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Abstract

Efficient water use assessment and irrigation management is critical for the sustainability of 

irrigated agriculture, especially under changing climate conditions. Due to the impracticality of 

maintaining ground instrumentation over wide geographic areas, remote sensing and numerical 

model-based fine-scale mapping of soil water conditions have been applied for water resource 

applications at a range of spatial scales. Here, we present a prototype framework for integrating 

high-resolution thermal infrared (TIR) and synthetic aperture radar (SAR) remote sensing data 

into a soil-vegetation-atmosphere-transfer (SVAT) model with the aim of providing improved 

estimates of surface- and root-zone soil moisture that can support optimized irrigation 

management strategies. Specifically, remotely-sensed estimates of water stress (from TIR) and 

surface soil moisture retrievals (from SAR) are assimilated into a 30-m resolution SVAT model 

over a vineyard site in the Central Valley of California, U.S. The efficacy of our data assimilation 

algorithm is investigated via both the synthetic and real data experiments. Results demonstrate that 

a particle filtering approach is superior to an ensemble Kalman filter for handling the nonlinear 

relationship between model states and observations. In addition, biophysical conditions such as 

leaf area index are shown to impact the relationship between observations and states and must 

therefore be represented accurately in the assimilation model. Overall, both surface and root-zone 

soil moisture predicted via the SVAT model are enhanced through the assimilation of thermal and 

radar-based retrievals, suggesting the potential for improving irrigation management at the 

agricultural sub-field scale using a data assimilation strategy.
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1. Introduction

Optimizing crop water usage efficiency and maintaining water sustainability are challenging 

under rapidly changing natural conditions. In recent years, California has experienced 

periods of extreme drought characterized by seasonal precipitation deficits and elevated air 

temperature [Diffenbaugh et al., 2015; Griffin and Anchukaitis et al., 2014]. Reduced 

surface water availability during these droughts has led to increased groundwater 

withdrawals for satisfying irrigation demands and resulted in prominent groundwater 

depletion [Famiglietti et al., 2011; Borsa et al., 2014].

Spurred by the high economic value of wine-grape production in California, the increasing 

acreage of vineyards and their irrigation requirements pose a challenge given limited 

irrigation water availability and policies devoted to ensuring sustainable groundwater 

management [Escriva-Bou et al., 2016]. In addition, the yield and quality of wine grapes are 

often closely linked to available soil water content. Typically, intensified vine water stress in 

the early grape growing season (from bud break to fruit set) can reduce vine foliage growth, 

berry size and yield. In contrast, moderate amount of water stress is desirable in the later 

growing season (from veraison to harvest) for improving grape quality and composition 

[Salón et al., 2005; Sivilotti et al., 2005; van Leeuwen et al., 2009].

Recently, there has been increased interest in the application of variable rate drip irrigation 

systems as testbeds for precision irrigation management over vineyards [Sanchez et al., 

2017]. In such systems, an accurate characterization of the time/space heterogeneity in soil 

moisture at the sub-field-scale (30-m) can be used to guide the application of spatially 

varying irrigation rates – targeting enhanced water applications to sub-areas within the 

vineyard where soil moisture deficits are highest. The goal of these practices is to develop 

optimal irrigation management strategies, improve wine-grape yield, quality, and 

homogeneity across the vineyard [Oliveira, 2001; Valdés-Gómez et al., 2009; Acevedo-

Opazo et al., 2010] and increase the sustainability of agricultural production [Scanlon et al., 

2012; Amos et al., 2014]. However, to reach their full potential, these approaches require 

access to high-quality descriptions of soil moisture and/or evapotranspiration (ET) at the 

sub-field-scale.

Ground-based instrumentation has been applied to characterize soil moisture, ET and crop 

water stress conditions at local scales [Dorigo et al., 2011; Baldocchi et al., 2001]. In 

addition, various conceptual or physical numerical models have been developed that 

quantify and track surface water and energy fluxes at different spatial and temporal scales 

using water and energy balance principles [Olioso et al., 1999; Courault et al., 2003]. 

Finally, with the development of satellite-based sensors, certain land surface hydrological 

and biophysical variables can be retrieved remotely to complement ground-based 
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observations and models [Bastiaanssen et al., 2000; Dorigo et al., 2007; Kustas and 

Anderson, 2009].

Among various satellite-based microwave sensors, Synthetic Aperture Radar (SAR) 

instruments, such as the C-band SAR onboard the Sentinel-1 constellation [Torres et al., 

2012], enable the highest resolution (1-m to 1-km) retrieval of surface soil moisture 

conditions. SAR sensor have revisit times ranging from days to weeks. In addition, SAR 

signals are highly sensitive to surface roughness conditions and biomass, especially for 

spatially heterogeneous land cover types, introducing complexities for retrieving reliable soil 

moisture information [Hornacek et al., 2012]. Moreover, SAR sensors penetrate only the top 

couple of centimeters of the soil profile (0–5 cm), limiting their value for agricultural (i.e., 

root-zone) applications.

Likewise, using land surface temperature (LST) retrievals from satellite-based thermal 

infrared (TIR) imagery, terrestrial ET can be derived by contrasting radiometric surface 

temperature and aerodynamic temperature [Norman et al., 1995; Kustas and Norman, 1996]. 

One widely applied ET estimation approach is the Atmosphere-Land Exchange Inverse 

(ALEXI) model [Anderson et al., 2007] and its associated disaggregation algorithm 

(DisALEXI) [Norman et al., 2003; Anderson et al., 2004], which allows multi-scale 

applications from coarse-resolution global-scale down to fine-scale (30-m) at the sub-field 

level. By normalizing the atmospheric demand for water vapor, the ratio of actual-to-

potential ET or fractional potential ET (referred to as fPET hereinafter) reflects soil water 

availability for soil evaporation and canopy transpiration [Pereira et al., 2015]. This ratio has 

been widely applied as an indicator of evaporative stress [Anderson et al., 2007; Yang et al., 

2018], crop yield [Anderson et al., 2016a, b; Semmens et al., 2016; Mladenova et al., 2017], 

drought conditions [Anderson et al., 2011a; 2013], and root-zone soil moisture [Hain et al., 

2011; Fang et al., 2016]. In particular, Hain et al. [2012] linked fPET to the volumetric soil 

water content at different vertical depths by taking into account the vegetation density. Over 

bare soil or lightly vegetated conditions, ET mainly comes from direct soil evaporation 

which, like microwave sensors, reflects soil water availability in only the first several 

centimeters of soil. However, when ET is dominated by canopy transpiration over a dense 

vegetation canopy, fPET represents integrated soil moisture conditions within the entire 

effective vegetation rooting zone [Fang et al., 2016].

Surface- and root-zone soil moisture information derived from various satellite sensors can 

be integrated with numerical physical models via data assimilation techniques [Crow et al., 

2008; Brocca et al., 2012; Lievens et al., 2017; Reichle et al., 2017]. Through data 

assimilation, instantaneous remotely-sensed measurements are used to sequentially update 

continuous model simulations of water and energy fluxes. However, both microwave- and 

TIR-based soil moisture estimates have significant limitations as a source of such 

measurements. For example, realizing improvement in root-zone soil moisture via the 

assimilation of microwave-based surface soil moisture requires an accurate model 

representation of the vertical coupling between surface- and root-zone soil moisture [Chen et 

al., 2011; Lievens et al., 2015]. Likewise, the TIR-based fPET can reflect the integrated root-

zone water availability — but only under water-limited conditions [Anderson et al., 2007; 

Joiner et al., 2018]. Therefore, the best operational approaches for monitoring root-zone soil 
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water content will likely integrate multiple sources of information. Motivated by the recent 

availability of high-resolution TIR-based root-zone soil moisture information product from 

ALEXI/DisALEXI and SAR-based surface soil moisture retrievals from Sentinel-1 [Pasolli 

et al., 2015; Attarzadeh et al., 2018], this paper describes the construction and evaluation of 

a data assimilation system designed to simultaneously assimilate both SAR- and TIR-based 

soil moisture information into a continuous, fine-scale water-energy-balance soil-vegetation-

atmosphere transfer (WEB-SVAT) model with the eventual goal of improving agricultural 

irrigation management over California vineyards.

