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Abstract: In this work, we present conductometric gas sensors based on p-type calcium iron oxide
(CaFe2O4) nanoparticles. CaFe2O4 is a metal oxide (MOx) with a bandgap around 1.9 eV making it a
suitable candidate for visible light-activated gas sensors. Our gas sensors were tested under a reducing
gas (i.e., ethanol) by illuminating them with different light-emitting diode (LED) wavelengths (i.e.,
465–640 nm). Regardless of their inferior response compared to the thermally activated counterparts,
the developed sensors have shown their ability to detect ethanol down to 100 ppm in a reversible way
and solely with the energy provided by an LED. The highest response was reached using a blue LED
(465 nm) activation. Despite some responses found even in dark conditions, it was demonstrated that
upon illumination the recovery after the ethanol exposure was improved, showing that the energy
provided by the LEDs is sufficient to activate the desorption process between the ethanol and the
CaFe2O4 surface.

Keywords: calcium iron oxides; CaFe2O4; LED; metal oxides (MOx); p-type gas sensors; room
temperature; visible light activation

1. Introduction

Metal oxide semiconductors have shown the best characteristics in term of sensitivity, selectivity,
and stability in gas sensor technology. The development of new materials based on different methods,
techniques and working principles has been carried out to achieve the best performance. However, the
operating temperatures of metal oxide gas sensors are usually above 150 ◦C to activate the absorption
and desorption processes between the targeted gases and the surfaces of the materials [1–8]. The high
operating temperature is one of the main drawbacks of metal oxide-based gas sensors because it
ultimately results in high power consumption and undesirable long-term drift problems caused by
sintering effects in the metal oxide grain boundaries, yielding poor selectivity and stability [9,10].
Another disadvantage of the metal oxide-based gas sensors with the high operating temperature is
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related to safety as they are used in hazardous environments containing explosive or flammable gas
species [10]. There are plenty of methods that had been studied to reduce the power consumption of gas
sensors [11–17]. Recently, attempts to reduce high power consumption and working temperature needs
have been centered on the fabrication of more efficient heating systems, tuning of the active sensing
layer (surface functionalization or use of hybrid materials), the use of piezoelectric and triboelectric
effects [18,19], and the use of different energy sources (e.g., low-power ultraviolet light-emitting diode
(UV-LED) light) [20–25]. Among them, light-activated sensors have shown high potential [26,27]
because the possibility to drastically reduce the power consumption by scaling down the light sources
(LED platforms) or the possibility to use other technologies incompatible with heat-driven sensors
(i.e., functionalization) [28]. This has been supported by the fact that micro- and nano-LEDs have
been continuously researched and enhanced in terms of their performance and function for sensing
applications [29]. Moreover, a novel lift-off process has been recently introduced based on femtosecond
laser processing [30] to obtain free-standing LED chips that can be combined with sensing active
materials to develop such integrated micro-light plates [31,32].

During the last decades, although other types of sensor systems were introduced to the
environmental community like micro-/nanoelectromechanical gravimetric gas and nanoparticle
sensors [33–42], conductometric gas sensors were still in high demand and widely investigated
due to several advantages, e.g., low cost and flexibility in production, the large number of detectable
gases/possible application fields, simplicity in measurement setup, and the ease of miniaturization
for portable instruments [43]. However, most of the available conductometric sensing devices are
based on n-type materials (e.g., ZnO and SnO2) with wide band gap which needs UV light to activate
the absorption and desorption processes occurring in the surface of the sensing material [44–48].
The energy and efficiency of UV LEDs are far from being competitive compared to those of visible
LEDs. Therefore, materials with lower bandgaps that are suitable with the energy of visible light will
be desirable for gas sensor devices operated at room temperature.

In this paper, we present a new p-type metal oxide used as a sensing material, which has several
advantages over n-type counterpart [49], e.g., (1) ability to chemisorb the higher concentrations of oxygen
molecules, since the formation of a hole-accumulation layer (HAL) in p-type oxide semiconductors is
not limited by concentrations of free charge carriers [50]; (2) capability to promote selective oxidation of
various volatile organic compounds (VOCs) [51,52]; and (3) lower humidity dependence [53]. CaFe2O4

nanoparticles are p-type metal oxides with a band gap of ~1.9 eV making it a suitable candidate for
a visible light activated gas sensor. This material stands out as a potential candidate [7] and has a
suitable band gap [54–56] for visible light-driven gas sensors at room temperature. The experiments
were conducted under light irradiation with different wavelengths of visible light at room temperature.
Based on the results, light illumination effects during the experiment were proposed and investigated.
Applying various LED wavelengths had a significant contribution for the sensor behavior at the
absorption and desorption processes.

2. Materials and Methods

2.1. Materials

CaFe2O4 nanoparticles were produced by sol-gel auto-combustion method. Iron nitrate nonahydrate
(Fe(NO3)3·9H2O, >98%) and calcium nitrate tetrahydrate (Ca(NO3)2·4H2O, >99%) with the determined
metal ratio of 2:1 were dissolved in Milli-Q water. Then citric acid monohydrate (C6H8O7·H2O,
>99%) was added to the nitrate solution. The molar ratio of nitrates to citric acid was 1:1. For the
combustion reaction, citric acid carboxylate groups and metal nitrates act as reducing and oxidizing
agents, respectively. Ammonium hydroxide (NH4OH) solution of 26% in water was added to the
nitrate–citrate solution for improving the chelation of metal cations to citrates. To avoid unwanted results
and the completion of the chelation, a pH value of 7 was chosen, because citric acid is weakly dissociated
at low pH. All chemicals were purchased from Sigma–Aldrich and used as received without additional
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purification. The obtained solution was poured into a 100-cm3 corundum crucible and evaporated at
80 ◦C under magnetic stirring. The viscous gel was obtained by evaporating water. Moreover, the gel
was dried for 24 h at 60 ◦C to remove water residues. Then, the gel was heated to 250 ◦C to initiate a
self-sustaining combustion reaction and produce ferrite powder. An annealing process was conducted
to as-prepared powders at 850 ◦C for 3 h for use in the gas-sensitive active layers [7].

