three bins (middle school or some high school; high school graduate; some 

college or college graduate). CEM allows us to compare, for example, the average percentile 

rank of Black eighth graders in 2012, attending a particular middle school, whose mothers 

were married, had at least one parent who attended college, did not receive Medicaid, were 

not economically disadvantaged, and had an early childhood mean BLL ≤ 1 μg/dL, against 

students with those exact same characteristics except that they had an early childhood mean 

BLL > 1 μg/dL. If the treatment and control groups are exactly balanced on the covariates 

and there are no additional confounders correlated with both lead levels and test scores, the 

effect can be estimated as the difference in the sample means across the two groups.

9Our results remain consistent when we use CEM matching on the full sample but are not as precisely estimated due to pruning of 
observations at higher levels of BLL. Results are available in the Supplemental Material, Table S1.
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A measure of multidimensional imbalance, L1, is given by the rectilinear distance between 

the k-dimensional histogram, where k is determined by the number of covariates used in the 

matching algorithm (Iacus, King and Porro, 2012). The L1 parameter is bounded by 0 and 1 

where an L1 value of 0 indicates perfect global balance, up to the level of “coarsening” or 

bin size, and an L1 value of 1 indicates complete separation. Prior to matching, we calculate 

the multidimensional imbalance measure on the sample of students with a BLL ≤ 5 μg/dL 

(1,789,255 student-year observations) as L1 = 0.30. After CEM, we retain 387,794 student-

year observations and have an imbalance measure of L1 = 0.07. This is a reduction in the 

multidimensional imbalance of 77%. (The univariate imbalance parameters also show 

improved balance for each variable, except gender, where the imbalance measure increases 

slightly, from 0.020 to 0.025.)

The matching procedure shifts the distribution of BLL in the final matched sample such that 

a greater proportion of retained observations range from 1 to 3 μg/dL than in the unmatched 

sample. This results in a decline in mean BLL from 2.9 μg/dL in the full ≤ 5 μg/dL sample to 

2.5 μg/dL in the matched ≤ 5 μg/dL sample. We also observe a reduction in both the fraction 

of non-Hispanic Black and economically disadvantaged children in the matched sample. 

This is not unexpected as children in these categories are more likely to exhibit higher BLL 

values.

Results

Our estimates for equation (1) are summarized in Table 2. The dependent variable for the 

first three models is the student’s percentile score in math. The dependent variable for the 

second three models is the percentile score in reading. We estimate cluster-robust standard 

errors for each model, where the cluster is at the student level to allow errors to be correlated 

across tests for a given student, but not between students.10 Models 1 and 4 in Table 2 are 

based on the full sample of students who had their BLL tested in early childhood and had a 

maximum BLL ≤ 10 μg/dL. In the subsequent models in Table 2, we examine the robustness 

of the results when focusing on students with a maximum BLL ≤ 5 μg/dL (models 2 and 5 in 

Table 2), a range that is more consistent with the current population of children. To further 

examine the robustness of our results, we use coarsened exact matching to obtain a more 

balanced sample across the control and treated groups within the BLL ≤ 5 μg/dL sample in 

terms of key covariates that may be correlated with both percentile rank and BLL (models 3 

and 6 in Table 2).

Blood Lead Level

The coefficients corresponding to the BLL vector capture the effect of a student’s early 

childhood lead exposure on test performance.11 The estimates in models 1 and 4 in Table 2 

are negative for both math and reading and are generally increasing in magnitude as BLL 

increases. Focusing on the effects of BLL on math percentile in model 1, we find that 

10We also estimated the models with cluster-robust standard errors clustered at the school level, which would allow errors to be 
correlated across all students within a given school. The results are similar with both clustering approaches.
11While we use the geometric mean BLL in the models presented here, our results are robust to using either the maximum BLL or 
most recent BLL test result. Results are available in the Supplemental Material, Tables S2 and S3.
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students with a BLL of 2 μg/dL rank 0.25 (p < 0.05) percentiles lower than students in the 

control group with BLL ≤ 1 μg/dL. This negative effect increases at higher lead levels, 

suggesting a 2.17 percentile decrement (p < 0.001) among students with an early childhood 

BLL of 10 μg/dL. These trends, also depicted in Figure 2, are similar when examining 

reading score percentiles. While these effects are statistically significant, they are 

substantially smaller in magnitude than the unadjusted associations between BLL and 

percentile rank shown in Figure 1, which confirms the importance of controlling for student 

and school characteristics in our regressions.