For current geoscience applications, the ensemble Kalman filter (EnKF) and particle filter 

(PF) are perhaps the most widely used sequential data assimilation techniques for integrating 

sporadic observations into a continuous background model. The EnKF relies on the 

evolution of an ensemble of model realizations to predict the model prior probability 

distribution function [Evensen, 2003]. However, the nonlinearity of hydrological and land 

surface models and the bounded nature of various geophysical variables (e.g., soil moisture) 

can violate the linear model and/or Gaussian error assumption in the EnKF and lead to 

suboptimal estimates [Moradkhani et al., 2005]. Unlike the EnKF, which assumes Gaussian 

distribution properties and only tracks the first and second moments of the state distribution, 

the PF uses an ensemble of random particles to characterize the entire probability density 

function and, therefore, does not require a linearity assumption in either its model forecast or 

analysis steps [van Leeuwen, 2010]. Considering the likely nonlinear relationship between 

soil moisture and fPET [Seneviratne et al., 2010], the PF is potentially superior to the EnKF 

when assimilating fPET. However, the comparison of EnKF versus PF in handling nonlinear 

relationships between observations and model states has not been examined closely for the 

assimilation of both microwave and thermal-based soil moisture information.

Here, the efficacy of different data assimilation algorithms is explored for the fine-scale 

mapping of soil moisture within a highly heterogeneous vineyard landscape in California. 

Our study area, remote sensing data products, model and data assimilation framework are 

described in Section 2. Results from synthetic and real data assimilation experiments are 

presented in Section 3 and discussed in Section 4. Conclusions are presented in Section 5.

2. Materials and Methods

2.1 Study Area

Our high-resolution data assimilation framework is implemented over a 780-m by 420-m 

(32.8 ha) Pinot Noir (Vitis vinifera) vineyard located in the California Central Valley near 

Lodi, CA (38.29° N, 121.12° W, Figure 1a) — hereinafter referred to as the “Sierra Loma” 

site (the name of this site has recently been updated and has been referred to as either “Lodi” 

or “Borden” in previously published studies). Beginning in 2013, the Grape Remote Sensing 

Atmospheric Profile and Evapotranspiration eXperiment (GRAPEX) project has conducted 

extensive satellite and field measurements at the site to improve water management 

strategies for vineyards. These measurements include satellite and airborne-based water and 

energy fluxes estimates (e.g., ET and LST), crop physiological properties (e.g., leaf area 

index and LAI), and in-situ meteorological conditions and surface fluxes validation data 

[Kustas et al., 2018].
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Figure 1b shows two adjacent vineyards at the GRAPEX Sierra Loma site, of which the 

north block is selected here as the main test field. An eddy covariance micro-meteorological 

system is mounted on a 10-m tower at the east side of vineyard (Figure 1c). Continuous 

meteorological and radiation measurements are recorded at the 15 min interval, allowing for 

the estimation of ET and other energy fluxes as described in Alfieri et al. [2019]. 

Specifically, a four-component net radiometer (CNR-1, Kipp and Zonen, Delft, 

Netherlands1) mounted at 6 m above ground level (a.g.l) measures the full radiation budget. 

Air temperature and humidity are measured using three combined temperature and humidity 

probes (HMP45C, Vaisala, Helsinki, Finland) mounted at 2.5, 5, and 8 m a.g.l. Other 

meteorological measurements collected at 5 m a.g.l of the tower include wind velocity 

measured using a three-dimensional sonic anemometer (CSAT3, Campbell Scientific) and 

air pressure measured using barometric pressure sensor (CS-106, Campbell Scientific). A 

tipping bucket rain gauge (TE-525, Texas Electronics, Dallas, Texas) was originally 

mounted at 5.5 m a.g.l and then lowered to 3 m after the 2016 growing season.

The average annual precipitation and mean temperature of this study site are about 190 mm 

and 16 °C, respectively. The vineyard soil texture is roughly clay loam, with an average 

texture content of 29% sand and 32% clay. The perennial grapevine root depth is 

approximately 1 m with dense roots gathered at 0.3–0.6 m below ground level (b.g.l.). 

Profile soil water content is measured using probes (HydraProbe, Stevens Water Monitoring 

Systems) installed under the vines at three locations near the flux tower at depths of 30, 60, 

and 90 cm. A cross-row transect characterization of soil water content has been conducted 

using five soil moisture probes at a depth of 5 cm since 2013, with two sensors at the center 

of vine-rows, one sensor at the middle of inter-row, and two more sensors at either side 

between vine-row and inter-row centers.

The Sierra Loma vineyard contains a highly-structured vine canopy and the shoot 

positioning trellis system is illustrated in Figure 1d. Vines are planted 1.5 m apart along an 

east-west orientation, with 3.35-m spacing between vine rows. The main vine stems are 

trained to the first cordon at a height of 1.45 m a.g.l, and vine shoots are maintained at 1.9 m 

a.g.l. The vine buds normally start to swell (bud break) and sprout during April, with peak 

growing season from June to August and harvest in September. Vine shoots can reach a 

maximum height at 2.0–2.5 m a.g.l with the majority of vine biomass concentrated in the 

upper half of this height. Pruning of vines is conducted to remove shoots growing 

significantly into the inter-row and maintain a nominal canopy width of 1 m during the 

growing season. The grass cover crop in the inter-row extends about 2 m in width and can 

reach a height of approximate 50 cm before vine bud break. It is mowed when vines start to 

develop in late April or early May. When viewed at nadir, the field is (approximately) 

covered by 40% of the vine-row and 60% of the inter-row [Kustas et al., 2019]. This 

geometry of vine-row and inter-row spaces is explicitly considered in the modelling process 

described below in Section 2.4.

1The use of trade, firm, or corporation names in this article is for the information and convenience of the reader. Such use does not 
constitute official endorsement or approval by the US Department of Agriculture or the Agricultural Research Service of any product 
or service to the exclusion of others that may be suitable.
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The timing and amount of applied irrigation vary between years depending on pre-growing 

season soil water storage, precipitation conditions, and the applied vine water stress 

management protocol. Occasional irrigation is commonly applied to replenish the soil 

profile between bud break in early April and flowering in late May. Intensive irrigation (i.e., 

5–6 daily applications per week) does not begin in earnest until early June and lasts until late 

August or early September. After harvest, the soil water profile is intermittently recharged 

by irrigation before the arrival of winter precipitation. Drip irrigation pipes run parallel with 

row trellis at 0.3 m a.g.l, with two drip emitters between each vine. Irrigation is recorded in 

gallons of water per vine per hour and converted into mm hour−1 using the vine areal unit 

(1.5 m by 3.35 m).

2.2 ALEXI/DisALEXI Fractional Potential Evapotranspiration

High-resolution ET estimates are derived through the multi-scale ALEXI and DisALEXI 

framework [Anderson et al., 2007; 2011a] based on the Two-Source Energy Balance (TSEB) 

model [Norman et al. 1995; Kustas and Norman 1999]. The TSEB is applied to LST 

imagery acquired from the polar-orbiting Landsat and the Moderate Resolution Imaging 

Spectroradiometer (MODIS) sensors. Specifically, the DisALEXI spatial disaggregation 

scheme is utilized for ensuring reaggregated ET flux based on Landsat (30-m, sharpened 

with reflectance band data) and MODIS (500-m) resolution simulations matches ALEXI ET 

estimates at the continental-scale (4-km). This ALEXI/DisALEXI framework facilitates the 

implementation of TSEB to the scalable flux and moisture stress mapping for multi-scale 

applications [Anderson et al., 2011b]. Furthermore, a data fusion algorithm developed by 

Gao et al. [2006], the Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM), 

is integrated with the ALEXI/DisALEXI to combine daily, MODIS-scale (500-m) retrievals 

with biweekly, Landsat-scale (30-m) retrievals and generate a daily, 30-m ET time series 

[Cammalleri et al., 2013]. Additional background on ALEXI/DisALEXI ET estimates can 

be found in Appendix A.