2.2. Material Characterization

The samples were analysed using X-ray powder diffraction (XRD) recorded at 2θ from 10◦ to
60◦ at a scanning rate of 1◦ min−1 using an Ultima+ X-ray diffractometer (Rigaku, Japan) with Cu
Kα radiation. An FEI Focused Ion Beam Scanning Electron Microscope (FIB-SEM) Helios Nanolab
600 equipped with Oxford Inca 350 and an X–Max 50 mm SDD-type detector were used to study
morphology and elemental composition of the as-prepared powders and sintered pellets.

2.3. Sensor Preparation

Gold-interdigitated electrodes (Au–IDE) on glass (MicruX Technology, Asturias, Spain) were used
as an electronic platform for measuring the electrical characteristics of the CaFe2O4. The IDE size
is (10 × 6 × 0.75 mm), with 90 pairs of electrodes having a pitch of 10 µm and a line width 10 µm.
CaFe2O4 nanoparticles were deposited on the surface of the Au–IDEs by drop casting, followed by
a spin-coating process. After setting the substrate on the sample holder of the spin coater, 5 µL of
CaFe2O4 nanoparticle 10 mg/l suspensions in ethylene glycol were deposited onto Au–IDE by a single
layer spin coater and spin-coated at 2000 rpm for 40 s in the air and dried on the hot plate at 90 ◦C for a
few minutes in order to evaporate the solvent. To attain the desired thickness of CaFe2O4 nanoparticles
film, the above procedure was repeated 3 times. Afterwards, an annealing process at 450 ◦C for 1 h
with a ramping level 5 ◦C/min was applied to fix the material onto the substrate and achieve good
electrical contact with the Au–IDEs.

2.4. Sensor Measurement

Gas-sensing experiments were conducted in a customized chamber of 200 mL in volume.
The gas flow was maintained stably at 200 mL/min during all the measurements. Reference gaseous
atmospheres were provided by independent mass flow controllers blending synthetic air (SA) and
ethanol (100 ppm in SA). To investigate CaFe2O4 optoelectronic properties by activating visible light,
resistance measurements were conducted under synthetic air flow with different LED wavelengths
(i.e., blue (465 nm), green (520 nm), yellow (590 nm), and red (640 nm)) and in dark condition (without
illumination). To determine the sensitivity of the CaFe2O4 sensors towards reducing gases, different
concentrations of ethanol vapors from the low to the high concentration (i.e., 10, 20, 30, 50, and 100 ppm)
were then applied to the chamber under LED irradiation. The response was defined as [(Rg − Ra)/Ra]
× 100%, where Ra and Rg are the electrical resistances of the sensor in the air and when exposed with
ethanol, respectively. The response and recovery times were defined as the times needed by a sensor to
achieve 90% of the total resistance change during the adsorption and desorption process, respectively.
All experiments were performed at room temperature.

3. Results and Discussion

3.1. Sensor Characterization Results

The sample as-prepared powder was tested using XRD as shown in Figure 1a. The mixture of
various compounds (e.g., CaCO3 (ICDD 04-007-4989), Fe2O3 (ICDD 00-002-1047), γ-Fe2O3 (ICDD
00-004-0755), and CaFe2O4 (ICDD 04-007-4989)) was formed during the auto-combustion reaction.
Nevertheless, the admixture of different compounds crystallizes to pure CaFe2O4 compound (Figure 1b)
after annealing at 850 ◦C for 3 h. The peak positions correspond well to the CaFe2O4-type orthorhombic
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unit cell (ICDD 04-007-4989) with lattice constants (Pnam) of (a) 9.160 Å, (b) 10.670 Å, and (c) 3.012 Å.
In this case, the observation of additional impurity phases was not conducted.Sensors 2020, 20, x 4 of 12 
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Figure 1. (a) X-ray diffraction (XRD) pattern of as–prepared and (b) annealed powders. Reproduced
with permission from [7].

A scanning electron microscope (SEM) image of an as-prepared powder cross-section of gas sensor
pellet annealed at 850 ◦C for 3 h shown in Figure 2a. The as-prepared sample powders are composed of
amorphous–like anisotropically shaped and closely packed grains. Figure 2b shows a surface sensor on
the Au-IDE after being prepared by the spin-coating process and annealed at 450 ◦C for 1 h. The porous
structures of interconnected grains were observed, while the grains keep their anisotropic shape.
The size of individual grains of smaller dimensions varies from 70 to 300 nm, while the length of
anisotropic nanoparticles is up to 650 nm. Particles are very well interconnected and fused together,
at the same time maintaining open structures for gas diffusion. Gas-accessible microstructures are
preferred for the high gas response. Due to the particle size and form, the coating result was non-uniform
on the IDEs. That was not the best result to make a uniform layer by a spin-coating process. However,
knowing the response to the ethanol vapors will make a good opportunity to introduce this material as
a potential candidate for p-type semiconductor which has a suitable bandgap for visible light-driven
gas sensors at room temperature. Another possible method to make the uniform layer on the IDE is by
the screen-printing process which is a widespread method in the industry of metal oxide gas sensors.
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Figure 2. (a) Scanning electron microscope (SEM) image of as-prepared powder cross-section of gas
sensor pellet annealed at 850 ◦C for 3 h and (b) CaFe2O4 nanoparticles on the gold-interdigitated
electrodes (Au–IDE) annealed at 450 ◦C for 1 h prepared by the spin coating process.

