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Abstract

Mobile healthcare increasingly relies on analytical tools that can extract meaningful information 

from ambulatory physiological recordings. We tested whether a nonlinear tool of fractal 

physiology could predict long-term health consequences in a large, elderly cohort. Fractal 

physiology is an emerging field that aims to study how fractal temporal structures in physiological 

fluctuations generated by complex physiological networks can provide important information 

about system adaptability. We assessed fractal temporal correlations in the spontaneous 

fluctuations of ambulatory motor activity of 1,275 older participants at baseline, with a follow-up 

period of up to 13 years. We found that people with reduced temporal correlations (more random 

activity fluctuations) at baseline had increased risk of frailty, disability, and all-cause death during 

follow-up. Specifically, for 1 standard deviation decrease in the temporal activity correlations of 

this studied cohort, the risk of frailty increased by 31%; the risk of disability increased by 

15%-25%; and the risk of death increased by 26%. These incidences occurred on average 4.7 years 

(frailty), 3-4.2 years (disability), and 5.8 years (death) after baseline. These observations were 

independent of age, sex, education, chronic health conditions, depressive symptoms, cognition, 

motor function, and total daily activity. The temporal structures in daily motor activity fluctuations 
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may contain unique prognostic information regarding wellness and health in the elderly 

population.

One Sentence Summary:

More random fluctuations in daily motor activity predicts deteriorated quality of life and high 

death rate in elderly subjects.

Introduction

Advances in wearable technologies in the last decade have made it possible to monitor 

physiological function unobtrusively for long periods of time (1, 2). One of the most 

commonly collected types of physiological data is motor activity. Several watch-like 

actimetry sensors, worn on the wrist or ankle, have been developed to enable monitoring of 

motor activity (namely actigraphy – noninvasive monitoring of movement amplitude to 

assess rest versus active periods) continuously for days and months. Actigraphy has widely 

been used to objectively estimate physical activity (3), daily/circadian activity rhythms, and 

sleep (4, 5), leading to many original physiological findings related to health and diseases. 

Despite the potential application of wearable devices in health care, harnessing the wealth of 

data from these devices is still a contemporary challenge. One of the main barriers is that 

uncontrolled daily schedules and environmental conditions may affect traditional 

physiological measures and complicate interpretation of results. New biomarkers that can 

reflect intrinsic properties of physiological systems while being resilient to external 

influences are desirable.

In parallel, the last 20 years have witnessed an exponential growth of an interdisciplinary 

field in physiology, namely ‘fractal physiology’, which is focused on understanding complex 

physiologic networks. One key finding in this field is that many physiological outputs such 

as motor activity and cardiac activity exhibit fractal fluctuations (similar temporal structural 

and statistical properties of the fluctuations at a wide range of timescales) (6–11). One 

advantage of fractal fluctuations is that they appear to be stable within the same individuals 

and sensitive to pathological conditions. For instance, fractal patterns in motor activity of 

healthy young humans persist under different environmental conditions (free running or 

highly controlled in-lab conditions) despite large variations in mean physical activity (6); 

fractal fluctuations of human movement degrade with aging and in pathological states (12–

15); and degraded fractal motor activity patterns in patients with dementia can better predict 

neurodegenerations in the circadian master clock of these patients as compared to traditional 

circadian measures (circadian amplitude and intra-daily variability) (16). In addition, 

restoration or optimization of fractal patterns is considered a potential, promising target of 

neurologic physical therapy (17–20). Supporting this concept, some pilot studies showed 

that sleep and memory can be enhanced with acoustic stimulations during specific sleep 

stage using pink noise — a sound possessing similar fractal temporal correlations as 

observed in many physiological signals such as motor activity, heartbeat, and brain activity 

(21, 22).
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As a hallmark of healthy physiology, fractal regulation is believed to represent the system 

adaptability and to reflect the complexity of physiological networks in which regulatory 

processes function interactively over a wide range of timescales (23–26). Consistently, our 

recent study further showed that the degraded fractal motor activity regulation is associated 

with cognitive impairment and predicts the risk of developing Alzheimer’s dementia in 

elderly individuals many years before the clinical onset of dementia (27). However, its value 

for predicting other adverse health consequences has not been fully explored. Here, we 

tested the hypothesis that fractal regulation in motor activities predicts frailty, disability, and 

all-cause mortality in a large community-based elderly cohort. Frailty and disability affect 

overall health and quality of life, particularly in older individuals, and there is evidence 

showing that both frailty and disability are linked to increased mortality (28–31). Thus, we 

also explored whether the effect of fractal regulation on all-cause death is independent of 

frailty and disability.