To minimize the impact of temporal variations in available energy and atmospheric demand 

for evaporative rate, retrieved ET is normalized by the potential rate of ET under unstressed 

conditions over grass [Allen et al., 1998]. This ratio, fPET, helps to isolate the impact of soil 

water limitations on ET [Anderson et al., 2011a; Yang et al., 2018]. More specifically, when 

soil water content lies between wilting point and field capacity, canopy transpiration is 

constrained by water availability and atmospheric evaporative demand cannot be fully 

satisfied. Since ET composites both surface evaporation and canopy transpiration, fPET 

reflects the signal of the integrated surface to root-zone soil water profile as a constraining 

factor for ET under water-limited condition. The potential ET is estimated at the MODIS 

500-m resolution using the Penman-Monteith equation [Allen et al., 1998] and 

meteorological inputs obtained from the Climate Forecast System Reanalysis [Saha et al., 

2010] — the same data source utilized in ALEXI/DisALEXI to estimate ET. 30-m LAI 

images acquired at Landsat acquisition dates are derived using the 4-day MODIS LAI 

product through an upscaling process and a regression tree analysis [Gao et al., 2012]. 

Landsat LAI are then smoothed and gap-filled using the Savitzky-Golay filter approach to 

generate daily 30-m LAI. Over the Sierra Loma site, daily fPET time series at 30-m spatial 
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resolution, as well as LAI, are generated through ALEXI/DisALEXI and the STARFM 

fusion scheme from January 1, 2014 to December 31, 2017 [Knipper et al., 2019].

2.3 Sentinel-1 Surface Soil Moisture

Using C-band Synthetic Aperture Radar (C-SAR, 5.405 GHz) instruments onboard the 

Sentinel-1 satellites operating in both dual and single polarizations, high-resolution surface 

soil moisture retrievals are generated. As a constellation of two polar-orbiting satellites 

(Sentinel-1A and 1B), this product covers the entire global land surface on a 6-day repeat 

cycle with an ascending overpass at 6:00 pm local solar time. The interferometric wide 

swath mode of Sentinel-1 allows for a geometric resolution of 5 m by 20 m, facilitating the 

fine-scale mapping of soil moisture. Here, an algorithm based on the inversion of an 

analytical electromagnetic model through a feed-forward multilayer perceptron neural 

network (ANN) is employed to retrieve temporal changes in the surface soil moisture signal 

[Paloscia et al., 2013]. Although the retrieving process is challenged by the high complexity 

of SAR signal introduced by surface roughness and dynamic vegetation cover (particularly 

within structured agricultural fields) [Cunha et al., 2010], ground validation results have 

demonstrated promising accuracies of this approach over different land cover types [Gao et 

al., 2017; El Hajj et al., 2017; Attarzadeh et al., 2018].

Specifically, 2017 Sentinel-1 afternoon data are utilized to generate 20-m surface soil 

moisture imagery, referred to as θSSM, over the Sierra Loma site. For consistency with the 

ALEXI/DisALEXI fPET data, 20-m Sentinel-1 θSSM imagery is resampled onto a 30-m grid 

via drop-in-bucket averaging.

2.4 Water-Energy-Balance Soil-Vegetation-Atmosphere Transfer Model

The fine-scale WEB-SVAT model is applied to continuously track soil moisture evolution 

via a water balance approach. To facilitate a multiple soil layer configuration, the original 

force-restore model employed in Crow et al. [2008] is adapted to a simple conceptual 

representation of soil water source-sink processes [Hashemian et al., 2015]. One surface 

layer at 0–0.05 m depth, and four subsurface layers are defined at 0.05–0.3, 0.3–0.6, 0.6–0.9, 

and 0.9–1.2 m, respectively. The predicted total ET comprises soil evaporation from the 

surface layer and canopy transpiration from deeper layers. Typically, about 60% of 

grapevine roots are in the top 60 cm of the soil profile [Smart et al., 2006]. An exponential 

root water uptake module [Li et al., 2001] is incorporated into the canopy transpiration term, 

leading to a nonlinear relationship between model-predicted soil moisture states and fPET. In 

addition to solving soil water balance equations, WEB-SVAT solves a surface energy 

balance to derive ET. Note that, to maximize the consistency of WEB-SVAT and ALEXI/

DisALEXI ET predictions, WEB-SVAT uses a surface resistance scheme that is structurally 

equivalent to that applied in the TSEB (see Figure 2b and 2c). For additional details on 

WEB-SVAT water- and energy-balance calculations, see Appendix B.

To accommodate the high-resolution data assimilation of thermal and radar-based remote 

sensing products, the WEB-SVAT is implemented on the same 30-m by 30-m grid as the 

ALEXI/DisALEXI data described above (Figure 2a). The model is run on an hourly time 

step from January 1, 2014 to December 31, 2017.
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2.4.1 Tile Approach for Structured Vineyard—To account for the unique canopy 

distribution of a vineyard, a sub-grid tile approach is adopted to statistically represent sub-

grid heterogeneity in vegetation cover within each 30-m grid cell (see Figure 2). 

Specifically, an inter-row tile and a vine-row tile are defined to represent the cover crop 

(grass) and the vine canopy sub-grid fractions, respectively. As described in Section 2.1, 

when viewed at nadir, about 40% of each grid cell is covered by the vine-row and 60% by 

the inter-row [Kustas et al., 2019]. Thereby, estimated WEB-SVAT water and energy fluxes 

are weighted averages for each grid based on these areal fractions. This averaging is 

performed primarily to maximize the compatibility of WEB-SVAT flux and states estimates 

with (area-averaged) remote sensing products. Meteorological forcing inputs are assumed to 

be identical for both tiles, and the same physical underlying processes are utilized (Figure 

2).

30-m LAI values are sub-divided into two tiles by introducing a conceptual coefficient 

determining the LAI fraction of vine-row tile, which changes with different vine growth 

stages [Fraga et al., 2016]. Maximum canopy height and maximum root depth for vine-row 

and inter-row are 3 and 1.2 m, and 0.5 and 0.6 m a.g.l, respectively. The fraction of root 

density within the first 10-cm soil layer for determining profile root density is set to 0.2 [−] 

for both perennial vine and cover crop. Minimum canopy stomatal resistance values for 

vine-row and inter-row tiles are 400 and 200 s m−1, respectively. The same soil texture and 

soil hydraulic parameters are applied in both tiles based on clay loam lookup table values in 

Clapp and Hornberger [1978] — as well as the same vertical soil layer discretization 

scheme. Specifically, porosity is 0.47 m3 m−3 and residual soil water content is 0.08 m3 m−3. 

Soil moisture at field capacity and wilting point are estimated by assuming matrix potentials 

of −2.1 and −100 Mb, respectively.

2.4.2 Drip Irrigation Consideration—Drip irrigation is concentrated around drip 

emitters along irrigation pipes at the center of each vine row. Here, the impact of drip 

irrigation is simulated by separating vine-row and inter-row tiles as described in Section 

2.4.1. Particularly, precipitation is the same for both tiles, but drip irrigation only infiltrates 

into the vine-row tile (Figure 2a). In addition, a dimensionless rescaling factor of 2.5 [−] is 

applied to irrigation values to account for the concentration of area-averaged irrigation 

applications into only the vine row which occupies only 40% of the total area. Lateral flow 

between vine-row and inter-row tiles is neglected.

2.5 Data Assimilation Method and Framework

In our approach, fPET and θSSM are simultaneously assimilated into the WEB-SVAT model 

to improve root-zone soil moisture state estimates. Since the relationship between modelled 

soil moisture states and fPET observations is typically nonlinear [Seneviratne et al., 2010; 

Hain et al., 2012; Kustas et al., 2018], two different filter-based data assimilation algorithms 

— an ensemble Kalman filter (EnKF) and a particle filter (PF) — are examined to explore 

their relative efficacy for this nonlinear estimation problem. A brief overview of both 

approaches is presented below. For additional details, see Appendix C.
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2.5.1 Data Assimilation Setting—Based on the discussion presented in Gruber et al. 

[2015], the integration of model states and observations is conducted separately for each 

modelling grid. The model states in our application of WEB-SVAT consist of soil moisture 

states within five vertical soil layers for both the vine-row and inter-row tiles in each grid 

cell. Model-predicted observations are area-weighted averages of WEB-SVAT θSSM and/or 

fPET estimates for each tile. More specifically, when assimilating observations of daily fPET, 

the model-predicted observation is the ratio of tile-averaged daytime ET and potential ET, 

and the state vector contains the hourly soil moisture states at five layers of two tiles for a 

single day. To match with the overpass time of Sentinel-1, only states and model-predicted 

observations at 6 pm local solar time are considered in the assimilation of θSSM (Section 

2.3).