Figure 3a shows the optical adsorption UV–vis diffuse reflectance spectra (DRS) of CaFe2O4

nanoparticles and Tauc’s plot approach to determine the bandgap. It has confirmed the adsorption
spectra of CaFe2O4 in the visible light range (400–700 nm). The absorption peak at 425–455 nm
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(dashed green line/pattern) is due to the maximum adsorption spectra of CaFe2O4 nanoparticles.
The dashed red line is the linear fit absorption spectra which are leading to the optical bandgap value.
Its optical bandgap was determined to be ~1.9 eV according to the energy dependence relation of
(αhν)2 = A

(
hν− Eg

)
, where α and Eg are the absorption coefficient and the bandgap of CaFe2O4,

respectively. In addition, it can be seen that the material shows efficient visible light absorption spectra
and the bandgap of CaFe2O4. Figure 3b shows the optoelectronic properties of CaFe2O4 under LED
illumination with different wavelengths and intensities of visible light without gases. The responses
indicated that the visible light is suitable for this material because its energy is equal or larger than
the bandgap of CaFe2O4. It confirms that the response and recovery times depend on the energy and
intensity of LEDs. When the light is ON (photo-activated), electron-hole (e-h) pairs are generated in
CaFe2O4 and will interact with an oxygen molecule and pre-chemisorb oxygen ion in the surface, thus
facilitating their chemisorption and increasing the majority charge in CaFe2O4. This reaction will form
a hole-accumulation layer, leading to decrease in electrical resistance. On the contrary, when the light
is OFF the recombination process leads to an increase of the resistance to the initial value. According
to the results, visible light activation works properly in this material. Moreover, the density of majority
charge carriers is not only related to the intensity of visible light, but also to the absorption at this
particular energy. In thin nanoparticle films, higher absorption leads to a larger generation rate of e-h
pairs, and hence to a stronger impact on desorption.
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Figure 3. Optoelectronic characteristics of CaFe2O4 nanoparticles. (a) Ultraviolet–visible (UV–vis)
diffuse reflectance spectra (DRS) and Tauc’s plot (b) CaFe2O4 behavior with different wavelengths and
intensities (i.e., 5 and 10 mW/cm2) of light-emitting diode (LED) confirming that CaFe2O4 is suitable
with the visible light energy.

To investigate the sensitivity of the CaFe2O4 sensors towards reducing gases (i.e., ethanol),
different concentrations of ethanol vapors (i.e., from 10 to 100 ppm) were then applied to the chamber
under LED illumination. The first phenomenon to be noticed was that the resistance increased in the
presence of ethanol (reducing gas), confirming that CaFe2O4 is a p-type material. For comparison,
the experiments were also performed by introducing another reducing gas (i.e., NH3), as shown in
Figure S1 and the oxidizing gas (i.e., NO2) with different concentrations (Figure S2). Figure 4a–e shows
the dynamic response to different concentrations of ethanol under blue, green, yellow and red LED
illumination and also in dark condition (without illumination). The response comparison toward
different conditions is shown in Figure 4f. The blue LED had better sensitivity than the others because
of its energy. The higher energy and intensity are illuminated as the material increases the energetic
state and density of charge carrier on the surface, which influences the sensitivity while being exposed
to the target gas. The maximum response corresponding to adsorption spectra is 3.6% at 100 ppm
of ethanol for blue LED. In this case, the response and recovery times were ~18 min and ~41 min,
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respectively. The results obtained provide evidence that CaFe2O4 is a good candidate for visible
light-driven gas sensor because of its suitable bandgap (energy of visible light spectra is 1.9–2.7 eV).
The sensor responses from other LEDs are too slow compared to that from blue LED, which can be due
to their insufficient energy to detect gas.

Some responses were, however, also found in dark conditions. The sensitivity in dark conditions
(Figure 4f) indicates that p-type material has the ability to chemisorb the higher concentrations of
oxygen which react with gases since the formation of a hole-accumulation space charge layer is
not limited by concentrations of free charge carriers [50] despite no illumination of light. The light
irradiation has not only provided visible light activation on CaFe2O4, but also contributed to the
desorption process when the ethanol was removed from the chamber. The energy provided by LEDs is
sufficient to activate the desorption process between ethanol and the surface of CaFe2O4. In a dark
condition, there was no external energy to break the bonding of target gases on the surface sensing.
Thus, the sensor signal was not able to be well recovered. The maximum recovery ability in the
dark condition is 35% at 100 ppm of ethanol and the average recovery ability is less than 25% for all
concentrations of ethanol.
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3.2. Sensing Mechanism

The working principle of gas sensors based on metal oxide depends on chemisorbed oxygen
molecules on the surface (i.e., adsorption and desorption), which ionize into species such as O−2 , O− and
O2− by taking electrons near the surface of the metal oxides. Generally, ionosorption species of O−2 , O−

and O2− are known to be dominant at <150 ◦C, between 150 and 400 ◦C, and at >400 ◦C, respectively [57].
In case of a p-type metal oxide formed by an aggregate of nanoparticles the conduction mechanism
is governed by the grain boundaries. However, unlike in the case of n-type metal oxide materials
where the outer shell of the nanoparticles is “insulating” because of the ionosorption of oxygen species,
in p-type metal oxides the outer shell develops a hole accumulation layer (i.e., “conducting” layer).
Figure 5a shows the condition of CaFe2O4 when it is exposed to air in the dark, in which the adsorbed
oxygen molecules trap electrons from the valence band of CaFe2O4 and form pre-chemisorbed oxygen
ion

(
O−2

)
on the surface at room temperature [57,58]. Pre-chemisorbed O−2 on the surface results
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in the presence of a high-conductivity hole-accumulation region in the surface layer of CaFe2O4.
Consequently, the energy bands bend upward near the surface of CaFe2O4 (Figure 5d) in comparison
with the flat band situation before any surface reaction (Figure 5c) [59]. In the dark condition, the
pre-chemisorbed oxygen ion is thermally stable and difficult to remove from the surface of CaFe2O4 at
room temperature due to the large absorption energy [60]. The kinetic reaction can be explained as
follows [6]:

O2 (g) ↔ O2(ads) (1)

O2(ads) + e− ↔ O−2(ads) (2)

When the light illuminates the materials (Figure 5b), electrons are excited from the valence band to
conduction band and electron-hole pairs are generated. The holes react with the pre–chemisorbed O−2(ads)

to form oxygen molecules which will be desorbed from the surface of CaFe2O4 (h+ + O−2(ads) ↔ O2(g) ).
At the same time, new oxygen molecules will be adsorbed and capture the photo-electrons to form
photo-induced oxygen ions: (O2(g) + e−(hν)↔ O−2(ads)(hν) ). The net result of these adsorbtion and
desorbtion processes of oxygen molecues is that the photoinduced holes acumulate into the surface
increasing the width of the hole-accumulation layer (Figure 5e). Consequently, the resistance of
CaFe2O4 decreases in this reaction. The reaction can be explained as in the following equation:(

h+ + e−
)
(hν)→

 h+(hν) + O−2(ads) ↔ O2(g)

O2(g) + e−(hν)↔ O−2(ads)(hν)
(3)
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Figure 5. Reaction of pre-chemisorbed oxygen and sensing mechanism of p-type CaFe2O4 nanoparticles
based on density of charge in the core shell and energy band diagram (a) dark condition (b)
photo-activation (i.e., light is ON) (c) condition prior to any surface reaction (d) trapping electron from
the valence band due to the pre-chemisorption process in dark condition results in the formation of a
hole-accumulation layer (HAL) (e) photo-activation process increases the density of majority charge
(hole) resulting in a widening of HAL.
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Figure 6 shows a scheme of the sensing mechanism when the material is exposed to the target gas
(ethanol vapors) under illumination together with the dynamic response of the sensor (green line) and
the corresponding energy band diagram for each situation. When the sensor is exposed to the ethanol
vapors, the ethanol molecules are absorbed on the surface and react with photo-induced oxygen ions to
form water vapor (H2O) and CO2 consuming photo-induced oxygen ions from the surface by releasing
electrons (Figure 6b). The reaction can be described as follows:

O2(g) + e−(hν)↔ O−2(ads)(hν) (4)

2C2H5OH(ads) + O−2(ads)(hν)↔ 2CH3COH(ads) + 2H2O + e− (5)

CH3CHO(ads) + 5O−
(ads)(hν)↔ 2CO2 + 2H2O + 5e− (6)
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Figure 6. The dynamic response (the green line) toward reducing gas (i.e., ethanol vapors) under
visible light irradiation that corresponded to: (a) photo-activation before target gas exposure has
been introduced, (b) target gas interacts with photo-induced oxygen ion and attaches on the surface
(photo-adsorption process), (c) photo-desorption process when target gas is detached from the surface,
(d) energy band diagram photo-activation before interaction with target gas, (e) photo-adsorption
process causes a decreasing the width of HAL and increasing of the electrical resistance, and (f)
photo-desorption process causes an increasing the width of HAL and resulting in a decrease the
electrical resistance of CaFe2O4.

The released electrons will return to the valence band and cause a decreasing concentration of
oxygen ions in the surface, resulting in electron-hole compensation and eventually narrowing the
hole–accumulation layer. This narrowing process results in an increased resistance when a reducing
gas is introduced [50], as shown in Figure 6e. When ethanol vapors are removed from the chamber, the
remaining ethanol molecules adsorbed in the surface of the material will eventually desorb through
reactions (5) and (6) and be replaced again by adsorbed oxygen molecules returning to the original



Sensors 2020, 20, 850 9 of 12

situation (increase the concentration of hole and the width of the HAL and also resulting in a decrease
the electrical resistance of CaFe2O4 (Figure 6c,f). However, the energy needed to either desorb ethanol
from the surface or induce reactions (5) and (6) could be higher than that provided by the incident
photons, and therefore some of the adsorbed ethanol molecules (or acetaldehyde from reaction (5))
will remain attached to the surface resulting in a state slightly different from the original with a
different resistance.

4. Conclusions

CaFe2O4 nanoparticles have been synthesized by a sol-gel auto-combustion method resulting in
unconventional metal oxides with bandgap of around 1.9 eV, which is suitable for visible light spectra.
Light-activated room-temperature gas sensors based on this material has been tested and validated.
The maximum responses toward ethanol vapor and recovery time were 3.6% at 100 ppm, ~18 min
and ~41 min, respectively. The maximum response corresponds to the maximum absorption spectra
(425–455 nm) of CaFe2O4 based on results of optical absorption UV–vis diffuse reflectance spectra.
The energy provided by the LEDs is sufficient to activate the desorption process between the ethanol
and the surface of CaFe2O4. In addition, it has been confirmed that visible light activation contributed
to breaking the bonding of target gases from the surface sensing.

Supplementary Materials: The following are available online at http://www.mdpi.com/1424-8220/20/3/850/s1,
Figure S1: Dynamic responses of CaFe2O4 towards NH3 reducing gas in varied vapor concentrations (i.e., 10, 20,
30, 50, and 100 ppm) under light activation from (a) blue (465 nm), (b) green (520 nm), (c) yellow (590 nm), (d) red
(640 nm) LEDs and (e) in dark condition (without illumination). (f) Comparison of the sensor sensitivity under
visible light exposures and dark condition for NH3 sensing, Figure S2: Dynamic responses of CaFe2O4 towards
NO2 gas in varied vapor concentrations (i.e., 1, 2, 3, 5, and 10 ppm) under light activation from (a) blue (465 nm),
(b) green (520 nm), (c) yellow (590 nm), (d) red (640 nm) LEDs and (e) in dark condition (without illumination).
(f) Comparison of the sensor sensitivity under visible light exposures and dark condition for NO2 sensing.

