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Abstract

Linkage disequilibrium (LD) is used to infer evolutionary history, to identify genomic regions under selection, and to
dissect the relationship between genotype and phenotype. In each case, we require accurate estimates of LD statistics
from sequencing data. Unphased data present a challenge because multilocus haplotypes cannot be inferred exactly.
Widely used estimators for the common statistics r2 and D2 exhibit large and variable upward biases that complicate
interpretation and comparison across cohorts. Here, we show how to find unbiased estimators for a wide range of two-
locus statistics, including D2, for both single and multiple randomly mating populations. These unbiased statistics are
particularly well suited to estimate effective population sizes from unlinked loci in small populations. We develop a
simple inference pipeline and use it to refine estimates of recent effective population sizes of the threatened Channel
Island Fox populations.
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Introduction
Linkage disequilibrium (LD), the statistical association of
alleles between two loci, is informative about evolutionary
and biological processes. Patterns of LD are used to infer
past demographic events, identify regions under selection,
estimate the landscape of recombination across the genome,
and discover genes associated with biomedical and pheno-
typic traits. These analyses require accurate and efficient es-
timation of LD statistics from genome sequencing data.

LD is typically given as the covariance or correlation of
alleles between pairs of loci. Estimating this covariance from
data is simplest when we directly observe haplotypes (in hap-
loid or phased diploid sequencing), in which case we know
which alleles co-occur on the same haplotype. However, most
whole-genome sequencing of diploids is unphased, leading to
ambiguity about the co-segregation of alleles at each locus.

The statistical foundation for computing LD statistics from
unphased data that was developed in the 1970s (Hill 1974;
Cockerham and Weir 1977; Weir 1979) has led to widely used
approaches for their estimation from modern sequencing
data (Excoffier and Slatkin 1995; Rogers and Huff 2009).
Although these methods provide accurate estimates for the
covariance and correlation (D and r), they do not extend to
other two-locus statistics, and they result in biased estimates
of r2 (Waples 2006). This bias confounds interpretation of r2

decay curves.
Here, we extend an approach for estimating the covariance

D introduced by Weir (1979) to find unbiased estimators for a
large set of two-locus statistics including D2 and r2

D. We show
that these estimators are accurate for the low-order LD sta-
tistics used in demographic and evolutionary inferences. We
provide an estimator for r2 with improved qualitative and

quantitative behavior over the widely used approach of
Rogers and Huff (2009), although it remains a biased estima-
tor. In general, for analyses sensitive to biases in the estimates
of statistics, we recommend the use of D2 or r2

D over r2.
As a concrete use case, we consider estimating recent

effective population size (Ne) from observed LD between
unlinked loci, a common analysis when population sizes
are small, typical in conservation and domestication ge-
nomics studies. Waples (2006) suggested combining an
empirical bias correction for estimates of r2 with an ap-
proximate theoretical result from Weir and Hill (1980) to
estimate Ne.

We propose an alternative approach to estimate Ne using
our unbiased estimator for r2

D that avoids many of the
assumptions and biases associated with r2 estimation. We
first derive expectations for r2

D and related statistics between
unlinked loci and compare estimates of Ne based on r2

D and r2

using simulated data. As an application, we reanalyze se-
quencing data from Funk et al. (2016) to estimate recent
Ne in the threatened Channel Island fox populations using
r2

D. Our estimates are overall consistent with those reported
in Funk et al. (2016) using the approach from Waples (2006),
with the exception of the San Nicolas Island population
where the r2

D-based estimate of 13.8 individuals is over 6
times larger than the r2-based estimate of 2.1 individuals.
Our analysis further suggests population structure or recent
gene flow into island fox populations.

Linkage Disequilibrium Statistics
Throughout, we assume that each locus carries two alleles: A/
a at the left locus and B/b at the right locus. We think of A
and B as the derived alleles, although the expectations of
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statistics that we consider here are unchanged if alleles are
randomly labeled instead. Allele A has frequency p in the
population (allele a has frequency 1� p), and B has fre-
quency q (b has frequency 1� q). There are four possible
two-locus haplotypes, AB, Ab, aB, and ab, whose frequencies
sum to 1.

For two loci, LD is typically given by the covariance or
correlation of alleles co-occurring on a haplotype (Lewontin
and Kojima 1960; Hill and Robertson 1968). The covariance is
denoted D:

D ¼ CovðA; BÞ ¼ fAB � pq

¼ fABfab � fAbfaB;

and the correlation is denoted r:

r ¼ Dffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð1� pÞqð1� qÞ

p :

Squared covariances (D2) and correlations (r2) see
wide use in genome-wide association studies to thin
data for reducing correlation between single nucleotide
polymorphisms (SNPs) and to characterize local levels of
LD (Speed et al. 2012). Although the average of D across
sites is 0 under broad conditions, averages of D2 and r2

are nonzero and informative about demography: the
magnitude and decay rate of r2 between pairs of loci at
varying distances reflect population sizes over a range of
time periods (Tenesa et al. 2007; Hollenbeck et al. 2016),
whereas recent admixture results in elevated long-range
LD (Moorjani et al. 2011; Loh et al. 2013).