Typically, the PF requires more particles than EnKF ensemble members to obtain estimates 

of comparable accuracy [Weerts and Serafy, 2006]. This tendency is explored in the 

synthetic data assimilation experiments (Section 2.5.3) for determining the optimal particle 

number and ensemble size to utilize as a meaningful compromise between accuracy and 

computation cost.

2.5.2 Error Assumptions and Evaluation Metrics—Both the PF and EnKF require 

an accurate statistical representation of error in the assimilated observations. Here, the 

observation error variance of fPET is estimated by comparing daily DisALEXI data against 

the flux tower-based measurements. To accommodate the spatial footprint of flux tower 

measurements, DisALEXI fPET time series are extracted by averaging over a 90-m by 90-m 

box located to the west of the tower (based on predominant wind direction in the field). 

Likewise, the Sentinel-1 θSSM error variance is derived by comparing SAR retrievals against 

transect-averaged soil moisture measurements acquired across the row at the depth of 5 cm 

(see Section 2.1). Based on these comparisons, the observation error standard deviations of 

fPET and θSSM are fixed as 0.1 (unit-less) and 0.05 m3 m−3, respectively. These errors are 

assumed to be constant in both space and time, and the impact of varying them (on data 

assimilation results) is discussed in Section 4.

In addition, both the PF and EnKF are ensemble-based and require a Monte Carlo 

representation of modelling uncertainty. To capture such uncertainty, precipitation and 

irrigation inputs into the WEB-SVAT are perturbed at an hourly time step via multiplicative 

rescaling with mean-unity lognormally distributed random errors that have a standard 

deviation equal to 20% of the corresponding input amount. In addition, direct perturbations 

to soil moisture states at all depths of two tiles are applied to each daily time step without 

consideration of spatial or temporal autocorrelation. Both sub-grid tiles are perturbed 

independently with random errors sampled from a mean-zero, normal distribution with 

temporally varying standard deviation equal to 10% of the state value. Following Kumar et 

al. [2009], a vertical cross-correlation matrix is utilized to introduce vertical auto-correlation 

into perturbations applied to soil moisture states at different depths. In addition, at the start 

of the analysis on January 1, 2014, initial values of soil moisture at five layers are sampled 

from bounded uniform (U) distributions of U(0.25, 0.45), U(0.30, 0.40), U(0.35, 0.45), 

U(0.28, 0.37), U(0.28, 0.37) for the vine-row, and U(0.15, 0.40), U(0.25, 0.35), U(0.25, 

0.35), U(0.30, 0.40), U(0.30, 0.40) for the inter-row, respectively. These perturbation error 
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assumptions are held constant in all the synthetic and real data assimilation experiments 

described below. All experiments are repeated 50 times to reduce the impact of varying 

initial conditions and random number sequences.

Two metrics are used here to evaluate the efficacy of data assimilation, including the root-

mean-square-error (RMSE) and the normalized error reduction (NER) defined as the 

difference between unity and ratio of posterior and prior RMSEs of data assimilation [Chen 

et al., 2011]. NER varies from negative infinity to 1.0, with 1.0 indicating a perfect match 

between true values and updated states after assimilation and negative values indicating 

degradation upon assimilation.

2.5.3 Synthetic Twin Experiment—To first explore the merits of the EnKF and PF 

algorithms in assimilating daily fPET and biweekly θSSM for improving root-zone soil 

moisture states, synthetic twin data experiments are conducted to determine the optimal 

ensemble size or particle number. These experiments follow the structure of a typical 

identical twin experiment with four key components. First, a single model run with in-situ 

meteorological forcing data and calibrated parameters is defined as the synthetic benchmark 

“TRUE” scenario. This scenario is further used for generating synthetic observations 

consistent with pre-defined observation error assumptions (Section 2.5.2). A single-member 

open loop run (“OL”) is then generated based on the model state and forcing perturbations 

as specified above. Next, synthetic observations of fPET and θSSM are either separately or 

simultaneously (depending on the case) assimilated into the model for correcting random 

errors in forcing and states (“DA”). Resulting state predictions are evaluated based on their 

ability to recover the TRUE scenario.

The optimal ensemble size or particle number is determined by exploring a range of choices. 

Using resulting optimized values of ensemble size or particle number, the relative 

advantages of PF versus EnKF are investigated for handling non-linearities in our estimation 

problem. The time range for all synthetic experiments is from January 1, 2014 to December 

31, 2017.

2.5.4 Real Data Experiment—In addition to these synthetic experiments, a real data 

assimilation experiment is performed to test the efficacy of assimilating actual remote 

sensing observations. Here, the open loop (“OL”) scenario is the model run with calibrated 

parameters and flux tower meteorological data. Perturbations of precipitation/irrigation and 

soil moisture states are the same as those applied during the synthetic twin experiments. 

Likewise, the observation error assumptions for fPET and θSSM are fixed in both time and 

space at values used above. Following Hain et al. [2012], both Sentinel-1 θSSM and 

DisALEXI fPET observations are rescaled to match the first (mean) and second (standard 

deviation) statistical moments of the model soil moisture climatology. The temporal range of 

real data experiments is constrained by the availability of Sentinel-1 θSSM from January 1, 

2017 to December 31, 2017. Note that, unlike the synthetic twin experiments described 

above, the evaluation of these runs is limited to a single, 30-m grid cell where ground-based 

soil moisture observations are available during the 2017 growing season. Generally, there are 

no significant differences in meteorological conditions across the study area, and this 
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selected validation pixel is representative of vineyard-wide irrigation management, vine 

biomass and maturity conditions.

Since soil moisture and fPET are de-coupled during energy-limited conditions in the winter, 

the assimilation of DisALEXI fPET is limited to the summertime period of April 1 to 

September 10 for the real data experiment. The relationship between soil moisture and fPET 

is further investigated in Section 4.1. Likewise, since the accuracy of SAR-based retrievals is 

known to vary as a function of biomass, an additional real data assimilation experiment is 

described in Section 4.2 where retrieval errors in Sentinel-1 θSSM estimates are scaled as a 

function of LAI.

3. Results

3.1 Modelling of Vine-row and Inter-row Tiles

Prior to any data assimilation experiments, WEB-SVAT surface (0–0.05 m) soil moisture 

estimates are evaluated against in-situ ground measurements in Figure 3. Since precipitation 

at the Sierra Loma site generally occurs during the spring and winter seasons (Figure 3a), 

the soil is kept wet with mean value greater than 0.3 m3 m−3 from January to March. Since 

vines are dormant in this period, bare soil evaporation and transpiration from the inter-row 

cover crop are the primary processes depleting soil moisture. Vine canopies start to emerge 

and develop in April when soil moisture is still relatively high. Starting in May, the soil 

starts to dry out with rapid vine growth and mowing of the inter-row cover crop. Surface soil 

water content in the inter-row falls to almost residual levels soon afterwards and does not 

recover until precipitation returns in late fall or winter (see Figure 3c). In contrast, within the 

vine-row, occasional irrigation starts in May and intensive irrigation runs between June and 

grape harvest in September.

As a result, from May to November, large horizontal contrasts in surface soil moisture are 

observed between the inter-row and vine-row (Figure 3c and 3d) due to localized drip 

irrigation along the vine-row. These contrasts are reflected in our application of WEB-SVAT 

soil moisture states in the vine-row and inter-row. Nevertheless, WEB-SVAT slightly 

overpredicts surface soil moisture within the vine-row prior to March when vines are in 

dormancy and not transpiring. Moreover, model-predicted vine-row soil moisture stays at a 

relatively constant high level throughout the June to September intensive irrigation period, 

while in-situ observations show stronger temporal fluctuations during this period. This may 

be partially attributable to subtle differences in the support of each estimate. The vine-row 

soil moisture probes are installed directly underneath the irrigation drip line. As a result, 

ground-based measurements represent localized signals and capture quick responses to 

irrigation. In contrast, model-predicted soil moisture states are representative of a more 

areal-averaged signal and therefore evolve in a somewhat smoother manner.