Focusing attention on the full and matched samples of children with BLL ≤ 5 μg/dL, we see 

that the results are extremely similar. This suggests that the estimates based on the full 

sample with BLL ≤ 10 μg/dL are not driven by unobserved heterogeneity across students 

with different BLLs, and lends greater support to a causal interpretation of the effects of 

early childhood lead exposure on later math and reading test performance.

Child and Mother Characteristics

Our models include control variables that are known to be important determinants of test 

scores and educational achievement (see for example, Jaffee et al. 2001; Sirin 2005). These 

variables describe the student at the time of birth or when in grade g, and the mother (or 

mother and father) at the time of the student’s birth. The corresponding coefficient estimates 

are shown in Table 2. In general, we find that percentile rankings in math are higher for 

males than for females, but the reverse is true for reading. Non-Hispanic Black students 

(Black) tend to score lower while non-Hispanic White students (White) tend to score higher 

relative to all other racial/ethnic groups. Students who are economically disadvantaged 

(EconDisadv) and enrolled in Medicaid also score lower than students who are economically 

better off. These findings are consistent with the education literature, which finds both the 

existence and persistence of an achievement gap for children who are minorities and are 

economically disadvantaged (Ladson-Billings, 2006). Children who are older in grade 3 

(Age in 3rd Grade) also do less well, possibly reflecting selection bias driven by parent 

choice on when to enter a child into school.12

We find that children born to unmarried mothers and mothers who self-report smoking while 

pregnant have significantly lower percentile ranks on reading and math tests. The mother’s 

self-reported alcohol consumption during pregnancy (Alcohol Use) is positively associated 

with percentile rank, though this result is not statistically significant in all models. Parents’ 

highest level of education at the time of the child’s birth is also a strong predictor of a 

child’s test performance, with higher parental educational achievement associated with 

higher percentile scores. Mother’s age at the time of the child’s birth is a significant 

predictor of percentile rank, but in an unexpected way: children born to mothers age 21-29 

perform less well than children with either younger or older mothers. This counter-intuitive 

result likely occurs because mother’s age at the time of the child’s birth is highly correlated 

with the parents’ highest level of educational achievement.

12While not reported in Table 2, we find that students with late-fall birthdays—who tended to the be oldest students in their grade 
based on North Carolina school cutoff dates during our study period—outperformed relatively younger students, consistent with 
previous literature (e.g., Kinard and Reinherz 1986; Bell and Daniels 1990).
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Putting our core results in context, we find that having a BLL of 5 μg/dL (relative to ≤ 1 

μg/dL) leads to a similar percentile decline as that associated with having a mother who is 

unmarried at the time of the student’s birth (0.40 to 1.13 percentiles) or being enrolled in 

Medicaid (1.32 to 1.62 percentiles). On the other hand, this same elevated BLL has a less 

negative effect than that associated with being Black, being economically disadvantaged, or 

having parents with no high school education (relative to having at least one parent attend 

college), each of which are associated with losses of more than 5 percentiles.

Persistence of the Effects of Lead Across Grades

Equation (2) allows us to investigate whether the effects of early childhood lead exposure 

change as children progress through grade school and into adolescence. This is done by 

including interaction terms between BLL and the scalar variable, grade. All other control 

variables included in the model (except birth month) also are interacted with grade to allow 

the effects of the covariates on test score percentiles to vary. Table 3 presents the coefficients 

of primary interest, but the full set of coefficient estimates are available in the Supplemental 

Material, Table S4.

The series of coefficient estimates corresponding to BLL in Table 3 captures the average 

effect of early childhood BLL on third grade test score percentiles. The set of coefficients on 

the BLL×grade interaction terms capture the average incremental change in test score 

percentile for each successive grade in school from fourth through eighth grade at each BLL. 

For example, based on model 1 in Table 3, we find a 0.90 decrement (p < 0.001) in math 

percentile among students in third grade with a BLL of 5 μg/dL, relative to students with a 

BLL ≤ 1 μg/dL. The estimate corresponding to BLL 5 × grade, while negative, is small 

relative to the direct effect of BLL 5 and is not significantly different from zero. Summing 

the coefficient on BLL 5 with the coefficient on BLL 5 × grade multiplied by five gives the 

percentile deficit for eighth graders. We find a 1.2 decrement (p < 0.001) in math percentile 

for eighth graders with a BLL of 5 μg/dL, relative to students with a BLL ≤ 1 μg/dL. Effects 

on reading test scores are similar: model 4 in Table 3 shows a 1.35 decrement (p < 0.001) in 

percentile scores for third graders and a 1.55 decrement (p < 0.001) in percentile scores for 

eighth graders with a BLL of 5 μg/dL, relative to students with a BLL ≤ 1 μg/dL.