To measure the scale and decay rate of LD statistics, we
compute averages over many pairs of loci across the genome.
To build theoretical predictions for these observations, we
take expectations over multiple realizations of the evolution-
ary process.

Sources of LD
When computing statistics from data, we typically work with
a subset of samples from the full population. Our measure-
ment of any two-locus statistic reflects both the underlying
population-level quantity and details of the sampling process.
Here, we assume that we randomly sample n diploid individ-
uals from well-mixed, randomly mating population(s), so that
contributions from the sampling process is entirely due to the
given sample sizes.

To learn about the evolutionary and biological processes
that shape LD, we are interested in population-level statistics.
A major focus of this manuscript is to remove bias due to
finite sample sizes when estimating LD. Below, we describe an
approach to obtain unbiased estimators for any two-locus
statistic that can be expressed as a polynomial in two-locus
haplotype frequencies. However, r2 is a ratio, complicating its
estimation from data.

In addition, it is difficult to compute model predictions for
population-level r2 even in simple evolutionary scenarios.
Here, we consider a related measure proposed by Ohta and
Kimura (1969),

r2
D ¼

E½D2�
E½pð1� pÞqð1� qÞ� :

r2
D is not as commonly used or reported, although we can

compute its expectation from models (Hill and Robertson
1968) and estimate it from data (as described in this study).
Recent studies have demonstrated that r2

D can be used to
infer population size history (Rogers 2014) and, along with a
set of related statistics, allows for powerful inference of multi-
population demography and population structure (Ragsdale
and Gravel 2019).

Finally, researchers typically exclude monomorphic sites
when computing averages of r2 or D2 from data. This is in
contrast to theoretical approximations for these quantities,
which take expectations over all pairs of monomorphic and
segregating loci (Hill and Robertson 1968; Ohta and Kimura
1969; Song and Song 2007), further complicating comparisons
between observation and theoretical prediction. Using r2

D
instead of E½r2� or E½D2� avoids this issue, because including
pairs where one or both loci are monomorphic does not
change the expectation of r2

D.

Results

Estimating LD from Data
In the Materials and Methods section, we present an ap-
proach to compute unbiased estimators for a large family
of two-locus statistics, using either phased or unphased
data. This includes commonly used statistics, such as D and
D2, the additional statistics in the Hill–Robertson system
(Dð1� 2pÞð1� 2qÞ and pð1� pÞqð1� qÞ, which we de-
note Dz and p2, respectively), and, in general, any statistic that
can be expressed as a polynomial in haplotype frequencies
(f’s) or in terms of p, q, and D. We use this same approach to
find unbiased estimators for cross-population LD statistics,
which were recently used to infer multi-population demo-
graphic history (Ragsdale and Gravel 2019).

For a given pair of loci i and j, we use our estimators for D2

and p2 to propose an estimator for r2 between loci i and j
from unphased data, which we denote r2

�i;j ¼ bD2
i;j= bp2 i;j

(hereafter dropping the subscripts i, j). r2
� is a biased estimator

for r2. However, it performs favorably in comparison with the
common approach of first computingbr and simply squaring
the result, as in Rogers and Huff (2009) (fig. 1).

To explore the performance of this estimator, we first sim-
ulated varying diploid sample sizes with direct multinomial
sampling from known haplotype frequencies (fig. 1A–D and
supplementary fig. S1, Supplementary Material online).
Estimates of D2 were unbiased as expected, and r2

� quickly
converged to the true r2 as sample size increases. Standard
errors of our estimator were nearly indistinguishable from
Rogers and Huff (2009) (supplementary fig. S2,
Supplementary Material online), and the variances of estima-
tors for statistics in the Hill–Robertson system decayed with
sample size as � 1

n2 (supplementary fig. S3, Supplementary
Material online).

Second, we simulated 1 Mb segments of chromosomes
under steady-state demography (using msprime
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[Kelleher et al. 2016]) to estimate r2 decay curves using both
approaches. Our estimator was invariant to phasing and dis-
played the proper decay properties in the large recombina-
tion distance limit (fig. 2A). With increasing distance between
SNPs, r2

� approached zero as expected for population-level
LD, whereas the Rogers–Huff r2 estimates converged to pos-
itive values as expected in a finite sample (Waples 2006).

Finally, we computed the decay of r2 across five population
from the 1000 Genomes Project Consortium et al. (2015)
(fig. 2B–D). r2

� shows distinct qualitative behavior across pop-
ulations, with recently admixed populations exhibiting long-
range LD. However, r2 as estimated using the Rogers–Huff
approach displayed long-range LD in every population, con-
founding the signal of admixture in the shape of r2 decay
curves.