3.2 Synthetic Twin Experiments

In the synthetic twin experiment, the model simulation (Section 3.1) with ground-based 

forcing inputs is deployed as the “TRUE” simulation and used for generating synthetic 

observations as described in Section 2.5.3. Therefore, the OL and DA scenarios are 
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compared against the TRUE simulation to quantify the net impact of data assimilation. See 

Section 2.5.3 above for details. The primary goals of the synthetic data assimilation 

experiments are to: (1) examine sample size requirements for the PF and EnKF, (2) cross-

compare PF and EnKF performance for a constant sample size, and (3) explore factors 

affecting the degree to which data assimilation improves root-zone soil moisture estimation.

3.2.1 Impact of Sample Size—Figure 4 plots NER values for grid-level soil moisture 

states (obtained via the weighted averaging of vine-row and inter-row values) within the first 

and root-zone layers as a function of ensemble size for the EnKF and particle sample size 

for the PF. Note that root-zone estimates are based on the weighted averaging of soil 

moisture in the second, third and fourth modelled layers (i.e., mean soil moisture between 5 

and 90 cm).

All EnKF and PF results indicate improved data assimilation performance (higher NER 

values) with increasing sample size, especially for root-zone soil moisture. In addition, the 

impact of initial conditions and random number sequences is reduced (i.e., error bars are 

narrowed) when sample sizes are increased from 10 to 500. For the EnKF, increasing 

ensemble size enhances the robustness of data assimilation (smaller error bars) but 

introduces only marginal improvements (slightly increased median NER) for the surface soil 

moisture when daily fPET is assimilated. In contrast, the estimation of root-zone soil 

moisture is consistently improved by increasing ensemble size (see Figure 4a). For the PF, 

moderate improvement is achieved by increasing the sample size from 10 to 25 (Figure 4c), 

and NER gradually increases with larger particle numbers from 50 to 500. However, 

additional NER improvements are marginal when ensemble size/particle number is larger 

than 100 for both surface and root-zone soil moisture for both the assimilation of daily fPET 

(Figure 4a and 4c) or biweekly θSSM (Figure 4b and 4d). Therefore, as a compromise 

between DA performance and computational cost, a sample size of 100 is applied in all 

subsequent experiments.

3.2.2 Particle Filter Versus Ensemble Kalman Filter—Figure 5 shows the soil 

moisture RMSE differences (i.e., EnKF RMSE minus PF RMSE) based on the synthetic 

twin experiment results for the two data assimilation methods (EnKF and PF) at five 

different soil moisture depths. For the assimilation of daily fPET in Figure 5a, positive RMSE 

difference values indicate that the PF performs better for vine-row soil moisture states. In 

contrast, the EnKF yields greater error reductions (i.e., smaller RMSEs and therefore 

negative RMSE differences) for the inter-row states, especially in the top four soil layers. 

However, in terms of overall results at the grid-level (based on the weighted averaging of 

vine-row and inter-row results), the PF outperforms EnKF for most multi-layer soil moisture 

states at different depths. Overall, smaller differences between the EnKF and PF are noted 

when assimilating biweekly θSSM (Figure 5b). In this case, EnKF results are generally only 

slightly superior.

The difference in the relative performance for the EnKF versus PF for the fPET and θSSM 

assimilation cases are consistent with our a priori expectations concerning the linearity of 

their relationship with updated soil moisture states. The relationship between soil moisture 

states and fPET is nonlinear (as characterized via Eq. B5). In contrast, θSSM is linearly 
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related to surface soil moisture. Especially for the vine-row tile, reductions in soil moisture 

are linked to the exponential root water uptake through transpiration, and thus nonlinearly 

related to fPET values. For inter-row tile, this nonlinearity is weaker since the cover crop is 

senescent from May to October and transpiration is limited to superficial soil layers due to 

the shallower rooting depth for inter-row cover crops. Therefore, cases with strong 

nonlinearity (e.g., fPET assimilation into the vine-row) tend to favor the PF while the EnKF 

performs better in more linear cases (e.g., θSSM assimilation and fPET assimilation into the 

inter-row). Note that the nonlinearity can also originate from the boundary truncation 

imposed on soil moisture states. Such truncation can lead to a non-Gaussian distributed state 

ensemble. When fPET is assimilated, the relative merit of PF versus EnKF for solving 

stronger nonlinearity between model states and observation is identified.

Nevertheless, for the same level of computation demand (i.e., 100 ensemble members versus 

100 particles) and the simultaneous assimilation of both daily fPET and biweekly θSSM 

(Figure 5c), the PF demonstrates overall superior performance — particularly in the vine-

row (which is naturally our primary concern for irrigation scheduling). Accordingly, a 100-

particle PF is utilized in all subsequent data assimilation experiments.

3.2.3 Spatial Patterns in NER—As described above, the performance of any data 

assimilation algorithm is fundamentally related to the strength of the relationship between 

observations and model states. Figure 6i shows the mean annual LAI for the study area. LAI 

is relatively high in the central part of the vineyard from its northeast to southwest corner 

and relatively low in its northwest and southeast corners. Enhancements to both root-zone 

soil moisture (Figure 6f) and ET (Figure 6h) associated with fPET assimilation (and a 

synthetic twin experiment) are moderately larger for areas of high LAI — likely reflecting 

the tighter coupling of soil moisture states and fPET in these areas.

Figure 7 summarizes aggregate NER values for vine-row surface and root-zone soil moisture 

estimates as a function of LAI. For grid cells with LAI less than 1.3 m2 m−2, soil moisture 

values in deeper soil layers tend to be higher due to less ET extraction of soil water. This 

leads to stronger PF updates, and thus higher NER, since the variance of model perturbations 

(and thus the strength of PF updates) increases as a function of soil moisture.

Another factor related to LAI is the coupling strength between fPET and multi-layer soil 

moisture states. For example, the increase in NER for LAI greater than 1.4 m2 m−2 (Figure 

7) appears to be a response to stronger coupling between root-zone soil moisture and fPET 

for higher biomass areas (i.e., larger LAI) where transpiration dominates total ET. For areas 

of high transpiration/LAI, this increased coupling between fPET and root-zone soil moisture 

comes at the expense of coupling between fPET and surface soil moisture — note the 

decrease in soil moisture NER for the top-most soil layer for higher LAI conditions where 

bare soil evaporation is minimal (light blue line in Figure 7). As described in Section 2.4, 

soil evaporation extracts water directly from the surface soil layer — so higher LAI (and less 

bare soil evaporation) decreases our ability to constrain surface soil moisture through fPET. 

Therefore, for cases where model error covariances are comparatively similar, improvements 

in root-zone soil moisture states in vine-row tiles are larger for regions with larger LAI 

values.
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3.3 Real Data Experiments

In addition to the synthetic experiments described above, the assimilation of remotely-

sensed DisALEXI fPET and Sentinel-1 θSSM observations is validated against the ground-

based soil moisture measurements via the real-data assimilation experiment outlined in 

Section 2.5.4. The same flux tower-based meteorological data and irrigation forcing data are 

applied in both the OL and DA scenarios — allowing for an objective examination of net 

benefits introduced by the assimilation of remote sensing data. Real data assimilation 

experiments provide, of course, the most comprehensive test for a data assimilation system; 

however, their evaluation is limited only to sites containing actual ground-based soil 

moisture observations. Figure 8 shows the in-situ soil moisture observations acquired near 

the flux tower (black lines) for inter-row surface and four upper layers within the vine-row. 

Model-simulated soil moisture states based on flux tower meteorological inputs from the OL 

scenario are shown in red lines, and DA results are shown in the blue lines. The assimilation 

of both θSSM and fPET slightly improves estimates of surface soil moisture states at both tiles 

(Figure 8a and 8b). More prominent improvements are found for soil moisture states in 

deeper soil layers (Figure 8d and 8e). Specifically, based on the NER values shown in Figure 

9, improvements are limited for surface soil moisture — with NER values below 0.06 [-] for 

all three DA scenarios. NER values get larger (i.e., greater than 0.1) for deeper soil layers, 

especially when fPET is assimilated. The simultaneous assimilation of both Sentinel-1 θSSM 

and DisALEXI fPET (Figure 9c) is generally associated with the largest improvement in soil 

moisture accuracy.