Results

At the time of analysis, 1,398 participants finished their baseline actigraphy assessments. 

Among them, 8 participants were screened out during preprocessing because of poor signal 

quality and 115 participants were excluded because of lack of follow-up clinical 

examinations (67 died before follow-up, 43 were not yet eligible for follow-up, and 5 

withdrew from further participation). Thus, a total of 1,275 participants were included in this 

study. Detrended fluctuation analysis (DFA) was used to extract two metrics that quantify 

the temporal correlations of motor activity recordings in two timescale regions: α1 at 

timescales < 1.5 h, and α2 at timescales > 2 h (up to 10 h). Examples of motor activity 

recordings and the corresponding DFA plots are shown in Fig. 1. In 5 participants, the 

maximal timescale when performing the DFA was < 8 hours, such that the metric α2 could 

not be obtained reliably.

Demographic, actigraphical, and clinical characteristics of participants at baseline are 

summarized in Table 1. α1 ranged from 0.63 to 1.21 (mean: 0.92; median: 0.92; standard 

deviation [SD]: 0.06), and α2 ranged from 0.51 to 1.32 (mean: 0.82; median: 0.81; SD: 

0.10), suggesting positive temporal correlations in the activity fluctuations (α > 0.5) in 

motor activity in both timescale regions and in all participants. α1 was weakly correlated 

with α2 (Pearson r = 0.07, P = 0.008). Both α1 and α2 were negatively correlated with age 

(α1: r = −0.10, P = 0.004; α2: r = −0.18, P < 0.0001). α1 was positively correlated with 

years of education (r = 0.07, P = 0.009) but α2 was not (P = 0.7). There were no sex 

differences in either α1 or α2 (both P > 0.05).

Perturbed fractal motor activity regulation predicts incident physical frailty

There were 936 participants (73.4% of 1,275; female/male: 712/224) who were not frail 

(number of frailty components < 2) at baseline. Over a mean of 4.7 (SD: 2.8; range: 

0.7-12.2) years of follow-up, incident frailty was rendered for 291 (31.1% of 936; Female/

Male: 263/28) participants. To assess the relationship between α1/α2 and frailty, we 

performed Cox proportional hazards models of incident frailty with α1, and separately α2, 

adjusted for age, sex, and education. A lower level of α1 was associated with an increased 
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risk of frailty: for 1-SD decrease in α1, the hazard ratio (HR) was 1.31 (95% CI: 1.16-1.48; 

Table 2) which is equivalent to being 3.3 years older at baseline (table S1). Fig. 2A shows 

the predicted probability of being not frail as a function of time for different values of α1. 

The participants with α1 = 0.85 (the 10th percentile) had overall a 1.7-fold increased hazard 

of frailty compared to the participant with α1 = 0.98 (the 90th percentile). The association 

between α1 and frailty remained after adjusting separately for multiple potential covariates 

such as chronic health conditions, depressive symptoms, cognitive function, motor function, 

and physical activity (table S1). We did not observe a significant association (P > 0.2) 

between α2 and incident frailty as shown in Table 2 and Fig. 2B.

Perturbed fractal motor activity regulation predicts incident disability

There were 1,073 participants (84.2% of 1,275; female/male: 813/260) who reported no 

disability on basic activities of daily living (ADL). Over a mean of 4.2 (SD: 2.8; range: 

0.6-12.3) years of follow-up, 529 (49.3% of 1,073; female/male: 419/110) developed ADL 

disability. Cox proportional hazards models of incident ADL disability with α1, and 

separately α1, adjusted for age, sex, and education were performed. A lower level of α1 was 

associated with an increased risk of ADL disability: for 1-SD decrease in α1, the HR is 1.25 

(95% CI: 1.14-1.36; Table 2) which is equivalent to being 2.3 years older at baseline (table 