Estimating Ne from LD between Unlinked Loci
Observed LD between unlinked markers is widely used to
estimate the effective population size (Ne) in small popula-
tions (Hill 1981; Waples 1991, 2006; Waples and Do 2008; Do
et al. 2014). This estimate of Ne reflects the effective number
of breeding individuals over the last one to several genera-
tions, since LD between unlinked loci is expected to decay
rapidly over just a handful of generations. Analytic solutions
forE½r2� are unavailable, although a classical result uses a ratio
of expectations to approximate

E½r2� � c2 þ ð1� cÞ2

2Necð2� cÞ (1)

for a randomly mating population, where c is the per
generation recombination probability between two loci

(eq. 3 in Weir and Hill [1980] due to Avery [1978]). For un-
linked loci (c ¼ 1/2), equation (1) reduces to E½r2� ¼ 1=3Ne

(for a monogamous mating system, E½r2� ¼ 2=3Ne [Weir
and Hill 1980]). Rearranging this equation provides an esti-
mate for Ne if we can estimate r2 from data.

As pointed out by Waples (2006), failing to account for
sample size bias when estimating r2 from data leads to strong
downward biases in bNe. Waples (2006) used Burrows’ estimatorbr2
D (again following Weir and Hill [1980]) and used simulations

to empirically estimate the bias in the estimate due to finite
sample size (given by VarðbrDÞ). Subtracting this estimated bias
frombr2

D gives an empirically corrected estimate for r2,

br2
W � br2

D � VarðbrDÞ: (2)

Waples showed that br2
W removes much of the bias in Ne

estimates (fig. 1C and D). Bulik-Sullivan et al. (2015) used a
similar bias correction (via the d-method) that appears to
perform comparably with br2

W (supplementary fig. S1,
Supplementary Material online).

Predicting �2
D for Unlinked and Linked Loci

The Avery equation (1) was derived under the assumption
that the expectation of ratios equals the ratio of expectation.
By working directly with r2

D, we therefore save both a theo-
retical approximation and the need for empirical finite
sample bias correction. In a random-mating diploid
Wright–Fisher model with c ¼ 1/2, we show in the
Supplementary data that E½r2

D� ¼ 1=3Ne, as suggested by
the Avery equation, whereas monogamy leads to
E½r2

D� ¼ 2=3Ne. A similar approach allows us to show that
E½Dð1� 2pÞð1� 2qÞ�, another statistic from the

A B

C D

E

FIG. 1. LD estimation. (A, B) Computing D2 by taking the square of the covariance overestimates the true value, whereas our approach is unbiased
for any sample size. (C, D) Similarly, computing r2 by estimating r and squaring it (here, via the Rogers–Huff approach, r2

RH, and the Excoffier–Slatkin
EM approach, r2

EM) overestimates the true value. Our approach, r2
� , does not overestimate the population-level r2, although all estimators show

variable biases depending on the underlying haplotype frequencies in the population. Comparisons with additional estimators and frequency
configurations are in supplementary figure S1, Supplementary Material online. (E) Pairwise comparison of r2 for 500 neighboring SNPs in
chromosome 22 in CHB from 1000 Genomes Project Consortium et al. (2015). r2

� (top) and r2
RH (bottom) are strongly correlated, although r2

�
displays less spurious background noise.
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Hill–Robertson system, is approximately zero for unlinked loci
(its leading-order term is of order 1=N2

e).
In the opposite limit, for tightly linked loci (c� 1), Ohta

and Kimura (1969) used a diffusion approach to approximate

r2
D �

1

3þ 4Nec� 2=ð2:5þ NecÞ
: (3)

This approximation is accurate at demographic equilib-
rium for both large and small population sizes with low mu-
tation rates and recombination distances (fig. 3A).
Rearranging equation (3) then provides a direct estimate
for Ne for any given recombination distance (fig. 3B), though
the approximation is only valid for c� 1.

Comparison of Methods for EstimatingNe Using Simulated

Data
We simulated data with effective population sizes Ne ¼ 100
and 400 using fwdpy11 (Thornton 2014) to compare the
performance of inferring bNe from NeEstimator version 2.1
(Do et al. 2014), which uses br2

W, and from r2
D (see Materials

and Methods for simulation details). Generally, using our
estimators for r2

D provided less biased estimates of Ne (fig. 4
and supplementary fig. S4, Supplementary Material online).
This was the case even when data was filtered by minor allele
frequency (MAF), a strategy recommended to reduce bias for

NeEstimator but that is not required or desirable in the r2
D

approach. Estimates from br2
W had smaller variance when fil-

tering by MAF, but higher mean squared error (MSE) for
larger sample sizes (supplementary table S1, Supplementary
Material online). In practice, NeEstimator provides estimates
with different cutoff choices and lets the user decide on the
best cutoff choice.