4. Discussion

4.1 Relationship Between Soil Moisture and fPET

The updating of model soil moisture states in response to fPET observations is a direct 

function of the assumed dependence of fPET on soil moisture within the assimilation model. 

Both over- and under-dependence can lead to degraded data assimilation performance 

[Kumar et al., 2009; Crow et al., 2015; Lei et al., 2018]. Therefore, it’s important to evaluate 

this dependence in models.

For the WEB-SVAT model utilized in this work, the relationship between profile soil 

moisture and fPET varies as a function of LAI and meteorological conditions. Lines in Figure 

10 are generated via the WEB-SVAT model for the vine-row profile soil moisture and daily 

fPET under different LAI conditions. Specifically, minimum (0.3) and maximum (3.0) LAI 

values are assumed for a single day (August 1, 2017) with typical summer meteorological 

conditions. The model clearly predicts stronger coupling between soil moisture and fPET for 

denser vegetation cover. However, note that this exact relationship changes with the 

meteorological conditions, including insolation, wind speed, air pressure, temperature, and 

relative humidity.

In contrast, the scattered points in Figure 10 demonstrate the observed relationship between 

the averaged soil moisture from three vine-row profile sensors at depths of 30, 60, 90 cm and 

daily fPET obtained by taking the ratio of flux tower ET and potential ET using the Penman-

Monteith equation [Allen et al., 1998]. Overall, the observed coupling between profile soil 
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moisture and fPET starts to decrease when soil moisture gets higher and above 0.35. Most 

noticeably, these observations show little dependence of fPET on soil moisture for days with 

low air temperature (Day-Of-Year; DOY<100 or DOY>250) and light vegetation cover 

(reddish points with small LAI).

Comparing the model intrinsic coupling and ground observation-based relationship reveals 

large variations in the degree of dependence. For spring and winter conditions, there is 

marginal dependence of fPET on soil moisture as indicated by observations. As a result, the 

assimilation of DisALEXI fPET for the entire year (as opposed to only the growing seasons) 

leads to deteriorated results in the real data experiment (not shown here). Therefore, in 

addition to accurately characterizing the observation errors in fPET retrievals, the (dynamic) 

relationship between fPET and profile soil moisture needs to be better understand before we 

can fully utilize fPET observations in data assimilation systems. Indeed, a multi-year analysis 

by Wilson et al. [2019] using the flux tower measurements of ET along with the soil 

moisture profile measurements over the Sierra Loma site indicates that the fPET – root zone 

soil moisture relationship changes throughout the spring and summer months due to 

advancing phenological stages and management practices. There is also evidence that vines 

have access to water beyond the 90-cm maximum depth measured by the profile soil 

moisture sensors.

4.2 Uncertainties in Remote Sensing Retrievals

The main challenge for Sentinel-1 θSSM retrievals is adequately compensating for the 

sensitivity of radar signals to surface roughness and vegetation cover. For highly clumped 

row crops, the low signal-to-noise ratio in SAR data degrades the accuracy of soil moisture 

retrievals and will reduce the magnitude of potential data assimilation improvements. These 

effects will naturally be more pronounced for high vine biomass conditions. Therefore, data 

assimilation systems that accurately capture temporal variations in θSSM retrieval accuracy 

should also provide more accurate output.

Therefore, an additional real data experiment is conducted for the assimilation of Sentinel-1 

θSSM as described in Section 2.5.4. In this new experiment, a time-varying function (defined 

as the product of 0.03 m3 m−3 and unitless LAI) — with the consideration of vegetation 

density impact on SAR backscatter signals — is used to described uncertainty (i.e., error 

standard deviation) in the assimilated Sentinel-1 θSSM data. Results from this new 

experiment are compared to earlier real data assimilation results — derived using a 

temporally constant representation of retrieval uncertainty (0.05 m3 m−3). Figure 11 

compares NER values between these two cases. In most cases, vine-row tile estimates of soil 

moisture states are improved with the time-varying error assumption (i.e., produces slightly 

higher NERs). The exception being the second soil layer where no significant differences are 

found. However, despite this overall improvement, DA performance is somewhat less stable 

for the time-varying case — with larger observed variations in NER values corresponding to 

random initial conditions and individual error sequence replicates. Nevertheless, it is 

promising that the assimilation of Sentinel-1 θSSM can generally be improved via the 

application of a realistic time-varying error assumption.
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5. Conclusions

In this work, a high-resolution (30-m) data assimilation framework is constructed for 

modelling soil moisture in a vineyard in California. With the recent availability of TIR-based 

ET products and SAR-based surface soil moisture retrievals at sub-field scale, modelled soil 

moisture states at different soil depths can be improved via the integration of both remote 

sensing data types. Modifications, such as the tile approach for row and inter-row regions, 

are made to the WEB-SVAT model to accommodate its application within highly structured 

vineyards (Section 3.1). Starting from the synthetic twin experiments, the optimal sampling 

size is determined (Section 3.2) for the data assimilation of daily fPET and biweekly θSSM. A 

performance comparison between PF and EnKF suggests that a PF approach is superior to 

an EnKF when assimilated observations are nonlinearly related with the model states to be 

updated. This is particularly important since observed fPET data are nonlinearly linked to soil 

moisture states in the model, as well as observed from ground-based measurements (Section 

4.1). Moreover, the impact of biophysical conditions (i.e., LAI) on data assimilation 

performance is explored for soil moisture states at different depths. Overall, high LAI 

conditions seem to enhance the ability of fPET assimilation to constrain vine-row root-zone 

soil moisture.

Furthermore, to examine the capability of real remote sensing data assimilation for 

improving soil moisture estimation, 30-m daily DisALEXI fPET and biweekly Sentinel-1 

θSSM retrievals are individually and simultaneously assimilated into the model (Section 3.3). 

Validation against in-situ soil moisture measurements in the real data experiment suggests 

that the simultaneous assimilation of both fPET and θSSM has the largest potential for 

accurately constraining root-zone soil moisture. However, it should be stressed that the 

advantages of dual fPET and θSSM assimilation are relatively marginal compared to the case 

of assimilating only fPET (Figure 9). Therefore, further study of this point using additional 

real data experiments is likely warranted.

To facilitate improved validation of real data experiments, more ground-based soil moisture 

measurements are required. To this end, the GRAPEX experiment has improved the spatial 

sampling of ground-based soil moisture within multiple E&J Gallo production vineyards 

during the 2018 and 2019 growing seasons. Enhanced ground-based soil moisture 

observations from these sites will be utilized in future research. Likewise, future satellite-

based, L-band SAR instruments like the NASA-Indian Space Research Organization 

Synthetic Aperture Radar (NISAR), Argentina’s space agency CONAE (Satélite Argentino 

de Observación COn Microondas) SAOCOM satellite constellation, and German Tandem-L 

[Moreira et al., 2015] missions will provide more frequent and accurate SAR-based 

retrievals of surface soil moisture observations. Simultaneously, new LST products from the 

Visible Infrared Imaging Radiometer Suite (VIIRS) onboard the NASA Suomi-NPP 

satellite, ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station 

(ECOSTRESS), and Sentinel satellite constellation will be synergistically deployed in the 

ALEXI/DisALEXI framework to produce daily 30-m products at higher accuracy. Future 

work will focus on utilizing these new data sources to further optimize our data assimilation 

system at fine spatio-temporal resolutions.
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Through incorporating thermal and radar information into the data assimilation system 

described here, spatially high-resolution (30-m) and temporally continuous (at a short data 

latency, <3–5 days) soil moisture map can be provided and distributed to vineyard irrigation 

managers. In operation, this root-zone soil water content information will help optimize 

irrigation allocation and enhance water conservation efforts. During early growing season, 

the onset of irrigation is typically based on either point observations or growers experience 

estimating plant available water threshold of ~50%. With the proposed modelling system, 

this threshold can be determined spatially by incorporating the current water content map in 

conjunction with short-term weather forecasts. The enhanced spatial and temporal 

characterization of root-zone water availability, in combination with the variable rate drip 

irrigation system, will allow vineyard managers to identify blocks with water inadequacy or 

irrigation inefficacy. Accordingly, appropriate amounts of irrigated water can be determined 

by growers and vineyard managers to optimize irrigation strategies, target uniform grape 

quality, and yield.
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Appendix A —: ALEXI/DisALEXI

The core of the ALEXI/DisALEXI is the TSEB land surface scheme developed by Norman 

et al. [1995] and further refined by Kustas and Norman [1999]. In the TSEB scheme, surface 

energy fluxes are explicitly represented for canopy (C) and soil (S) sources

RN, S + RN, C = (HS + LES + GS) + (HC + LEC) (A1)

where RN is net radiation, H sensible heat flux, LE latent heat flux, and G the soil heat flux. 