Our results indicate that the negative effect of early childhood lead exposure on test 

performance not only persists through subsequent grades, but it also does not attenuate as 

students reach higher grades. This suggests that children, on average, do not counteract the 

negative effects of low-level early childhood lead exposure on their educational 

performance. We find similar results at different BLL levels and across both math and 

reading test performance. This result is robust to models considering more homogenous 

samples (models 2, 3, 5, and 6 in Table 3), and as shown in Supplemental Material, Table 

S7, it is robust to using raw test scores or continuous z-scores in lieu of percentiles. Joint 

significance tests confirm the grade x BLL effects are not jointly significantly different from 

zero in all models (p = 0.22 - 0.55).

Figure 3 illustrates the results from models 1 and 4. The left panel shows the math percentile 

decrement with respect to BLL, and the right panel shows the same for reading. The dashed 

lines show this relationship among students in third grade and demonstrates the downward 
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trend previously noted. Percentile ranks continue to decrease as BLL increases, reaching a 

decrement of approximately two to three percentiles among students with an early childhood 

exposure level of 10 μg/dL. The solid black line depicts the same relationship among eighth 

grade students. The two lines are quite close together, and the 95% confidence intervals 

overlap, suggesting that the negative effect of early childhood lead exposure on percentile 

rank persists as a child progresses through eighth grade.

Persistence of Lead Impacts Across Grades for Different Racial and Socioeconomic 
Groups

There is some question about whether the effects of lead on health and cognitive outcomes 

vary by race or socioeconomic status (Bellinger 2008; Hicken et al. 2013; Ferrie et al. 2015). 

The evidence on this issue is mixed for achievement test scores. For example, Magzamen et 

al. (2015) did not find statistically significant racial or socioeconomic heterogeneity in the 

effect of lead on test scores, but Evens et al. (2015) did find significant interactions, with a 

larger adverse effect of lead found in non-Hispanic White children than non-Hispanic Black 

or Hispanic children. In addition, Miranda et al. (2009) and Magzamen et al. (2015) found 

that BLL had different effects across the distribution of achievement test scores when using 

quantile regressions. We expand on this literature by examining whether there is 

heterogeneity in the impacts of early childhood lead exposure by grade across racial and 

socioeconomic groups.

We estimate equation (3), which includes interaction terms between the vector BLL with 

dummy variables identifying students who are Black (Black), economically disadvantaged 

(EconDisadv), and enrolled in Medicaid (Medicaid). The BLL and grade interaction terms 

are also interacted with these racial and socioeconomic group variables.

Figure 4 illustrates the results of interest, estimated using the full sample of students with 

BLL ≤ 10 μg/dL.13 The top panel in Figure 4 displays the test score percentile decrement 

with respect to BLL for math (left) and reading (right) for the reference group, which 

includes students identified as a race/ethnicity other than non-Hispanic Black, not listed as 

economically disadvantaged, and not enrolled in Medicaid. Lower panels display the results 

for each of the respective racial and socioeconomic groups. Compared to the previous model 

results, the confidence intervals are wider due to the additional parameter estimates through 

the added interaction terms, and there are some non-monotonicities introduced at higher 

BLLs. These results may occur due to the smaller number of observations in the higher BLL 

range when examining individual groups separately. Nonetheless, among all racial and 

socioeconomic groups, we see a similar downward trend showing that increases in BLL lead 

to a larger decrement in percentile rank. The one possible exception is among students 

enrolled in Medicaid. Here the trend is relatively flat, and not statistically different from zero 

at some BLL levels, though the confidence intervals are relatively wide among this group.

Across all groups depicted in Figure 4, we see that the relationship between the test score 

percentile decrement and BLL is similar among third and eighth grade students. In other 

words, even when examining these racial and socio-economic groups separately, we still find 

13Full regression results available in Table S5 of the appendix.
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a persistent negative effect of early childhood lead exposure on percentile rank as a student 

progresses into adolescence.