S2). Fig. 3A shows the predicted probability of being not disabled as a function of time for 

different values of α1. The participants with α1 = 0.85 (the 10th percentile) had overall a 1.6-

fold increased hazard of disability compared to the participant with α1 = 0.98 (the 90th 

percentile). The association between α1 and disability remained after adjusting separately 

for all tested covariates (table S2). Similarly, a lower level of α2 was also associated with an 

increased risk of ADL disability: HR was 1.11 (95% CI: 1.01-1.22; Table 2) for 1-SD 

decrease in α2, which is equivalent to being about 1.1 years older at baseline (table S3). As 

shown in Fig. 3D, the participant with lower α2 (α2 = 0.70, the 10th percentile) had an 

overall 1.2-fold increased hazard of disability compared to the participant with higher α2 

(α2 = 0.94, the 90th percentile). The association between α2 and disability remained 

significant after controlling separately for the other risk factors except for total daily activity 

level (table S3).

There were 641 participants (50.3% of 1,275; female/male: 459/182) who reported 

independence in instrumental activity of daily living (IADL) at baseline. Over a mean of 3.0 

(SD: 2.3; range: 0.6-11.1) years of follow-up, 442 (70.0% of 641; female/male: 320/122) 

developed IADL disability. Cox proportional hazards models of incident IADL disability 

with α1, and separately α2, adjusted for age, sex, and education were performed. A lower 

level of α1 was associated with an increased risk of IADL disability: for 1-SD decrease in 

α1, HR is 1.15 (95% CI: 1.04-1.26; Table 2) which is equivalent to being 1.9 years older at 

baseline (table S4). Fig. 3B shows the predicted probability of being not disabled as a 

function of time for different values of α1. The participants with α1 = 0.85 (the 10th 

percentile) had overall a 1.3-fold increased hazard of disability compared to the participant 

with α1 = 0.98 (the 90th percentile). The association between α1 and disability remained 

after adjusting separately for the possible confounders (table S4). We did not observe a 

significant association (P > 0.5) between α2 and incident IADL disability as shown in Table 

2 and Fig. 3E.
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There were 684 participants (53.6% of 1,275; female/male: 490/194) who reported no 

mobility disability on the Rosow-Breslau scale at baseline. Over a mean of 3.1 (SD: 2.3; 

range: 0.6-12.1) years of follow-up, 443 (64.8% of 684; female/male: 331/112) developed 

mobility disability. Cox proportional hazards models of incident mobility disability with α1, 

and separately α2, adjusted for age, sex, and education were performed. A lower level of α1 

was associated with an increased risk of mobility disability: HR was 1.19 (95% CI: 

1.08-1.32; Table 2) for 1-SD decrease in α1 which is equivalent to being 2.6 years older at 

baseline (table S5). Fig. 3C shows the predicted probability of being not disabled as a 

function of time for different values of α1. The participants with α1 = 0.85 (the 10th 

percentile) have overall a 1.4-fold increased hazard of disability compared to the participant 

with α1 = 0.98 (the 90th percentile). The association between α1 and disability remained 

after adjusting separately for all tested confounders (table S5). We did not observe a 

significant association between α2 and incident mobility disability as shown in Table 2 and 

Fig. 3F (P > 0.5).

Perturbed fractal motor activity regulation predicts increased all-cause mortality

Among all 1,275 participants, there were 535 deaths (42% of cohort; female/male: 388/147) 

after a mean of 5.8 (SD =2.9, range 0.6-12.7) years. Older age, being a male, or fewer years 

of education was associated with higher risk of death (tables S6 and S7). Cox proportional 

hazards models with α1, and separately α2, as a predictor adjusted for age, sex, and 

education were performed to examine the survival of participants. A lower level of α1 was 

associated with an increased risk of death: for 1-SD decrease in α1, HR was 1.26 (95% CI: 

1.17-1.37; Table 2), which is equivalent to being 2 years older at baseline (table S6). Fig. 4A 

shows the predicted probability of survival as a function of time for different values of α1. 