The soil and canopy heat fluxes are constrained by partitioning the remotely sensed LST or 

surface radiometric temperature, TRAD, into effective canopy (TC) and soil (TS) 

temperatures

TRAD
4 = fC(θ)TC

4 + [1 − fC(θ)]TS
4 (A2)

where fC(θ) refers to the directional vegetation cover fraction derived as a function of LAI 

and the sensor view angle (θ). The components for the energy balance system in Eq. A1 are 

solved simultaneously with the radiometric temperature balance Eq. A2. Net radiation for 

the soil and canopy components (RN,S and RN,C) is estimated via the radiative transfer 

model of Campbell and Norman [1998]. Sensible heat fluxes are predicted through the 

surface-to-air temperature gradient by using air temperature (TA) at the reference height 

above canopy as a boundary layer, mediated by an in-canopy node as in the series formalism 

presented by Norman et al. [1995]. Soil heat flux (GS) is computed as a fraction of the net 

radiation at the soil surface (RN,S). Using a modified Priestley-Taylor approach [Priestley 
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and Taylor, 1972], an initial estimate of canopy transpiration (LEC) is firstly derived 

assuming unstressed water condition. Thus, soil evaporation LES is computed as the residual 

to the energy balance Eq. A1. Considering the daytime soil condensation (i.e., LES < 0) is 

unlikely, LEC is iteratively adjusted downward to ensure LES prediction is non-negative. ET 

(mass flux in units of mm d−1) is computed from LE (energy flux in units of W m−2 or MJ m
−2 d−1) using the latent heat of vaporization.

For the regional implementation of TSEB in the ALEXI framework, an atmospheric 

boundary layer module is coupled with the TSEB scheme to relate the morning temperature 

rise in the mixing layer to the time-integrated sensible heat flux from the surface [Anderson 

et al., 2007]. This configuration employs the time-differential signal provided by 

geostationary satellites like GOES, thereby reducing the reliance on the accurate retrieval of 

absolute, instantaneous LST from remote sensing platforms. To further enhance the spatial 

resolution of the ET products, thermal LST imageries from polar-orbiting satellites of 

Landsat and MODIS are utilized for finer resolution mapping. The spatial disaggregation 

scheme, namely DisALEXI, is implemented to ensure the spatially reaggregated DisALEXI 

ET flux (MODIS and Landsat) matches the ET estimate at the regional ALEXI scale. All ET 

estimates are upscaled from the sensor overpass time to daytime-integrated values for 

representing daytime ET amount by assuming the ratio of latent heat flux to insolation is 

constant during the daylight hours.

Due to cloud cover and sensor issues, spatiotemporal discontinuities in thermal-based LST 

observations can lead to gaps in ALEXI/DisALEXI ET estimates. A simple gap-filling 

technique is applied to the ALEXI ET retrievals through conserving a ratio of actual ET to a 

predetermined scaling flux. This ratio is temporally filtered, smoother and gap-filled for 

each pixel grid using a Savitzky-Golay filter with a second-order smoothing polynomial. 

Gaps in ET estimates are recovered by applying this ratio to the scaling flux. For ALEXI ET, 

the daily insolation is proven to be robust as the scaling flux at global scale. While 

DisALEXI algorithm aims to ensure the consistency between ET estimates at different 

spatial scales, the ALEXI ET is used as the scaling flux for filling gaps in MODIS 

DisALEXI ET. Gaps in Landsat DisALEXI ET for overpass dates are filled through an 

extension of the STARFM algorithm [Gao et al., 2006] that fuses daily 500-m MODIS ET 

maps with periodic (16-day) 30-m Landsat ET maps to generate a daily 30-m ET product.

Appendix B —: WEB-SVAT

In WEB-SVAT model, surface (θsz) and root-zone (θrz,i) soil moisture at layer i are 

predicted as

dθsz
dt = 1

dzsz
[Pg − LES(ρwλ)−1 − Q1 2] (B1)

dθrz, i
dt = 1

dzrz, i
[Qi − 1 i − LEC, i(ρwλ)−1 − Qi i + 1] (B2)
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where Pg is the precipitation through-fall after canopy interception and/or drip irrigation, ρw 

the density of water, λ the latent heat of vaporization for water, Qi→i+1 the downward 

diffusive water flux from layer i to i + 1, dt the hourly time step, dzsz the depth of surface 

soil layer, and dzrz,i the depth of root-zone layer i.

Assuming Darcy’s law for the unsaturated water flow, Qi→i+1 can be estimated as

Qi i + 1 = Kθ, i
ψm, i − ψm, i + 1

0.5(dzi + dzi + 1) + Kθ, i (B3)

here Kθ is the hydraulic conductivity at soil moisture θ, and ψm the matrix potential.

In contrast to ALEXI/DisALEXI, soil evaporation LES is predicted as

LES = ρwCpγ−1 es(TS) − ea
RA, S + RA + RS

(B4)

where Cp is the specific heat of air, γ the slope of the saturation vapor pressure versus 

temperature curve, es and ea saturation and actual vapor pressure, RA,S the within-canopy 

aerodynamic resistance, RA the above canopy aerodynamic resistance, and RS the soil 

resistance as an empirical function of θsz.

Taking into account variations in the vertical root distribution of grapevines, an exponential 

root water uptake module [Li et al., 2001] is deployed to estimate canopy transpiration LEC,i 

at root-zone i as

LEC, i =
αi2Fi

η

∑i = 1
n αiFi

ηLEC, max (B5)

where αi is a dimensionless soil water availability factor as a function of θrz,i, Fi the 

dimensionless fraction of the root length density in soil layer i as a function of the fraction in 

top 10% of the root zone F10, η an empirical parameter controlling the water uptake 

distribution within the soil profile, and n the number of root-zone layers. The maximum total 

canopy transpiration LEC,max is estimated assuming an unstressed water condition with 

minimum canopy stomatal resistance (RC,min)

LEC, max = ρwCpγ−1 es(TC) − ea
RA + RC, min

(B6)

From Eq. B5 and B6, it is clear that the model-predicted fPET as a function of integrated 

LEC,i and LEC,max is nonlinearly related to soil moisture via the factor αi. For the 

consistency with ALEXI/DisALEXI, other energy components in the WEB-SVAT are 

calculated using the same equations as described in Appendix A. Therefore, given the initial 

estimates of θsz and θrz, all flux terms in Eq. A1 can be directly expressed in terms of TS 

and TC and solved via a numerical root finder method. The estimated LES and LEC,i are 

subsequently used to update soil moisture states in time via Eq. B1 and B2. For more details 

on WEB-SVAT, see Crow et al. [2008] and Hashemian et al. [2015].
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Appendix C —: Data Assimilation Algorithms

C.1 Generic Data Assimilation System

Given a model transition function F(·), the model state vector xt−1 evolves from time step t − 

1 to the next step t as

xt = F (xt − 1, μt, ξ) + ωt, ωt ∼ N(0, Qt) (C1)

where μt is the forcing data, ξ a time-invariant parameter vector, and ωt represents the model 

forecast error which is typically assumed to be Gaussian distributed with mean zero and 

variance of Qt.

The model state vector xt and observation vector yt are related through a nonlinear 

observation operator H(·)

yt = H(xt, ξ) + vt, vt ∼ N(0, Rt) (C2)

where vt is the Gaussian distributed random observation error with mean zero and variance 

of Rt. Model error ωt and observation error vt are generally assumed to be statistically 

independent.