Author Contributions: Formal analysis, Q.; Investigation, Q.; Methodology, Q.; Resources, Q., O.C., A.Š. and T.G.;
Supervision, A.W., H.S.W., J.D.P. and C.F.; Writing—original draft, Q.; Writing—review & editing, O.C., A.Š., A.W.,
H.S.W., J.D.P. and C.F. All authors have read and agreed to the published version of the manuscript.

Funding: The research leading to these results has received funding from the European Research Council under
the European Union’s Seventh Framework Programme (FP/2007-2013)/ERC Grant Agreement n.336917.

Acknowledgments: Qomaruddin thanks to the Ministry of Research, Technology and Higher Education of the
Republic of Indonesia (RISTEKDIKTI) for the Ph.D. scholarship of RISET-Pro under ref. no. 348/RISET-Pro/
FGS/VIII/2016 and Indonesian-German Center for Nano and Quantum Technologies (IG-Nano) for the support.
H.S. Wasisto and A. Waag acknowledge the project funding support within LENA-OptoSense group from the
Lower Saxony Ministry for Science and Culture (NMWK), Germany. This work has been carried out within the
EU Project of “BetterSense–Nanodevice Engineering for Better Chemical Gas Sensing Technology” funded by the
European Research Council under Grant Agreement No. 336917 J. D. Prades acknowledges the support of the
ICREA Academia Program and the DFG Project GRK NanoMet.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Ivanov, P.; Llobet, E.; Vilanova, X.; Brezmes, J.; Hubalek, J.; Correig, X. Development of high sensitivity
ethanol gas sensors based on Pt-doped SnO2 surfaces. Sens. Actuators B Chem. 2004, 99, 201–206. [CrossRef]

2. Arshak, K.; Gaidan, I. Development of a novel gas sensor based on oxide thick films. Mater. Sci. Eng. B 2005,
118, 44–49. [CrossRef]

3. Neri, G.; Bonavita, A.; Ipsale, S.; Rizzo, G.; Baratto, C.; Faglia, G.; Sberveglieri, G. Pd- and Ca-doped iron
oxide for ethanol vapor sensing. Mater. Sci. Eng. B 2007, 139, 41–47. [CrossRef]

4. Monereo, O.; Casals, O.; Prades, J.D.; Cirera, A. A low-cost approach to low-power gas sensors based on
self-heating effects in large arrays of nanostructures. Procedia Eng. 2015, 120, 787–790. [CrossRef]

5. Zhou, X.; Lee, S.; Xu, Z.; Yoon, J. Recent progress on the development of chemosensors for gases. Chem. Rev.
2015, 115, 7944–8000. [CrossRef]

6. Mirzaei, A.; Park, S.; Sun, G.-J.; Kheel, H.; Lee, C.; Lee, S. Fe2O3/Co3O4 composite nanoparticle ethanol
sensor. J. Korean Phys. Soc. 2016, 69, 373–380. [CrossRef]

http://www.mdpi.com/1424-8220/20/3/850/s1
http://dx.doi.org/10.1016/j.snb.2003.11.012
http://dx.doi.org/10.1016/j.mseb.2004.12.061
http://dx.doi.org/10.1016/j.mseb.2007.01.039
http://dx.doi.org/10.1016/j.proeng.2015.08.823
http://dx.doi.org/10.1021/cr500567r
http://dx.doi.org/10.3938/jkps.69.373


Sensors 2020, 20, 850 10 of 12

7. Šutka, A.; Kodu, M.; Pärna, R.; Saar, R.; Juhnevica, I.; Jaaniso, R.; Kisand, V. Orthorhombic CaFe2O4: A
promising p-type gas sensor. Sens. Actuators B Chem. 2016, 224, 260–265. [CrossRef]

8. Bhatia, S.; Verma, N.; Bedi, R.K. Ethanol gas sensor based upon ZnO nanoparticles prepared by different
techniques. Results. Phys. 2017, 7, 801–806. [CrossRef]

9. Kim, J.-H.; Mirzaei, A.; Kim, H.W.; Kim, S.S. Low power-consumption CO gas sensors based on
Au-functionalized SnO2-ZnO core-shell nanowires. Sens. Actuators B Chem. 2018, 267, 597–607. [CrossRef]

10. Donarelli, M.; Ottaviano, L. 2D Materials for Gas Sensing Applications: A review on Graphene Oxide, MoS2,
WS2 and Phosphorene. Sensors 2018, 18, 3638. [CrossRef]

11. Prades, J.D.; Jimenez-Diaz, R.; Hernandez-Ramirez, F.; Barth, S.; Cirera, A.; Romano-Rodriguez, A.;
Mathur, S.; Morante, J.R. Ultralow power consumption gas sensors based on self-heated individual nanowires.
Appl. Phys. Lett. 2008, 93, 123110. [CrossRef]

12. Prades, J.D.; Jimenez-Diaz, R.; Hernandez-Ramirez, F.; Barth, S.; Cirera, A.; Romano-Rodriguez, A.; Mathur, S.;
Morante, J.R. Equivalence between thermal and room temperature UV light-modulated responses of gas
sensors based on individual SnO2 nanowires. Sens. Actuators B Chem. 2009, 140, 337–341. [CrossRef]

13. Prades, J.D.; Jimenez-Diaz, R.; Manzanares, M.; Hernandez-Ramirez, F.; Cirera, A.; Romano-Rodriguez, A.;
Mathur, S.; Morante, J.R. A model for the response towards oxidizing gases of photoactivated sensors based
on individual SnO2 nanowires. Phys. Chem. Chem. Phys. 2009, 11, 10881–10889. [CrossRef] [PubMed]

14. Brunelli, D.; Rossi, M. CH4 Monitoring with Ultra-Low Power Wireless Sensor Network. In Applications in
Electronics Pervading Industry, Environment and Society; De Gloria, A., Ed.; Springer International Publishing:
Cham, Switzerland, 2014; Volume 289, pp. 13–25. ISBN 978-3-319-04369-2.