The participants with α1 = 0.85 (the 10th percentile) have overall a 1.6-fold increased risk of 

death compared to the participant with α1 = 0.98 (the 90th percentile). The association 

between α1 and death remained after adjusting separately for all tested covariates, as well as 

after adjusting separately for the disability status at baseline (table S6). Similarly, a lower 

level of α2 was also associated with an increased risk of death, with an HR of 1.12 (95% CI: 

1.02-1.23; Table 2) for 1-SD decrease in α2, which is equivalent to being 1 year older at 

baseline (table S7). As shown in Fig. 4B, the participant with lower α2 (α2 = 0.70, the 10th 

percentile) had an overall 1.3-fold increased risk of death compared to the participant with 

higher α2 (α2 = 0.94, the 90th percentile). The association between α2 and death remained 

significant after controlling separately for all tested risk factors except for motor function 

and the three disability measures (table S7; all P < 0.05). Of note, post hoc χ2 tests suggest 

potential violation of the proportional hazard assumption for both α1 and α2 (P < 0.05), 

suggesting that the association with mortality may not be constant over time. Therefore, we 

augmented the core model for α1, and separately the core model for α2, by including an 

interaction term with time to death (32). The results showed that the associations of both α’s 

with mortality were attenuated in participants with longer survival time (table S8), Briefly, 

for a representative female participant of mean age and having mean years of education, the 

HR for 1-SD decrease in α1 was attenuated by 0.06 with every 1 additional year of survival. 

Similarly, the HR for 1-SD decrease in α2 was reduced by 0.05 with every 1 additional year 

of survival.
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Discussion

By following a cohort of 1,275 older persons for up to 13 years, we found that degraded 

fractal regulation in ambulatory motor activity predicted a higher risk of incident frailty, 

incident disability, and death. Specifically, a higher risk for frailty was observed in 

participants who had more random motor activity fluctuations at timescales between ~1-90 

min (as indicated by smaller values of the fractal activity metric α1). Similarly, a higher risk 

for ADL, IADL, and mobility disability was observed in these participants with smaller α1. 

A higher risk for ADL disability was also associated with more random activity fluctuations 

at timescales > 2 h (as indicated by smaller values of the fractal activity metric α2). A higher 

risk for mortality was associated with more random motor activity fluctuations in both 

timescale regions (smaller α1 and α2). These associations remained after accounting for 

other factors associated to risk of frailty, disability, or decreased life expectancy including 

age, sex, education, chronic health conditions, depressive symptoms, cognition, motor 

function, and total daily activity. These findings indicate that spontaneous fluctuations in 

daily motor activity contain useful information about wellness and health, and that nonlinear 

dynamic analysis can serve as a powerful tool to extract such information.

Frailty is believed to reflect declines in physiological reserve across multiorgan systems, 

thus increasing vulnerability to stressors. Our results showed that degraded fractal motor 

activity regulation precedes and predicts frailty; within those without frailty at baseline, 

frailty occurred ~4.7 years on average after motor activity monitoring. This finding supports 

the theory that fractal regulation reflects the complexity of physiological control. And 

conversely, the degradation suggests a reduced complexity in the system; thus the system 

becomes less adaptive to perturbations and more vulnerable to catastrophic events (26, 33).

One common risk factor for frailty, disability, and mortality that can be derived from 

actigraphy is low physical activity. Health benefits of physical activity have long been 

acknowledged, and there is indisputable evidence for the association between higher 

physical activity and lower risk for disability and mortality (28, 34–37). Physical activity 

may also be beneficial for reducing the risk of frailty in the elderly (38), although the role of 

being physically active in preventing sedentary elderlies from being physically frail is still 

under debate (39). Here, we showed that, independent of total daily activity, fractal patterns 

in the spontaneous activity fluctuations provide distinct insights into frailty, disability, and 

mortality in the elderly. This may not be surprising because fractal motor activity regulation 

reflects the system integrity that is required for successful, repetitive execution of different 

motor tasks. Altered fractal fluctuations of motor activity may represent sub-clinical 

information stemming from disruptions to multiple physiological functions, including 

cognition, psychiatric stability, coordination, and physical conditioning. This interpretation 

is supported by our previous findings that fractal motor activity regulation was degraded in 

dementia and associated with cognitive impairment (13, 27, 40), and the finding in this study 

that the associations between α1 and frailty/disability/mortality were slightly weakened (but 

still statistically significant) when the composite motor function measure (incorporating 

many tests that involve cognition) was included in the model. Together, these findings 

support that fractal motor activity regulation provides additional valuable information about 

physiological function beyond total daily activity.
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It has been established that frailty and disability predict mortality (28–31). One logical 

hypothesis is that frailty and disability mediate the effect of degraded fractal motor activity 

regulation on death. This hypothesis is supported by the reduced effects of fractal activity 

metrics on mortality after controlling for baseline frailty or disability: HR for mortality 

corresponding to 1-SD decrease in α1 was reduced from 1.26 to 1.20 after controlling for 

baseline frailty; and the association between α2 and mortality became not significant after 

controlling for baseline disability. Because frailty and disability predict not only mortality 

but also neuropathological changes, such as Alzheimer’s disease, our findings highlight the 

possibility that degraded fractal motor activity regulation may serve as an earlier sign or risk 

factor for pathological changes.