C.2 Ensemble Kalman Filter

In EnKF, the model background forecast error covariance information is represented through 

an ensemble of model replicates with perturbed forcing data, parameters, and/or model 

states in a Monte Carlo manner [Evensen, 2003]. When observation yt becomes available at 

time t, the state vector of ith ensemble member is updated as follows

xti + = xti − + Kt[yt + vi − H(xti − )] (C3)

where xti +  is the posterior state vector after integration of yt, xti −  the prior state vector, vi 

the observation error, H(·) the observation operator for projecting state vector from model 

space to observation space, and Kt the Kalman gain which weighs the relative uncertainties 

of model and observation

Kt = PtHT(HPtHT + Rt)
−1 = Ct

xy(Ct
yy + Rt)

−1
(C4)

where Pt represents the prior model state error covariance, Rt the observation error 

covariance, PtHT = Ct
xy the cross-covariance between model-predicted state xti −  and the 

corresponding predicted observation H(xti − ), and HPtHT = Ct
yy the error covariance of 

H(xti − ) in observation space.

C.3 Particle Filter

Given temporally independent observations y1:t, the posterior distribution of the model state 

of jth particle in PF can be written recursively as [Vrugt et al., 2013]
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p(x1: t
j |y1: t) = p(x1: t − 1

j |y1: t − 1)
p(xt

j |x1: t − 1
j )p(yt |xt

j)
p(yt |y1: t − 1)

(C5)

where p(xt
j |x1: t − 1

j ) is the transition probability of model states, p(yt |xt
j) the likelihood of 

observations given model states, and p(yt|y1:t−1) the normalization factor. By integrating 

x1: t − 1
j , the marginal distribution is derived as

p(xt
j |y1: t) =

p(yt |xt
j)p(xt

j |y1: t − 1)
p(yt |y1: t − 1) (C6)

where prior distribution is expressed as

p(xt
j |y1: t − 1) = ∫ p(xt

j |xt − 1
j )p(xt − 1

j |y1: t − 1)dxt − 1
j

(C7)

In practice, the posterior distribution is difficult to obtain and thus is usually approximated 

as

p(x1: t |y1: t) = ∑j = 1
N wt

jδ(x1: t − x1: t
j ) (C8)

where wt
j is the weight for jth particle, δ(·) the Dirac delta function, and N the particle 

number. Using the importance sampling strategy, the unnormalized importance weight wt
j *

can be expressed as

wt
j * = wt − 1

j * p(yt |xt
j)p(xt

j |xt − 1
j )

q(xt
j |xt − 1

j , yt)
(C9)

where q(xt
j |xt − 1

j , yt) is the proposal distribution which is usually assumed as transition prior 

p(xt
j |xt − 1

j ) and thereby

wt
j * ∝ wt − 1

j * p(yt |xt
j) (C10)

Generally, the likelihood is estimated as

p(yt |xt
j) = 1

(2π)ndet(R)
exp[− 1

2(yt − H(xt
j))TRt

−1(yt − H(xt
j))] (C11)

where n is the number of observations. Therefore, the normalized weight wt
j is
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wt
j =

wt
j *

∑j = 1
N wt

j * (C12)

For PF, equal weights are assigned to particles in prior and updated based on likelihood 

when observations are available using Eq. C10. In practice, resampling is required to avoid 

particle degeneration whereby most particles have negligible weights. Here, resampling is 

conducted after each step of assimilating observations [Moradkhani et al., 2005]. Therefore, 

particle weights are updated when observations become available and particles are 

resampled based on these weights. After resampling, weights are reset to equal as 1/N for 

the next time step.
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Highlights

• 30-m soil moisture variation is described via model, thermal and radar remote 

sensing

• A PF is superior to an EnKF in solving the nonlinear estimation problem

• Soil moisture monitoring can be improved via assimilating thermal and radar 

data
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Figure 1. 
Study site information, a) the location of the Sierra Loma Pinot Noir vineyards near Lodi, 

California, b) a Landsat normalized difference vegetation index (NDVI) map showing the 

boundaries of the vineyards, and c) the flux tower in north vineyard, and d) vine trellising 

system.
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Figure 2. 
Basic components of the Water-Energy-Balance Soil-Vegetation-Atmosphere Transfer 

(WEB-SVAT) model and the new sub-grid tiling approach.
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Figure 3. 
(a) Daily precipitation and irrigation for 2017 and 0–5 cm surface soil moisture at the (b) 

grid-level from transect-averaged in-situ measurements, tile-averaged model simulation, and 

Sentinel-1 retrievals; and observed and model-simulated within the (c) inter-row and (d) 

vine-row tiles, respectively.
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Figure 4. 
Normalized error reduction (NER) of the grid-level soil moisture states for the first (0– 5 

cm; θ1) and root-zone (5 − 90 cm; θrz) soil layers. Either daily fPET or biweekly θSSM is 

assimilated into the model using different ensemble sizes or particle numbers for the 

ensemble Kalman filter (EnKF) and particle filter (PF), respectively. Median values of NER 

from 50 separate synthetic experiments are shown as circles, and error bars indicate the full 

range of NER from minimum to maximum values.
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Figure 5. 
Box plots of the root-mean-square-error (RMSE) differences (EnKF minus PF) between the 

EnKF and PF for soil moisture estimates of all five soil layers. Plotted cases are based on the 

assimilation of: (a) only daily fPET, (b) only biweekly θSSM and (c) both daily fPET and 

biweekly θSSM. Median values of RMSE differences from 50 separate synthetic experiments 

are plotted in red. Boxes represent 25–75 quantiles and whiskers represent 5–95 quantiles of 

replicated experiment results. Positive values indicate superior PF performance.
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Figure 6. 
For the assimilation of daily fPET (from January 1, 2014 to December 31, 2017), the spatial 

distribution of NER for the: (a) first layer θ1 (0–5 cm); (b) second layer θ2 (5–30 cm), (c) 

third layer θ3 (30–60 cm), (d) fourth layer θ4 (60–90 cm), (e) fifth layer θ5 (90–120 cm), (f) 

root-zone layer θrz (5–90 cm), (g) profile θP (0–120 cm)—represented as the weighted 

averages over all five layers and (h) evapotranspiration (ET) of the vine-row tile. (i) is the 

mean-annual leaf area index (LAI).
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Figure 7. 
For the assimilation of daily fPET, spatially averaged NER values of soil moisture states for 

grids with different LAI levels within the surface-zone (θ1) and root-zone (θrz). Results are 

shown for the vine-row tile only. Median values are shown as triangles with 10–90 quantiles 

as vertical bars. The number of 30-m grids with a given time-averaged LAI value are 

indicated by the grey bars.
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Figure 8. 
Time series of soil moisture estimates based on in-situ measurements, the open loop (OL) 

simulation and the assimilation (DA) of both θSSM and fPET (between January 1, 2017 to 

December 31, 2017) for the: (a) first layer θ1 of the inter-row (0–5 cm), (b) first layer θ1 of 

the vine-row (0–5 cm), (c) second layer θ2 of the vine-row (5–30 cm), (d) third layer θ3 of 

the vine-row (30–60 cm), and (e) fourth layer θ4 of the vine-row (60–90 cm).
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Figure 9. 
Box plots of NER values for soil moisture states as validated against in-situ measurements 

for the cases of assimilating: (a) daily DisALEXI fPET, (b) biweekly Sentinel-1 θSSM, and 

(c) both fPET and θSSM.
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Figure 10. 
The relationship between daily mean profile soil moisture (θP) averaged over ground-based 

vine-row profile soil moisture sensors at 30, 60, 90 cm depths and fPET obtained from flux 

tower ET measurement and potential ET using the Penman-Monteith equation, shown as 

scattered points with color representing LAI levels and size representing the Day-Of-Year 

(DOY). Lines are generated with the model by assuming minimum (0.3) and maximum (3.0) 

LAI bounds and August 1, 2017 meteorological conditions.
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Figure 11. 
Comparison between the NER values for the assimilation of Sentinel-1 θSSM with a constant 

error assumption (x-axis) and a time-varying error function (y-axis). Each experiment is 

repeated 50 times with different initial conditions and random number sequences.
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