Discussion

While a substantial body of literature suggests that early childhood lead exposure has 

adverse effects on cognitive development, much of the evidence is based on tests taken by 

students in early grade school or is based on relatively high BLLs that are no longer 

representative of the population of children in the United States. To develop effective 

policies to protect the health and welfare of children, it is of fundamental importance to 

build knowledge on how low-level lead exposure affects a child’s long-term well-being.

This study is the first to examine how the effect of BLL on achievement test performance 

varies as a child progresses from early grade school into secondary school. We find strong 

evidence that even low-level lead exposure during early childhood has a negative effect on 

children’s school performance, and this effect is persistent from third through eighth grade. 

These findings are robust across different models and samples. Our findings are also 

consistent when restricting the BLL≤ 10 μg/dL and BLL≤ 5 μg/dL samples to a balanced 

panel that only includes students whose test scores are available for every year from third to 

eighth grade. In addition, our results are robust to alternative outcome variables, including a 

continuous variable measuring the raw test score, a continuous z-score, and a dichotomous 

variable representing whether the student’s score met the cutoff for “proficient” set by the 

North Carolina Department of Public Instruction, Division of Accountability.14

To better understand our results, it is useful to examine them in the context of other 

education effects. There are two bodies of literature that we consider. The first involves 

educational outcomes for children who belong to a minority group or who are economically 

disadvantaged. The disparities in standardized test scores between Black, Hispanic, and 

economically disadvantaged students vis-à-vis White students are well documented, and are 

persistent. (See Ladson-Billings (2006) for an overview of the “achievement gap” literature.) 

Our results are consistent with those findings. We see that students who are Black or in other 

non-White racial/ethnic groups, or are economically disadvantaged, have significantly lower 

test-scores than their White, not-economically disadvantaged counterparts, independent of 

blood lead level. Once we take into account these students’ early childhood BLLs, we find 

that academic performance is even further depressed, exacerbating the test-score gap. If 

children who belong to a minority group or who are economically disadvantaged are more 

likely to be exposed to lead in early childhood, they will be put at an even greater 

disadvantage.

The second body of literature that is of interest examines education effects of school 

improvement policies, such as reducing classroom size and improving teacher quality. In 

general, studies support the fact that students enjoy short-term benefits from placement in 

small classrooms (Kreuger (1999); Kreuger and Whitmore (2001); Schanzenbach (2006)) as 

well as classrooms with higher teacher quality (Chetty et al (2014)). 15 More specifically, 

14Results available in the Supplemental Material, Tables S6 through S8.
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Kreuger and Whitmore (2001) found that small classrooms increased averages test scores by 

0.15 standard deviations. We find that for a child with an early childhood BLL of 5 μg/dL, 

their math and reading test scores are depressed by approximately 0.04 standard deviations. 

But unlike our findings, class-size studies uniformly show that the benefits from being in a 

small classroom decay rapidly once students are placed in regular-sized classrooms. Kreuger 

and Whitmore (2001) found that within the first year of moving to a regular-sized classroom, 

the percentile improvement in test scores declined by ½ to ¼ of its previous magnitude and 

continued to decline as the child progressed through at least grade 8. A similar pattern exists 

for teacher quality: while there are short term benefits for student test scores, studies have 

found that their effects on test scores rapidly “fade out” in subsequent grades (Chetty et al. 

(2014)).16 Our findings show that the effects of childhood exposure to lead do not dissipate 

– at best, they remain stable from grades 3-8. As Kreuger and Whitmore (2001) noted, even 

if the percentile gap over time is stable, the educational difference in higher grades may well 

be larger than in lower grades: so children exposed to lead are likely to be worse off as they 

progress through the school system.

Our study has some limitations. First, the sample of children screened for lead in North 

Carolina does not represent a random draw from the child population, which could lead to 

selection bias. Even though we have a large cohort of students in North Carolina, this cohort 

may not be representative of the general population of the state (or the United States). The 

children captured in the North Carolina Lead Prevention Surveillance Program are more 

likely to be economically disadvantaged or otherwise “at risk” for lead exposure. Although 

selection bias may affect inference to the broader population of children, it does not affect 

our within-sample estimates of how early childhood lead exposure impacts educational 

performance.