We also explored the effect of inbreeding on estimates of
r2

D and rDz ¼ E½Dz�=E½p2� using simulated data.
Unsurprisingly, higher rates of inbreeding lead to higher val-
ues of r2

D between unlinked loci, which results in deflated
estimates of Ne (supplementary fig. S5A and B, Supplementary
Material online). rDz is robust to inbreeding, with expected
value near zero even for large selfing rates (supplementary fig.
S5C, Supplementary Material online). Although rDz cannot
be used to provide an estimate for Ne (as its expectation is
zero), it could instead be used to distinguish between differ-
ent violations of model assumptions: if we also measure rDz

to be significantly elevated above zero, it might suggest pop-
ulation structure or recent migration into the population
(Ragsdale and Gravel 2019).

The Effective Population Sizes of Island Foxes
The island foxes (Urocyon littoralis) that inhabit the Channel
Islands of California have recently experienced severe

A B

C D

FIG. 2. Decay of r2 with distance. (A) Comparison between our estimator (r2
�) and Rogers and Huff (2009) (RH) under steady-state demography.

The r2
�-curve displays the appropriate decay behavior and is invariant to phasing, whereas the RH estimator gives upward biased r2, and this general

approach is sensitive to phasing. Estimates were computed from 1,000 1 Mb replicate simulations with constant mutation and recombination
rates (each 2� 10�8 per base per generation) for n¼ 50 sampled diploids using msprime (Kelleher et al. 2016). (B) r2

RH Decay for five populations in
1000 Genomes Project Consortium et al. (2015), including two putatively admixed American populations (MXL and PUR), computed from
intergenic regions. (C) r2

� Decay for the same populations. (D) Decay of r2
D computed as

PcD2=
P bp2 . The r2

RH decay curves show excess long-
range LD in each population, whereas our estimator qualitatively differentiates between populations.
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population declines due to predation and disease. For this
reason they have been closely studied to inform protection
and management decisions. More generally, they provide an
exemplary system to study the genetic diversity and evolu-
tionary history of endangered island populations (Wayne
et al. 1991; Coonan et al. 2010; Funk et al. 2016; Robinson
et al. 2016, 2018). A recent study aimed to disentangle the
roles of demography (including sharp reductions in popula-
tion size, resulting in strong genetic drift) and differential se-
lection in shaping the genetics of island foxes across the six
Channel Islands (Funk et al. 2016). In addition to genetic

analyses based on single-site statistics, Funk et al. (2016)
used NeEstimator (Do et al. 2014) to infer recent bNe for
each of the island fox populations (reproduced in table 1).

Using the same 5,293 variable sites reported and analyzed
in Funk et al. (2016), we computed r2

D for each of the six
island fox populations to estimate Ne. Results using r2

D were
generally consistent with those computed in Funk et al.
(2016) using br2

W (table 1 and supplementary table S2,
Supplementary Material online). Perhaps most notably, the
San Nicolas Island population, which was previously inferred
to have the extremely small effective size of bNe � 2, was

A B

FIG. 3. Using r2
D to estimate Ne . (A) The approximation for r2

D due to Ohta and Kimura (1969) is accurate for both large and small sample sizes.
Here, we compare with the same simulations used in figure 2A for Ne ¼10,000 with sample size n¼ 50 and Ne¼ 500 with sample size n¼ 10. (B)
Using r2

D estimated from these same simulations and rearranging equation (3) provides an estimate for Ne for each recombination bin. The larger
variance for Ne ¼ 500 is due to the small sample size leading to noise in estimated r2

D .

A B

FIG. 4. Performance of Ne estimation on simulated data. We used fwdpy11 (Thornton 2014) to simulate genotype data for the given sample sizes
and Ne ¼ 100 (see Materials and Methods section). Although estimates of Ne using (A) r2

D had slightly larger variances than estimates using (B)
equations (1) and (2) (computed using NeEstimator [Do et al. 2014]), estimates from r2

D were unbiased when using all data and less biased when
filtering by MAF, resulting in lower MSE (supplementary table S1, Supplementary Material online).
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inferred to have bNe � 14. Although this size is still quite small
in contrast to mainland populations, it is more encouraging
from a conservation standpoint and similar to the effective
sizes inferred in other island fox populations.

We also estimated rDz for each population and found that
it was significantly elevated above zero in each population
(supplementary table S4, Supplementary Material online).
This suggests that some model assumptions are not being
met. From simulated data, neither inbreeding nor filtering by
MAF should result in elevated observed rDz (supplementary
figs. S5 and S6, Supplementary Material online). The discrep-
ancy could instead be caused by population substructure or
recent migration between populations. It may also be driven
by technical artifacts: we analyzed the data with the assump-
tion that the separate RAD contigs were effectively unlinked
(reads were not mapped to a reference genome). If some
contigs were in fact closely physically linked on chromosomes,
this could lead to larger LD statistics than expected for un-
linked loci.