15. Hoffmann, M.W.G.; Casals, O.; Gad, A.E.; Mayrhofer, L.; Fàbrega, C.; Caccamo, L.; Hernández-Ramírez, F.;
Lilienkamp, G.; Daum, W.; Moseler, M.; et al. Novel approaches towards highly selective self-powered gas
sensors. Procedia Eng. 2015, 120, 623–627. [CrossRef]

16. Gad, A.; Hoffmann, M.W.G.; Casals, O.; Mayrhofer, L.; Fàbrega, C.; Caccamo, L.; Hernández-Ramírez, F.;
Mohajerani, M.S.; Moseler, M.; Shen, H.; et al. Integrated strategy toward self-powering and selectivity
tuning of semiconductor gas sensors. ACS Sens. 2016, 1, 1256–1264. [CrossRef]

17. Fàbrega, C.; Casals, O.; Hernández-Ramírez, F.; Prades, J.D. A review on efficient self-heating in nanowire
sensors: Prospects for very-low power devices. Sens. Actuators B Chem. 2018, 256, 797–811. [CrossRef]

18. Fu, Y.; Zang, W.; Wang, P.; Xing, L.; Xue, X.; Zhang, Y. Portable room-temperature self-powered/active H2

sensor driven by human motion through piezoelectric screening effect. Nano Energy 2014, 8, 34–43. [CrossRef]
19. Uddin, A.S.M.I.; Chung, G.-S. A self-powered active hydrogen gas sensor with fast response at room

temperature based on triboelectric effect. Sens. Actuators B Chem. 2016, 231, 601–608. [CrossRef]
20. Fan, S.-W.; Srivastava, A.K.; Dravid, V.P. UV-activated room-temperature gas sensing mechanism of

polycrystalline ZnO. Appl. Phys. Lett. 2009, 95, 142106. [CrossRef]
21. Lu, G.; Xu, J.; Sun, J.; Yu, Y.; Zhang, Y.; Liu, F. UV-enhanced room temperature NO2 sensor using ZnO

nanorods modified with SnO2 nanoparticles. Sens. Actuators B Chem. 2012, 162, 82–88. [CrossRef]
22. Gui, Y.; Li, S.; Xu, J.; Li, C. Study on TiO2-doped ZnO thick film gas sensors enhanced by UV light at room

temperature. Microelectron. J. 2008, 39, 1120–1125. [CrossRef]
23. Mishra, S.; Ghanshyam, C.; Ram, N.; Bajpai, R.P.; Bedi, R.K. Detection mechanism of metal oxide gas sensor

under UV radiation. Sens. Actuators B Chem. 2004, 97, 387–390. [CrossRef]
24. Gonzalez, O.; Welearegay, T.; Llobet, E.; Vilanova, X. Pulsed UV Light Activated Gas Sensing in Tungsten

Oxide Nanowires. Procedia Eng. 2016, 168, 351–354. [CrossRef]
25. Hsu, C.-L.; Chang, L.-F.; Hsueh, T.-J. Light-activated humidity and gas sensing by ZnO nanowires grown on

LED at room temperature. Sens. Actuators B Chem. 2017, 249, 265–277. [CrossRef]
26. Zheng, Z.Q.; Yao, J.D.; Wang, B.; Yang, G.W. Light-controlling, flexible and transparent ethanol gas sensor

based on ZnO nanoparticles for wearable devices. Sci. Rep. 2015, 5, 11070. [CrossRef]
27. Hien, V.X.; Heo, Y.-W. Effects of violet-, green-, and red-laser illumination on gas-sensing properties of SnO

thin film. Sens. Actuators B Chem. 2016, 228, 185–191. [CrossRef]
28. Qomaruddin; Fàbrega, C.; Waag, A.; Šutka, A.; Casals, O.; Wasisto, H.S.; Prades, J.D. Visible Light Activated

Room Temperature Gas Sensors Based on CaFe2O4 Nanopowders. Proceedings 2018, 2, 834. [CrossRef]
29. Mariana, S.; Gülink, J.; Hamdana, G.; Yu, F.; Strempel, K.; Spende, H.; Yulianto, N.; Granz, T.; Prades, J.D.;

Peiner, E.; et al. Vertical GaN nanowires and nanoscale light-emitting-diode arrays for lighting and sensing
applications. ACS Appl. Nano Mater. 2019, 2, 4133–4142. [CrossRef]

http://dx.doi.org/10.1016/j.snb.2015.10.041
http://dx.doi.org/10.1016/j.rinp.2017.02.008
http://dx.doi.org/10.1016/j.snb.2018.04.079
http://dx.doi.org/10.3390/s18113638
http://dx.doi.org/10.1063/1.2988265
http://dx.doi.org/10.1016/j.snb.2009.04.070
http://dx.doi.org/10.1039/b915646a
http://www.ncbi.nlm.nih.gov/pubmed/19924322
http://dx.doi.org/10.1016/j.proeng.2015.08.752
http://dx.doi.org/10.1021/acssensors.6b00508
http://dx.doi.org/10.1016/j.snb.2017.10.003
http://dx.doi.org/10.1016/j.nanoen.2014.05.012
http://dx.doi.org/10.1016/j.snb.2016.03.063
http://dx.doi.org/10.1063/1.3243458
http://dx.doi.org/10.1016/j.snb.2011.12.039
http://dx.doi.org/10.1016/j.mejo.2008.01.052
http://dx.doi.org/10.1016/j.snb.2003.09.017
http://dx.doi.org/10.1016/j.proeng.2016.11.118
http://dx.doi.org/10.1016/j.snb.2017.04.083
http://dx.doi.org/10.1038/srep11070
http://dx.doi.org/10.1016/j.snb.2015.12.105
http://dx.doi.org/10.3390/proceedings2130834
http://dx.doi.org/10.1021/acsanm.9b00587


