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Abstract Many chemical facilities are located in low‐lying coastal areas and vulnerable to damage from
hurricanes, flooding, and erosion, which are increasing with climate change. Extreme weather can trigger
industrial disasters, including explosions, fires, and major chemical releases, as well as chronic chemical
leakage into air, water, and soil. We identified 872 highly hazardous chemical facilities within 50 miles of the
hurricane‐prone U.S. Gulf Coast. Approximately 4,374,000 people, 1,717 schools, and 98 medical facilities
were within 1.5 miles of these facilities. Public health risks from colocated extreme weather, chemical
facilities, and vulnerable populations are potentially disastrous and growing under climate change.

Without adequate preventative measures, industrial disasters can be triggered by natural hazards, such as
hurricanes, floods, lightning, and earthquakes (Krausmann et al., 2011; Salzano et al., 2013). A recent exam-
ple occurred during Hurricane Harvey, when over three feet of flooding disabled the refrigeration system at
the Arkema plant in Crosby, TX, causing organic peroxides to spontaneously combust. As a result, 21 people
sought medical attention and 200 people within 1.5 miles of the facility evacuated and could not return home
for a week (U.S. Chemical Safety and Hazard Investigation Board, 2018). Like the Arkema Crosby facility,
which was located within the 100‐ and 500‐year flood zones, many chemical facilities in the United States
are located in low‐lying coastal areas, leaving them vulnerable to damage triggered by hurricanes, flooding,
and erosion, which are increasing as a result of climate change‐related sea level rise (Cruz & Krausmann,
2013; Kopp et al., 2014; Wuebbles et al., 2014). Texas in particular is projected to lead the nation in climate
change‐related flood damage (U.S. Environmental Protection Agency, 2015) and has many chemical
facilities surrounded by vulnerable communities (Tinney et al., 2016; U.S. Chemical Safety and Hazard
Investigation Board, 2016).

Extreme weather, such as hurricanes and accompanied storm surge flooding, can have direct and indirect
effects on public health, safety, and welfare. For example, Hurricane Maria led to nearly 3,000 fatalities in
Puerto Rico, though initial government reports had estimated only 64 deaths (Santos‐Burgoa et al., 2018).
Downstream effects of extreme weather can include storm surge flooding, power outages, reduced capa-
city of healthcare facilities, and road closures limiting access to medical care. Natural hazards can also
trigger industrial disasters from chemical explosions, fires, and releases, as exemplified by the Arkema
explosions after Hurricane Harvey (Cozzani et al., 2010; Nascimento & Alencar, 2016; World Health
Organization, 2018). These natural hazard‐triggered technical disasters, often referred to as “natech”
events, are the subject of a growing area of research. Natural hazards can trigger industrial disasters in
various ways, including by washing out chemicals into floodwaters, damaging storage vessels and pipes
containing chemicals, lightning strikes igniting flammable materials, and damage to power supply that
can upset processes or affect temperature and pressure of stored chemicals. As natural hazards often also
damage the capacity, effectiveness, and functioning of public services, the health consequences of natech
events may be particularly difficult to manage during the event itself. A preventative approach that avoids
vulnerability to natech events would be more effective, especially given potential increases in natural
hazard events as the climate changes.

Explosions, fires, and chemical releases occur at industrial facilities frequently, subjecting the communities
surrounding these facilities to public health and safety hazards including injury from debris, inhalation or
dermal exposure to chemicals and smoke, and burns. We obtained access to the U.S. Chemical Safety
Board's “incident screening database,” which logs fires, explosions, and chemical releases at industrial
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facilities in the United States, via a Freedom of Information Act request in October 2018. From 2001 to 10
October 2018, the database captured 9,406 incidents, an average of ~1.5 incidents per day. Of these, 978 inci-
dents (10%) occurred in Texas, and 1,890 (20%) occurred in the five Gulf Coast states (from most to least:
Texas, Florida, Louisiana, Mississippi, and Alabama). Incidents involved chemicals, food, metal, petroleum
(refineries), and other types of facilities (Gomez et al., 2008). Approximately 40% of industrial incidents in
the database led to injury or fatality among workers and/or the public.