Discussion
We presented estimators for a range of summary statistics of
LD, including Hill and Robertson’s D2, Dz, and p2, that ac-
count for both unphased data and finite sample sizes. Such
estimators readily extend to two-locus statistics involving
multiple populations, such as the covariance of D between
two populations. This work naturally complements inference
approaches that use LD, removing confounding from finite
sample sizes and allowing for direct comparisons with expect-
ations from evolutionary models (Loh et al. 2013; Rogers 2014;
Ragsdale and Gravel 2019). As an illustration, here we dem-
onstrated the use of our estimator for r2

D to infer recent Ne

from LD between unlinked loci (Waples 1991, 2006; Do et al.
2014).

Challenges of Estimating r2

We did not obtain an unbiased estimator for r2.
Computing estimates and expectations of ratios is chal-
lenging, and often intractable. One commonly used

approach to estimate r2 is to first compute br via an EM
algorithm (Excoffier and Slatkin 1995) or genotype corre-
lations (Rogers and Huff 2009) and then square the result.
Although we can compute unbiased estimators for r from
either phased or unphased data, this approach gives in-
flated estimates of r2 because it does not properly ac-
count for the variance in br . In general, the expectation
of a function of a random variable is not equal to the
function of its expectation:

r2 6¼ E½br2�:

For large enough sample sizes, this error will be practically
negligible, but for small to moderate sample sizes, the esti-
mates will be upwardly biased, sometimes drastically (figs. 1
and 2).

An alternative is to estimate D2 and p2 and compute their
ratio for each pair of loci. Given unbiased estimates of the
numerator bD2 and denominator bp2 , the ratio r2

� ¼ bD2= bp2

performs favorably to the Rogers–Huff approach (fig. 1C and
D) and displays the appropriate decay behavior in the large
recombination limit (fig. 2). It is still a biased estimator for r2,
however, since

r2 6¼ E

bD2bp2

" #
:

Even if we were given an adequate estimator for r2, obtain-
ing theoretical predictions for its value is very challenging
(McVean 2002; Song and Song 2007; Rogers 2014).

One approach to handle the finite sample bias for r2 is to
work directly with the finite-sample correlation, that is, the
expected r2 due to both population-level LD and LD in-
duced by sampling with sample size n. This may be esti-
mated by first solving for the expected two-locus sampling
distribution for a given sample size (Hudson 2001; Kamm
et al. 2016; Ragsdale and Gutenkunst 2017), and then using
this distribution to compute E½r2� for that sample size (as
proposed by Spence and Song [2019]). This approach allows
for a fair comparison between model expectations and r2 as
computed by the Rogers and Huff (2009) estimator.
However, methods for computing the full two-locus sam-
pling distribution are limited to a single population, prevent-
ing the exploration of models of admixture or migration
between multiple populations. Furthermore, because
finite-sample bias dominates signal for all but the shortest
recombination distances, using biased statistics hinders
comparisons across cohorts with differing sample sizes.
Working directly with r2

D-type statistics, for which we pre-
sented unbiased estimators and can compute theoretical
predictions for multiple populations under arbitrary demog-
raphy (Ragsdale and Gravel 2019), avoids these
complications.

Finally, Song and Song (2007) approximated E½r2� using a
series expansion of polynomials in p, q, and D. In theory, our
approach can provide unbiased estimators for each term in
that series, with accuracy determined by where we decide to
truncate the series expansion. Although this may be an

Table 1. Inferred Island Fox Effective Population Sizes.

Population bNe (95% CI)
Reported in

Funk et al. (2016)

bNe (95% CI)
Using r2

D

San Miguel I. 13.7 ð13:2� 14:1Þ 15.3 ð14:5� 16:1Þ
Santa Rosa I. 13.6 ð13:5� 13:7Þ 13.3 ð13:0� 13:6Þ
Santa Cruz I. 25.1 ð24:6� 25:5Þ 22.8 ð22:4� 23:3Þ
Santa Catalina I. 47.0 ð46:7� 47:4Þ 40.9 ð40:4� 41:6Þ
San Clemente I. 89.7 ð77:1� 107:0Þ 59.1 ð53:0� 66:7Þ
San Nicolas I. 2.1 ð2:0� 2:2Þ 13.8 ð13:0� 15:2Þ

NOTE.—LD between unlinked loci provides an estimate for the effective number of
(breeding) individuals in the previous several generations. Funk et al. (2016) used
NeEstimator (Do et al. 2014) to estimate Ne for six island fox populations in the
Channel Islands of California (left). We used this same data to compute Ne using our
estimator for r2

D instead (right), obtaining results largely consistent with Funk et al.
(2016). Notably, Funk et al. inferred an extremely small size on San Nicolas Island
(bNe � 2), whereas our estimate is somewhat larger and on the same order of magnitude
of bNe from other islands with small effective population sizes. A 90% confidence intervals
were computed via 200 resampled bootstrap replicates (see Materials and Methods).
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appealing strategy, it is likely to be quite computationally
expensive as Song and Song (2007) suggest that many terms
are needed for accurate estimation.