Sensors 2020, 20, 850 11 of 12

30. Bornemann, S.; Yulianto, N.; Spende, H.; Herbani, Y.; Prades, J.D.; Wasisto, H.S.; Waag, A. Femtosecond laser
lift-off with sub-band gap excitation for production of free-standing GaN LED chips. Adv. Eng. Mater. 2019,
1901192. [CrossRef]

31. Casals, O.; Markiewicz, N.; Fabrega, C.; Gràcia, I.; Cané, C.; Wasisto, H.S.; Waag, A.; Prades, J.D. A parts per
billion (ppb) sensor for NO2 with microwatt (µW) power requirements based on micro light plates. ACS Sens.
2019, 4, 822–826. [CrossRef]

32. Markiewicz, N.; Casals, O.; Fabrega, C.; Gràcia, I.; Cané, C.; Wasisto, H.S.; Waag, A.; Prades, J.D. Micro light
plates for low-power photoactivated (gas) sensors. Appl. Phys. Lett. 2019, 114, 053508. [CrossRef]

33. Xu, J.; Bertke, M.; Wasisto, H.S.; Peiner, E. Piezoresistive microcantilevers for humidity sensing. J. Micromech.
Microeng. 2019, 29, 053003. [CrossRef]

34. Setiono, A.; Xu, J.; Fahrbach, M.; Bertke, M.; Nyang’au, W.O.; Wasisto, H.S.; Peiner, E. Real-time frequency
tracking of an electro-thermal piezoresistive cantilever resonator with ZnO nanorods for chemical sensing.
Chemosensors 2019, 7, 2. [CrossRef]

35. Setiono, A.; Fahrbach, M.; Xu, J.; Bertke, M.; Nyang’au, W.O.; Hamdana, G.; Wasisto, H.S.; Peiner, E. Phase
optimization of thermally actuated piezoresistive resonant MEMS cantilever sensors. J. Sens. Sens. Syst.
2019, 8, 37–48. [CrossRef]

36. Bertke, M.; Hamdana, G.; Wu, W.; Wasisto, H.S.; Uhde, E.; Peiner, E. Analysis of asymmetric resonance
response of thermally excited silicon micro-cantilevers for mass-sensitive nanoparticle detection. J. Micromech.
Microeng. 2017, 27, 064001. [CrossRef]

37. Wasisto, H.S.; Uhde, E.; Peiner, E. Enhanced performance of pocket-sized nanoparticle exposure monitor for
healthy indoor environment. Build. Environ. 2016, 95, 13–20. [CrossRef]

38. Wasisto, H.S.; Merzsch, S.; Uhde, E.; Waag, A.; Peiner, E. Handheld personal airborne nanoparticle detector
based on microelectromechanical silicon resonant cantilever. Microelectron. Eng. 2015, 145, 96–103. [CrossRef]

39. Wasisto, H.S.; Merzsch, S.; Uhde, E.; Waag, A.; Peiner, E. Partially integrated cantilever-based airborne
nanoparticle detector for continuous carbon aerosol mass concentration monitoring. J.Sens. Sens. Syst. 2015,
4, 111–123. [CrossRef]

40. Wasisto, H.S.; Merzsch, S.; Stranz, A.; Waag, A.; Uhde, E.; Salthammer, T.; Peiner, E. Silicon resonant
nanopillar sensors for airborne titanium dioxide engineered nanoparticle mass detection. Sens. Actuators
B Chem. 2013, 189, 146–156. [CrossRef]

41. Wasisto, H.S.; Merzsch, S.; Stranz, A.; Waag, A.; Uhde, E.; Salthammer, T.; Peiner, E. Silicon Nanowire
Resonators: Aerosol Nanoparticle Mass Sensing in the Workplace. IEEE Nanatechnol. Mag. 2013, 7, 18–23.
[CrossRef]

42. Stranz, A.; Peiner, E.; Wasisto, H.S.; Waag, A.; Uhde, E.; Merzsch, S.; Salthammer, T. Femtogram aerosol
nanoparticle mass sensing utilising vertical silicon nanowire resonators. Micro Nano Lett. 2013, 8, 554–558.

43. Wang, C.; Yin, L.; Zhang, L.; Xiang, D.; Gao, R. Metal oxide gas sensors: Sensitivity and influencing factors.
Sensors 2010, 10, 2088–2106. [CrossRef] [PubMed]

44. Chinh, N.D.; Quang, N.D.; Lee, H.; Thi Hien, T.; Hieu, N.M.; Kim, D.; Kim, C.; Kim, D. NO gas sensing
kinetics at room temperature under UV light irradiation of In2O3 nanostructures. Sci. Rep. 2016, 6, 35066.
[CrossRef] [PubMed]

45. Wongrat, E.; Chanlek, N.; Chueaiarrom, C.; Samransuksamer, B.; Hongsith, N.; Choopun, S. Low temperature
ethanol response enhancement of ZnO nanostructures sensor decorated with gold nanoparticles exposed to
UV illumination. Sens. Actuators A Phys. 2016, 251, 188–197. [CrossRef]

46. Wang, Z.; Peng, X.; Huang, C.; Chen, X.; Dai, W.; Fu, X. CO gas sensitivity and its oxidation over TiO2

modified by PANI under UV irradiation at room temperature. Appl. Catal. B Environ. 2017, 219, 379–390.
[CrossRef]

47. Espid, E.; Taghipour, F. UV-LED Photo-activated Chemical Gas Sensors: A Review. Crit. Rev. Solid State
Mater. Sci. 2017, 42, 416–432. [CrossRef]