It is also worth noting that the association between α1 and mortality persisted after 

accounting for baseline frailty/disability. This finding provides strong evidence that there 

should be additional pathways leading to increased mortality, independent of the tested 

frailty and disability measures, and that degraded fractal motor activity regulation provides 

information for the prediction of all-cause death.

Although both α1 and α2 showed significant associations with ADL disability and death, the 

effects of decreased α1 on the two outcomes appeared to be stronger than those of decreased 

α2. The associations between α2 and these health outcomes became borderline or not 

significant after adjusting for motor function or total daily activity. On the other hand, our 

previous studies showed that α2 seems more sensitive to night shifts and it recovered more 

slowly after night shifts (41). These distinct responses or associations of α1 and α2 suggest 

that fractal fluctuations at different timescales involve different physiological or biological 

mechanisms, and their changes reflect different physio-pathological alterations that 

contribute to disability and mortality.

Despite the current limited understanding of the neural network(s) responsible for fractal 

regulation, it is well established that the circadian control system is required to maintain 

fractal fluctuations in motor activity, especially at larger timescales (26). In rats, lesioning 

the suprachiasmatic nucleus (SCN) — the central circadian clock in mammals — led to 

completely random activity fluctuations at timescales > ~4 h (α2 close to 0.5) (42); and 

lesioning the dorsomedial hypothalamic nucleus — one of the important neural nodes that 

relays the influences of the SCN on motor activity — also caused a significant reduction in 

α2 (43). In humans, perturbed fractal motor activity regulation in terms of the difference 

between α1 and α2 (more reduced α2) was associated with greater loss of vasopressin and 

neurotensin neurons, two major neurotransmitters in the SCN (16). Thus, the observed 

effects of α2 on risk of disability/mortality may be linked to circadian dysfunction.

Recent human studies showed that the degradation of the fractal motor activity regulation at 

timescales < 2 h (smaller α1) was associated with dysregulations in higher brain activities 

including mood and cognitive function (44–49), indicating that the decrease of α1 could be 

an omen of accelerated cognitive degeneration. This hypothesis was supported by our recent 

study showing that α1 reduction predicted faster cognitive decline and increased risk for 

dementia (27). This hypothesis was further supported by our observed association between 

smaller baseline α1 and increased risk of IADL disability, considering that the decline in 
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IADL is likely to represent a decline in cognitive function. On the other hand, we found that, 

even after controlling for cognition, α1 still predicted frailty, ADL disability, and mobility 

disability that may be closely related and linked to physical problems. These findings 

indicate previously un-identified contributions of mobility control to fractal regulation. The 

neural circuitry of fractal activity regulation at small timescales may thus involves multiple 

physiological control mechanisms.

This study indicates that multiscale characteristics derived from spontaneous daily 

movement can be useful for heath monitoring in older adults. As compared to the traditional 

clinical assessments of frailty, disability, and mortality, actigraphy-based methods have 

many advantages because the unobtrusive data collection is cost-efficient and requires less 

effort from individuals and healthcare providers. To further establish the fractal motor 

activity regulation indices as a diagnostic tool, the following issues need to be addressed: (1) 

Replications using a separate, larger database are required to validate our findings. (2) The 

optimal timescale regions in which the scaling behavior can better predict health outcomes 

are yet to be determined. (3) The cohort used here consisted of relatively old participants. It 

is worth investigating whether the fractal indices can predict similar outcomes in middle-

aged and younger adults. As the technique for motor activity monitoring is very mature, 

many large-cohort research or clinical studies such as the UK Biobank have included or have 

collected motor activity recordings. Analyzing the data in these studies is crucial not only 

for validating our findings but also for better application of wearable technologies in health 

monitoring.