Tradeoffs and Limitations
Among caveats for the present approach, we find that the
unbiased estimators are analytically cumbersome. For exam-
ple, expanding E½D2� as a monomial series in genotype fre-
quencies results in nearly 100 terms. The algebra is
straightforward, but writing the estimator down by hand is
a tedious exercise, and we used symbolic computation to
simplify terms and avoid algebraic mistakes. This might ex-
plain why such estimators were not proposed for higher
orders than D in the foundational work of LD estimation in
1970s and 1980s.

Deriving and computing such estimators poses no prob-
lem for an efficiently written computer program that oper-
ates on observed genotype counts. The computational
complexity of counting two-locus genotypes from unphased
data and then computing r2

� from genotype counts reason-
ably scales to sample sizes in the tens or hundreds of thou-
sands, although our Python implementation remains slower
than computing the Pearson product-moment correlation
coefficients directly from the genotype matrix, as in the
Rogers–Huff approach (supplementary fig. S7,
Supplementary Material online). For very large sample sizes,
the bias in the Rogers–Huff estimator for r2 is negligible, and it
may be preferable to use their more straightforward
approach.

In computing sample variances from observations, there is
a familiar tension between minimizing bias and minimizing
the MSE of the estimate. For example, Bessel’s correction (the
typical n=n� 1 factor in the sample variance formula) pro-
vides an unbiased estimator of the sample variance, but often
results in a larger MSE. The maximum likelihood estimator for
r2 or D2 using the Excoffier and Slatkin (1995) approach
reflects this tradeoff, providing a smaller MSE but a biased
estimate of these quantities. In addition, it is worth noting
that like many unbiased estimators, both bD2 and r2

� can take
values outside the expected range of the corresponding sta-
tistics: for a given pair of loci r2

� may be slightly negative or
greater than one.

Throughout, we assumed populations to be randomly
mating. Under inbreeding, there are multiple interpretations
of D depending on whether we consider the covariance be-
tween two randomly drawn haplotypes from the population
or consider two haplotypes within the same diploid individual
(Cockerham and Weir 1977). Given the existence of theoret-
ical predictions for two-locus statistics in models with in-
breeding, deriving unbiased statistics for this scenario
appears a worthwhile goal for future work.

Materials and Methods

Notation
Variables without decoration represent quantities computed
as though we know the true population haplotype frequen-
cies. We use tildes to represent statistics estimated by taking

maximum likelihood estimates for allele frequencies from a
finite sample: for example, ~p ¼ nA=n; ~f AB ¼
nAB=n; ~p ¼ 2~pð1� ~pÞ. Hats represent unbiased estimates
of quantities: for example, bp ¼ n=ðn� 1Þ~p. f ’s denote hap-
lotype frequencies in the population, whereas g’s denote ge-
notype frequencies. Instead of writing gAABB; gAABb; . . . ; gaabb,
we use g1; . . . ; g9 as shorthand for genotype frequencies, and
n1; . . . ; n9 as shorthand for the associated observed genotype
counts (all nine genotypes are represented in table 2).

Estimating Statistics from Phased Data
Suppose that we observe haplotype counts
ðnAB; nAb; naB; nabÞ, with

P
nj ¼ n, for a given pair of loci.

Estimating LD in this case is straightforward. An unbiased
estimator for D is

bD ¼ n

n� 1

nAB

n

nab

n
� nAb

n

naB

n

� �
:

We interpret D ¼ fABfab � fAbfaB as the probability of
drawing two chromosomes from the population and observ-
ing haplotype AB in the first sample and ab in the second,
minus the probability of observing Ab followed by aB. This
intuition leads us to the same estimator bD:

bD ¼ 1

2

nAB

1

� �
nab

1

� �
n

2

� � � 1

2

nAb

1

� �
naB

1

� �
n

2

� �
¼ nAB

n

nab

n� 1
� nAb

n

naB

n� 1
:

In this same way we can find an unbiased estimator for any
two-locus statistic that can be expressed as a polynomial in
haplotype frequencies. For example, the variance of D is

D2 ¼ ðfABfab � fAbfaBÞ2

¼ f 2
ABf 2

ab þ f 2
Abf 2

aB � 2fABfAbfaBfab;

with each term being interpreted as the probability of sam-
pling the given ordered haplotype configuration in a sample
of size four (Strobeck and Morgan 1978; Hudson 1985). An
unbiased estimator for D2 is then

Table 2. Expected Genotype Frequencies under Random Mating.