48. Wu, T.; Wang, Z.; Tian, M.; Miao, J.; Zhang, H.; Sun, J. UV excitation NO2 gas sensor sensitized by ZnO
quantum dots at room temperature. Sens. Actuators B Chem. 2018, 259, 526–531. [CrossRef]

49. Kim, H.-J.; Lee, J.-H. Highly sensitive and selective gas sensors using p-type oxide semiconductors: Overview.
Sens. Actuators B Chem. 2014, 192, 607–627. [CrossRef]

http://dx.doi.org/10.1002/adem.201901192
http://dx.doi.org/10.1021/acssensors.9b00150
http://dx.doi.org/10.1063/1.5078497
http://dx.doi.org/10.1088/1361-6439/ab0cf5
http://dx.doi.org/10.3390/chemosensors7010002
http://dx.doi.org/10.5194/jsss-8-37-2019
http://dx.doi.org/10.1088/1361-6439/aa6b0d
http://dx.doi.org/10.1016/j.buildenv.2015.09.013
http://dx.doi.org/10.1016/j.mee.2015.03.037
http://dx.doi.org/10.5194/jsss-4-111-2015
http://dx.doi.org/10.1016/j.snb.2013.02.053
http://dx.doi.org/10.1109/MNANO.2013.2260462
http://dx.doi.org/10.3390/s100302088
http://www.ncbi.nlm.nih.gov/pubmed/22294916
http://dx.doi.org/10.1038/srep35066
http://www.ncbi.nlm.nih.gov/pubmed/27713526
http://dx.doi.org/10.1016/j.sna.2016.10.022
http://dx.doi.org/10.1016/j.apcatb.2017.07.080
http://dx.doi.org/10.1080/10408436.2016.1226161
http://dx.doi.org/10.1016/j.snb.2017.12.101
http://dx.doi.org/10.1016/j.snb.2013.11.005


Sensors 2020, 20, 850 12 of 12

50. Choi, S.-W.; Katoch, A.; Kim, J.-H.; Kim, S.S. Remarkable Improvement of Gas-Sensing Abilities in p-type
Oxide Nanowires by Local Modification of the Hole-Accumulation Layer. ACS Appl. Mater. Interfaces 2015, 7,
647–652. [CrossRef]

51. Cho, N.G.; Woo, H.-S.; Lee, J.-H.; Kim, I.-D. Thin-walled NiO tubes functionalized with catalytic Pt for highly
selective C252OH sensors using electrospun fibers as a sacrificial template. Chem. Commun. 2011, 47, 11300.
[CrossRef]

52. Yoon, J.-W.; Choi, J.-K.; Lee, J.-H. Design of a highly sensitive and selective C2H5OH sensor using p-type
Co3O4 nanofibers. Sens. Actuators B Chem. 2012, 161, 570–577. [CrossRef]

53. Wang, J.; Yang, P.; Wei, X. High-Performance, Room-Temperature, and No-Humidity-Impact Ammonia
Sensor Based on Heterogeneous Nickel Oxide and Zinc Oxide Nanocrystals. ACS Appl. Mater. Interfaces
2015, 7, 3816–3824. [CrossRef] [PubMed]

54. Liu, X.; Jiang, J.; Jia, Y.; Jin, A.; Chen, X.; Zhang, F.; Han, H. p-Type CaFe2O4 semiconductor nanorods
controllably synthesized by molten salt method. J. Energy Chem. 2016, 25, 381–386. [CrossRef]

55. Manohar, A.; Krishnamoorthi, C. Structural, optical, dielectric and magnetic properties of CaFe2O4

nanocrystals prepared by solvothermal reflux method. J. Alloys Compd. 2017, 722, 818–827. [CrossRef]
56. Zhang, Z.; Wang, W. Solution combustion synthesis of CaFe2O4 nanocrystal as a magnetically separable

photocatalyst. Mater. Lett. 2014, 133, 212–215. [CrossRef]
57. Barsan, N.; Weimar, U. Conduction Model of Metal Oxide Gas Sensors. J. Electroceram. 2001, 7, 143–167.

[CrossRef]
58. Xu, F.; Lv, H.-F.; Wu, S.-Y.; Ho, H.-P. Light-activated gas sensing activity of ZnO nanotetrapods enhanced by

plasmonic resonant energy from Au nanoparticles. Sens. Actuators B Chem. 2018, 259, 709–716. [CrossRef]
59. Barsan, N.; Simion, C.; Heine, T.; Pokhrel, S.; Weimar, U. Modeling of sensing and transduction for p-type

semiconducting metal oxide-based gas sensors. J. Electroceram. 2010, 25, 11–19. [CrossRef]
60. Geng, Q.; He, Z.; Chen, X.; Dai, W.; Wang, X. Gas sensing property of ZnO under visible light irradiation at

room temperature. Sens. Actuators B Chem. 2013, 188, 293–297. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1021/am5068222
http://dx.doi.org/10.1039/c1cc13876f
http://dx.doi.org/10.1016/j.snb.2011.11.002
http://dx.doi.org/10.1021/am508807a
http://www.ncbi.nlm.nih.gov/pubmed/25602842
http://dx.doi.org/10.1016/j.jechem.2016.03.019
http://dx.doi.org/10.1016/j.jallcom.2017.06.145
http://dx.doi.org/10.1016/j.matlet.2014.07.050
http://dx.doi.org/10.1023/A:1014405811371
http://dx.doi.org/10.1016/j.snb.2017.12.128
http://dx.doi.org/10.1007/s10832-009-9583-x
http://dx.doi.org/10.1016/j.snb.2013.07.001
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Materials 
	Material Characterization 
	Sensor Preparation 
	Sensor Measurement 

	Results and Discussion 
	Sensor Characterization Results 
	Sensing Mechanism 

	Conclusions 
	References