In addition, it may become possible to apply the actigraphy-derived tools as a part of long-

term home care monitoring, which may open up new avenues for clinical practice and 

healthcare research. Together with other clinical and physiological measures, the fractal 

regulation indices based on actigraphy may improve identification of older people at risk of 

frailty such that these individuals might benefit from early interventions. The advantages of 

the actigraphy-derived tools include noninvasiveness and cost-efficiency as compared to the 

traditional clinical assessments. For instance, the motor score also showed to be associated 

to outcomes; but it was derived from 10 motor performance tests (including Purdue 

Pegboard test, finger-tapping test, time to cover a distance of 8 feet, number of steps 

required to cover 8 feet, 360 degree turn time, number of steps to complete a 360 degree 

turn, leg stand, toe stand, grip strength, and pinch strength) (50) which require clinical visits 

and significant time/effort of those elder participants. Importantly, fractal motor activity 

patterns appear to be modifiable. For example, increased daily light exposure has been 

shown to diminish or even abolish the degradations of fractal motor activity regulation with 

aging in older persons with dementia (40). Studies on movement rehabilitation have implied 

the therapeutic milieu of promoting complexity of movement and restoring the optimal 

amount of movement variability to prevent motor system rigidity or instability (17–20). 

Further investigations are merited to determine whether fractal motor activity regulation can 

identify targets for interventions with the aim to improve physical wellbeing and longevity. 

One testable hypothesis is that improving fractal regulation in motor activity can help 

maintain physical wellbeing and increase life expectancy.
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There are also limitations that are worth noting. First, the comorbidity and other health 

related data were self-reported, which potentially limits the validity of the study. Second, the 

frailty and disability are questionnaire-based surrogate endpoints. The associations of fractal 

motor regulation with objective health outcomes such as falls, fractures, hospitalization, and 

care consumption are yet to be determined. Third, the regions of timescales for the two 

fractal regulation metrics were determined empirically based on previous studies of aging 

and dementia. They are not necessarily optimal for predicting different outcomes. Further 

works are warranted to finely tune timescale region(s) to better define outcome-specific 

metrics. And last, the DFA approach assesses temporal fractal structure by examining the 

scaling behavior. There might be properties that are not be captured by DFA. The use of 

different methods, including other fractal or nonlinear dynamic analyses, to extract more 

health-related information from spontaneous fluctuations of motor activity should be 

encouraged.

Materials and Methods

Study design

We reported results from an on-going prospective, observational cohort study, namely, the 

Rush Memory and Aging Project (MAP) that is conducted at the Rush Alzheimer’s Disease 

Center, Rush University Medical Center. This current study focused on the use of 

noninvasive and unobtrusive activity monitoring to identify predictors of adverse health 

outcomes (including frailty, disability, and mortality) in an aging population of human 

participants. The results were reported in accordance with the guidelines for reporting 

observational studies — the Strengthening the Reporting of Observational Studies in 

Epidemiology (STROBE) Statement. The MAP project began in 1997. In 2005, a watch-like 

device was introduced to record daily movement or motor activity which was the specific 

baseline for the current study (see Data Collection and Preprocessing) (51). By mid-2018, 

motor activity recordings were collected from 1,398 participants (age at baseline: 56-100 

years old; female: 1,065). Participants without follow-up clinical examinations were 

excluded from this study (n = 115); the remained participants were followed annually for up 

to 13 years (range: 1-13; mean: 6; standard deviation: 3). The protocol of the parent MAP 

study was approved by the Institutional Review Board of Rush University Medical Center. 

Written informed consent was obtained from all participants, and all participants signed a 

repository consent to allow their data to be repurposed. More information regarding the data 

can be found at www.radc.rush.edu. The protocol for this current study was approved by the 

Institutional Review Board of Partners Healthcare Inc.

Data collection and preprocessing

Motor activity (Fig. 1 and fig. S1) was collected continuously for up to 10 days at baseline 

using an activity monitor (Actical, Philips Respironics) worn on the non-dominant wrist. 

The device predominantly measures acceleration in a direction parallel to the face of the 

device with a continuous sampling frequency of 32 Hz. By built-in data processor, the raw 

acceleration data were integrated into proprietary counts in 15-second epochs (actigraphy 

data) that essentially reflect the movement amplitude. The activity recordings were subject 

to signal quality screenings with the assistance of a self-designed MATLAB GUI program 
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(Ver. R2015a, the MathWorks Inc.) in order to identify: i) isolated huge spikes with 

amplitude going beyond 10 standard deviations away from the individual global mean levels; 

and ii) sequences of zeros with duration > 60 minutes during the daytime (as occurred when 

participants took the device off). The identified data points or segments were marked as gaps 

(52). Recordings of < 4 days or with identified gaps > 60% of data were excluded prior to 

subsequent analysis.