BB Bb bb Exp. Freq.

AA g1 g2 g3 p2

Aa g4 g5 g6 2pð1� pÞ
aa g7 g8 g9 ð1� pÞ2

Exp. freq. q2 2qð1� qÞ ð1� qÞ2 1

Note.—For a given pair or loci, the nine possible two-locus genotypes have fre-
quencies which sum to 1. We assume random mating, so expected marginal geno-
type frequencies follow expected Hardy–Weinberg proportions. The gi’s are
shorthand for each of the possible observed two-locus genotypes. For example, a
diploid sample where we observe the left locus heterozygous as Aa and the right
locus homozygous bb contributes to frequency g6.
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bD2 ¼ 1

4

2; 0; 0; 2

� �
nAB

2

� �
nab

2

� �
n

4

� �

þ 1

4

0; 2; 2; 0

� �
nAb

2

� �
naB

2

� �
n

4

� �

� 2

4

1; 1; 1; 1

� �
nAB

1

� �
nAb

1

� �
naB

1

� �
nab

1

� �
n

4

� � :

The multinomial factors in front of each term account for
the number of distinct orderings of the sampled haplotypes.
We similarly find unbiased estimators for the other terms in
the Hill–Robertson system, Dð1� 2pÞð1� 2qÞ and pð1� pÞ
qð1� qÞ (shown in the Supplementary data), or any other
statistic that we compute from haplotype frequencies.

Estimating Statistics from Unphased Data
Estimating two-locus statistics from genotype data requires a
bit more work because the underlying haplotypes are ambig-
uous in a double heterozygote, AaBb. Our first step is to
derive expressions for D, p, and q in terms of the population
genotype frequencies ðg1; . . . ; g9Þ. We will then use these
expressions to derive unbiased estimates in terms of the finite
population sample genotype counts ðn1; . . . ; n9Þ.
Expressions for p and q in terms of genotype frequencies
can be read directly from table 2: p ¼ ðg1 þ g2 þ g3Þþ
1=2ðg4 þ g5 þ g6Þ, and q ¼ ðg1 þ g4 þ g7Þ þ 1=2ðg2 þ g5

þg8Þ. To obtain an estimate for D ¼ fABfab � fAbfaB, we
would like to have expressions for haplotype frequencies
such as fAB in terms of the gi.

We can write a naive estimate for fAB by reading from
table 2 and simply assuming that the double heterozygote
genotype g5 ¼ 2fABfab þ 2fAbfaB had equal probability of the
two possible phasing configurations:

xAB ¼ g1 þ
g2

2
þ g4

2
þ g5

4
:

The correct expression for fAB would replace g5=4 by the
probability of the correct haplotype configuration, fABfab. This
probability can be expressed as fABfab ¼ g5 þ 2D=4, so that

fAB ¼ g1 þ
g2

2
þ g4

2
þ g5 þ 2D

4
¼ xAB þ

D

2
:

We can obtain similar expressions for all the f		 and sub-
stitute in the expression for D to write

D ¼ fABfab � fAbfaB ¼ xABxab � xAbxaB þ
D

2
:

Rearranging provides an estimate of D in terms of naive
frequency estimates that depend only on genotypes:

D ¼ 2ðxABxab � xAbxaBÞ:

This expression for D is equal to Burrows’ “composite”
covariance measure of LD,

D ¼ 2g1 þ g2 þ g4 þ
1

2
g5

� �
� 2pq; (4)

as given in Weir (1979) and Weir (1996), page 126.
Given this expression for D, as well as p ¼ xAB þ xAb and

q ¼ xAB þ xaB, we can express higher-order moments as
function of genotype frequencies. The Hill–Robertson statis-
tics can be written as polynomials in the naive estimates

D2 ¼ 4ðxABxab � xAbxaBÞ2;

Dð1� 2pÞð1� 2qÞ ¼ 2ðxABxab � xAbxaBÞ

�ðxaB þ xab � xAB � xAbÞ

�ðxAb þ xab � xAB � xaBÞ;

and

pð1� pÞqð1� qÞ ¼ ðxAB þ xAbÞðxaB þ xabÞ

�ðxAB þ xaBÞðxAb þ xabÞ:

The next step is to obtain estimates from finite samples.
Any statistic S written as a polynomial in ðxAB; xAb; xaB; xabÞ
can be expanded as a monomial series in genotype frequen-
cies gj, j ¼ 1; . . . ; 9:

S ¼
X

i

ai

Y9

j¼1

g
kj;i

j;i :

Each term of the form ai

Y
g

kj;i

j;i can be interpreted as
the probability of drawing k ¼

P
kj diploid samples, and

observing the ordered configuration of k1 of type g1, k2 of
type g2, and so on. Then, from a diploid sample size of n 
 k,
this term has the unbiased estimator

ai
1

ki
k1;i; . . . ; k9;i

� � n1;i
k1;i

� �
	 	 	 n9;i

k9;i

� �
ni
ki

� � :