Second, most blood lead testing occurs when children are age 1 to 2 years, and there are 

very few observations in the lead surveillance data beyond five years. Although we examine 

the educational deficit from early childhood BLL, it is possible that continued low-level lead 

exposure into early adolescence partly explains our results. This is an important caveat to 

keep in mind when interpreting our findings. Given the paucity of data on BLL in older 

children and the positive association between past lead exposure and later BLL, 

disentangling the effects of early-childhood from later-childhood lead exposure is beyond 

the scope of our study, but this is an important area for future research.17

Third, we do not have reliable information on parent occupation or household income, 

which are known to be important determinants of a child’s school performance and may well 

be correlated with a child’s BLL. If so, this may introduce bias into our results, despite the 

inclusion of numerous observed covariates, including dummy variables denoting each grade 

at a particular school and in a specific year, and parents’ education level. The robustness of 

our results to exact covariate matching, where the control and treatment groups are balanced 

15A notable exception to this literature is Hoxby (2000).
16There have been other types of documented benefits to both types of school improvement policies, however, such as higher wages 
and greater numbers of students taking college entrance exams.
17The half-life of lead in blood is roughly 30 days. Lead is also stored in bone, however, and can be released from bone to blood over 
much longer time spans (U.S. EPA 2013).
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in terms of observed covariates (and presumably unobserved covariates as well) lends to the 

credibility of our findings.

Despite these limitations, our study advances the understanding of how low-level lead 

exposure in early childhood affects school performance across grades. First, by following 

the same children from third to eighth grade, we show that the negative effects of BLL on 

test performance in early grades persist in later grades. Second, by adopting a coarsened 

exact matching algorithm, we create balanced distributions between the “treated” (BLL > 1 

μg/dL) and “control” (BLL ≤ 1 μg/dL) groups on a set of observables that may affect 

percentile rank non-parametrically, thereby reducing omitted variable bias and aiding our 

ability to interpret the results as a causal association. Due to the observational nature of our 

study, however, we cannot rule out the possibility that there are additional unobserved 

factors correlated with both lead levels and test scores that could bias our estimates. 

However, the robustness of our results across the matched sample and the full samples (BLL 

≤ 10 μg/dL and ≤ 5 μg/dL) strengthens our argument that we have captured a causal 

relationship between early childhood lead exposure and educational deficits that persists 

across grades. Finally, by focusing on samples of children with low-level lead exposure 

(BLL ≤ 10 μg/dL and ≤ 5 μg/dL), our work provides information on some of the benefits of 

reducing early childhood lead exposure among the current population of children.

Conclusions

This is the first paper to examine how the effect of low-level early childhood lead exposure 

on educational performance varies as a child progresses from early grade school into 

secondary school. Our analysis demonstrates that even low BLLs have a measurable and 

persistent effect on a child’s educational performance in math and reading across grades. 

Furthermore, we find that the magnitude of the educational deficit is stable between grades 

3-8. This indicates that physical maturation and additional schooling are not sufficient to 

offset the damage caused by early childhood exposure. Our results highlight the benefits to 

children’s educational performance from preventing early childhood exposure to lead.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Association between BLL and Math and Reading Test Score Percentiles at 3rd and 8th 

grade (without controlling for confounders)
Note: Dotted lines denote 95% confidence intervals. For 3rd and 8th graders in the main 

sample (BLL ≤ 10 μg/dL), the above plots display the average percentile decrement in math 

and reading test scores that is associated with each BLL.
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Figure 2. Effect of BLL on Math and Reading Test Score Percentiles (Average Across All 
Grades)
Note: Dotted lines denote 95% confidence interval. Left panel displays impact of BLL on 

end-of-grade math test score percentiles (from column 1 in Table 2). Right panel displays 

impact of BLL on end-of-grade reading test score percentiles (from column 4 in Table 2).
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Figure 3. Effect of BLL on Math and Reading Test Score Percentiles at 3rd and 8th grade
Note: Dotted lines denote 95% confidence interval. Left panel displays impact of BLL on 

end-of-grade math test score percentiles (from column 1 in Table 3). Right panel displays 

impact of BLL on end-of-grade reading test score percentiles (from column 4 in Table 3).
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Figure 4. Effect of BLL on Math and Reading Test Score Percentiles at 3rd and 8th Grade across 
Race and Socioeconomic Groups
Note: Dotted lines denote 95% confidence interval. Left panel displays impact of BLL on 

end-of-grade math test score percentiles (from column 1 in Table S5 in the appendix). Right 

panel displays impact of BLL on end-of-grade reading test score percentiles (from column 2 

in Table S5 in the appendix).
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