Assessment of fractal regulation

To assess the fractal regulation of motor activity, detrended fluctuation analysis (DFA) was 

performed to examine the temporal correlations of motor activity fluctuations at different 

timescales (52, 53). The method calculates the fluctuation amplitude, F(n), as a function of 

timescale n. Specifically, for a time series {xi|i = 1,2, …, N}, DFA performs following 

processes (see figs. S2 and S3 for demonstrations) (6, 51):

1. Removing the global mean and integrating the time series by Xt = i 1
t xi x ,

where x denotes the mean value of the time series xi;

2. Dividing the integrated signal Xt into non-overlapping windows of the same 

chosen size n;

3. Detrending the integrated signal Xt in each window using polynomial functions 

to obtain residuals by Xt = Xt − Y t, where Yt denotes the trend obtained by 

polynomial fit and Xt the integrated time series after detrending;

4. Calculating the root mean square of residuals in all windows as detrended 

fluctuation amplitude using F n = 1
N t 1

N
Xt

2 .

The same four steps are repeated for different timescales (n). The 2nd order of polynomial 

function was used to detrend data in step 3 to eliminate the effect of possible linear trends in 

original data (6). A power-law form of F(n), where F(n)~nα, indicates a fractal structure in 

the fluctuations (Fig. 1). The parameter α, called the scaling exponent, quantifies the 

temporal correlation as follows: if α = 0.5, there is no correlation in the fluctuations (‘white 

noise’); if α > 0.5, there are positive correlations, where large values are more likely to be 

followed by large values (and vice versa); if α < 0.5, there are negative correlations, where 

large values are more likely to be followed by small values (and vice versa). For many 

physiological outputs under healthy conditions, α values are close to 1.0 (6, 54–56), 

indicating the most complex underlying control mechanisms. To ensure reliable estimation 

of F(n) at a timescale n, at least six segments without gaps of size n are required. Otherwise 

F(n) at and beyond that timescale will not be estimated. We have implemented the DFA 

using computer programs written in MATLAB which are openly available at Zenodo (57).

In humans, aging and dementia lead to breakdown in the multiscale patterns in motor 

activity that can be as characterized by different correlations (indicated by different α) over 

two distinct timescale regions with the boundary at ~1.5-2 hours (13, 16, 40). Thus, two 

scaling exponents of F(n) were calculated in this study: α1 at < 90 minutes, and α2 from 2 

hours up to 10 hours (Fig. 1). Note that the transitional region of timescales between 1.5 and 

Li et al. Page 10

Sci Transl Med. Author manuscript; available in PMC 2020 February 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2 hours was omitted. To ensure a reliable estimation of α1, F(n) must be available for up to 

at least n = 5 min. To ensure a reliable estimation of α2, F(n) must be available between 

timescales n = 2 hours to at least 8 hours.

Annual assessment of frailty

Physical frailty was assessed annually based on five components (58): (1) Gait speed was 

based on time to walk 8 feet; (2) Grip strength is measured using the Jamar hydraulic hand 

dynamometer (Lafayette Instruments) and is the average of 4 trials (2 per hand); (3) BMI 

was calculated as weight (kg)/height-m2; (4) Fatigue was assessed using two questions 

derived form a modified version of the Center for Epidemiologic Studies - Depression Scale; 

and (5) Self-reported physical activity was based on the number of hours per week that 

participants engage in 5 types of activities including walking, gardening, calisthenics, 

bicycle riding, and swimming. We dichotomized each of the five components used to 

construct a categorical composite measure of physical frailty similar to other investigators 

(59). The lowest quintile of grip, gait, BMI and physical activity were defined as frail and 

any reports of fatigue were considered consistent with frailty. Due to level differences 

between men and women on performance measures, sex-specific quintiles were used for 

grip, gait and physical activity. Similar to Fried et al (59), frailty was present in participants 

with 3 or more frail components.