Summing over all terms gives us an unbiased estimator for S:

bS ¼X
i

ai
1

ki
k1;i; . . . ; k9;i

� � n1;i
k1;i

� �
	 	 	 n9;i

k9;i

� �
ni
ki

� � : (5)
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We can use this approach to derive an unbiased estimator
for D,

bD ¼ 1

nðn� 1Þ�

½ n1 þ
n2

2
þ n4

2
þ n5

4

� � n5

4
þ n6

2
þ n8

2
þ n9

� �
� n2

2
þ n3 þ

n5

4
þ n6

2

� � n4

2
þ n5

4
þ n7 þ

n8

2

� �
�;

which simplifies to the known Burrows estimator (Weir,
1979),

bD ¼ bD � n

n� 1
~D:

For statistics of higher order than D, such as those in the
Hill–Robertson system, expanding these statistics often
involves a large number of terms. In practice, we use symbolic
computation software to compute our estimators. In some
cases the estimators simplify into compact expressions, al-
though in other cases they may remain expansive.
However, even when there are many terms, the sums do
not consist of large terms of alternating sign, and so compu-
tation is stable. Mathematica notebooks are provided as sup-
plementary material, Supplementary Material online.

Simulations of Unlinked Loci
We used fwdpy11 (version 0.4.2) (Thornton 2014) to simulate
data with multiple chromosomes and variable population
sizes, sample sizes, selfing probabilities, and mutation and
recombination rates. To simulate m chromosomes each of
length L base pairs with recombination rate c per base pair,
we defined m segments of total recombination rate Lc each
separated by a binomial point probability of recombination of
0.5. The total mutation rate was then mLu, where u is the per-
base mutation rate. fwdpy11 allows the user to define any
selfing probability between 0 and 1.

For a given sample size of n diploids, we sampled from the
Ne simulated individuals without replacement and assumed
data from diploids was unphased. To compute r2

D and rDz,
we constructed genotype arrays and used the Parsing features
of moments.LD (Ragsdale and Gravel 2019), which makes use
of scikit-allel (version 1.2.0) (Miles and Harding 2016), to com-
pute statistics between each pair of chromosomes. We also
output the same data in the genepop format, the required
input format for NeEstimator (version 2.1) (Do et al. 2014), to
compute bNe using equations (1) and (2). For comparisons
with Do et al. (2014), we considered MAF cutoffs of 0.1 and
0.05, as well as using all SNPs.

Island Fox Data and Analysis
Data
We reanalyzed data for six Channel Island fox populations
studied by Funk et al. (2016) (with data deposited at
https://datadryad.org/resource/doi:10.5061/dryad.2kn1v; last
accessed November 19, 2019). In short, Funk et al. (2016)
used Restriction-site Associated DNA sequencing to generate
SNP data for between 18 and 46 individuals per population.

No reference genome for the island foxes was available at the
time, so they generated reference contigs from eight high
coverage individuals to map reads from the remaining 192
sequenced individuals. They excluded loci that were called in
fewer than half of all individuals and individuals with geno-
types for less than half of all loci, and kept only SNPs with
MAF greater than 0.1. They also reported only a single SNP
per contig, keeping the first SNP for each contig if more than
one SNP were observed.

Computing Statistics and Ne

The sequencing and filtering procedure from Funk et al.
(2016) resulted in 5,293 SNPs, which were made available at
the above URL. We converted the given genepop format to
VCF, and used scikit-allel (Miles and Harding 2016) to parse
the VCF and our software moments.LD to compute two-
locus statistics using the approach described in this paper.
We computed both r2

D and rDz for each of the six popula-
tions. Because contigs were not mapped to a reference ge-
nome, we did not know which chromosome each SNP was
on. For this analysis, we assumed all SNPs were unlinked.

We computed bNe ¼ 1=3r2
D for each population. To com-

pute bootstrapped 95% confidence intervals, we randomly
assigned the 5,293 SNPs to 20 groups and computed statistics

between all
20
2

� �
pairs of groups, and then sampled the

same number of subset pairs with replacement to compute
r2

D and rDz. We repeated this 200 times to estimate the
sampling distributions and the 2:5� 97:5% confidence inter-
vals for each.

Software
Code to compute two-locus statistics in the Hill–Robertson
system is packaged with our software moments.LD, a python
program that computes expected LD statistics with flexible
evolutionary models and performs likelihood-based demo-
graphic inference (https://bitbucket.org/simongravel/
moments). moments.LD also computes LD statistics from
genotype data or VCF files using the approach described in
this paper, for either phased or unphased data. Code used to
compute and simplify unbiased estimators and python
scripts to recreate analyses and figures in this manuscript
can be found at https://bitbucket.org/aragsdale/estimateld.

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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