Annual assessment of disability

Disability was annually assessed using three tests including basic activities of daily living 

(ADL), instrumental activities of daily living (IADL), and mobility disability. ADL was 

assessed using a modified version of the Katz measure (34, 60). IADL was assessed using 

items adapted from the Duke Older Americans Resources and Services project (34, 61). The 

Rosow-Breslau scale was used to assess mobility disability (62). These assessments resulted 

in three composite measures, separately, for ADL (ranging between 0-6), IADL (0-8), or 

mobility disability (0-3) with the values indicting the numbers of items required help/

assistance reported by the participants. For each composite measure, the participants who 

had non-zero values were classified as having disability.

Other covariates

To test whether the multiscale indices predict incident frailty, incident disability, and 

mortality independent of known risk factors, we also consider the following covariates at 

baseline:

• chronic health conditions assessed by a composite measure of three vascular risk 

factors (hypertension, diabetes, and smoking) and a cumulative score for four 

vascular diseases (myocardial infarction, congestive heart failure, claudication, 

and stroke) (35);

• depressive symptoms assessed by the modified 10-item Center for Epidemiologic 

Studies Depression scale (63, 64);

• cognitive performance assessed by a composite score of cognition based on 

performances on 19 neuropsychological tests (65);
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• motor function assessed by a composite score covering 10 motor performance 

tests (50);

• total daily activity assessed in term of counts per day estimated based on 

actigraphy (3, 35, 66).

Statistical analysis

A series of Cox proportional hazards models were used to assess the associations of fractal 

indices with incident frailty, incident disabilities, and all-cause mortality. Results are 

reported as hazard ratio (HR) and 95% confidential intervals (CI). For each outcome (frailty, 

ADL, IADL, mobility disability, and all-cause mortality), we performed two core models 

that included α1 (model A1) or separately α2 (model A2) as a predictor while controlled for 

age, sex, and education. As secondary analysis, we augmented the two core models by 

further adjusting for: chronic health conditions (models B1 and B2); depressive symptoms 

(models C1 and C2); cognitive performance (models D1 and D2); motor function (models 

E1 and E2); physical activity (models F1 and F2).

For the core models for mortality, we also adjusted for baseline frailty and disability 

measure (models G1/2, H1/2, I1/2, and J1/2) to test whether frailty or disability could 

mediate the associations between α1/α2 and death. These statistical analyses were done 

using JMP Pro (Ver. 13, SAS Institute). The proportional hazards assumption was assessed 

using a global χ2 test in R (67). Statistical significance was determined a priori at nominal 

level of alpha = 0.05 (two-sided). Considering our hypothesis testing involves two predictors 

(α1 and α2) and five incident events (frailty, ADL, IADL, mobility disability, and all-cause 

mortality), we re-examined the association after correction for multiple comparisons using 

false discovery rate (FDR) (68), and the results were unchanged (Table 2).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Fractal patterns of daily motor activity fluctuations.
(A-B) Representative motor activity recordings of two ~81-year-old female participants. The 

participant whose activity is shown in (A) survived after the follow-up of 9 years; the 

participant whose activity is shown in (B) was deceased 7 years after baseline. Gray shaded 

area indicates 9PM-7AM. (C) The detrended fluctuation analysis results of the signals in (A) 

and (B). The fluctuation functions F(n) at different timescale n are plotted in log-log scale. 

F(n) is fitted using power-law functions in two regions: 1.25-90 min and 120-600 min. The 

slopes of the fitting lines in the two regions are denoted by α1 and α2, respectively. For 

better visualization and comparison between the two signals, F(n) of signal (B) has been 

vertically shifted.
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Fig. 2. Predicted survival curves from Cox proportional hazards models.
The predicted probabilities of being not frail for two representative participants whose 

fractal metrics (A) α1 or (B) α2 were in the 90th (dashed lines) or the 10th percentiles (solid 

lines). Shading in (B) indicates not statistically significant association between α2 and 

incident frailty.
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Fig. 3. Predicted survival curves from Cox proportional hazards models.
The predicted probabilities of being not ADL disabled (left), not IADL disabled (middle), 

and not mobility disabled (right) for two representative participants whose fractal metrics 

(A-C) α1 or (D-F) α2 were in the 90th (dashed lines) or the 10th percentiles (solid lines). 

Shading in (E-F) indicates not statistically significant association between α2 and the 

corresponding outcome.
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Fig. 4. Predicted survival curves from Cox proportional hazards models.
The predicted probabilities of survival for two representative participants whose fractal 

metrics (A) α1 or (B) α2 were in the 90th (dashed lines) or the 10th percentiles (solid lines).
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