The number of these types of industrial disasters that were triggered by natural hazards in the United States
and globally is not well understood. One estimate indicates that 2–5% of incidents resulting in the release of
hazardous substances were triggered by natural hazard events (World Health Organization, 2018).
However, other studies suggest a higher frequency of natech events. A 2008 study estimated that 500–800
natech events occur throughout the United States each year (Steinberg et al., 2008). More recently, studies
have estimated that up to 450 incidents annually involving on‐shore hazardous liquid pipeline systems are
triggered by natural hazards (Girgin & Krausmann, 2016), over 600 hazardous material releases from gas
installations and offshore oil facilities and pipelines were triggered by Hurricanes Rita and Katrina (Cruz
& Krausmann, 2009), and 16,600 hazardous material spills caused by natural hazards occurred from
1990–2008 in the United States (20% of which were due to hurricanes; Sengul et al., 2012). Floods were
the second largest contributing cause of natechs in the EU in 2010, behind only lightning, and ahead of
low temperature, rain, storm/wind, landslide, heat, and earthquake (Krausmann, 2010) These estimates
vary but consistently indicate that natech events, including those triggered by floods, are relatively com-
mon. Without adequate mitigation measures, the frequency and impacts of these types of events may be
exacerbated in the future as industrialization, urbanization, and hydrometeorological hazards associated
with climate change increase simultaneously (Bernier et al., 2017; Piatyszek et al., 2017; World Health
Organization, 2018).

Public health impacts from these natural hazard‐triggered industrial disasters range from acute explosions,
fires, and large chemical releases to longer‐term, more chronic exposure to chemicals leaking slowly into
the air, water, and soil. Facility damage may also cause extended shutdowns or closures, often leading to
job losses and economic damages. Thus, the potential impacts of these types of events can be disastrous
for individuals, families, and communities. Following Hurricane Harvey, the New York Times found that
1,400 chemical sites across the United States are in areas at highest risk of flooding (Tabuchi et al., 2018,
February 6). However, there is limited public information available about where the facilities are, the che-
micals stored there, the number of people and community buildings nearby, and the degree of changing
risks from extreme weather.

To help understand the magnitude of the potential risk to public health and safety posed by highly hazar-
dous chemical facilities in locations vulnerable to natural hazards, we calculated the number of people,
schools, and hospitals near such facilities throughout the U.S. Gulf Coast. We used locations of facilities
registered in the U.S. Environmental Protection Agency's (EPA) Toxic Release Inventory from the EPA's
Facility Registration System Database and filtered for facilities within 50 miles of the coast to capture those
potentially most exposed to flood hazards. We defined “highly hazardous chemical facilities” as those with
EPA Risk Screening Environmental Indicator (RSEI) scores ≥ the median score of 415 (excluding facilities
with a score of zero). RSEI scores reflect “risk‐related impacts on chronic human health” and account for
the magnitude and toxicity of stored chemicals and the population living nearby. We then calculated
the number of people, schools, and hospitals within a 1.5‐mile buffer around each facility (the size of the
Arkema evacuation zone; Figure 1). We used census block group population from 2016 from the
American Community Survey and locations of medical and educational facilities from the U.S. Geological
Survey's National Structures Dataset (Manson et al., 2018; U.S. Geological Survey, 2018).

We identified 2,545 facilities located within 50 miles of the coast throughout Florida, Mississippi, Alabama,
Louisiana, and Texas (Figure 2). Of these, 872 facilities had a RSEI score ≥ 415; for comparison, the Arkema
Crosby plant had a score of 16. Approximately 14% (4,374,000 people) of the coastal population of these
states, 1,717 educational facilities, and 98 medical facilities are located within 1.5 miles of these facilities.
Half (50%) of the highly hazardous chemical facilities in this region were located in Texas, 23% in
Florida, 19% in Louisiana, 5% in Alabama, and 3% in Mississippi (Table 1). The size of the nearby
vulnerable populations in each of these states followed a similar pattern, with the largest number of
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Figure 1. Illustration of the analytical steps taken in ArcGIS to determine population, educational facilities, and medical facilities within 1.5 miles of a highly
hazardous chemical facility: (1) Draw 1.5‐mile buffer; (2) divide buffers by census block boundaries; (3) dissolve buffers by GeoID to eliminate overlap; and
(4) calculate percentage of each census track located within the buffer region. This percentage was then multiplied by the population of the census block, assuming
the population was distributed evenly throughout the block group. We then performed a spatial join between the dissolved buffer layer and point locations of
medical and education facilities. RSEI = Risk Screening Environmental Indicator.

Figure 2. Locations of highly hazardous chemical facilities (Risk Screening Environmental Indicator score≥ 415) within 50miles of the U.S. Gulf Coast overlaid on
census block group population size for 2016.
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nearby people, educational facilities, and medical facilities
in Texas, followed by Florida and Louisiana. This prelimin-
ary analysis indicates that there is a sizable population that
would be vulnerable should fires, explosions, or chemical
releases occur at nearby facilities. These communities
include schools and hospitals, indicating that the surround-
ing population also include particularly susceptible sub-
groups. Further, using worst‐case scenario predictions from
the National Oceanic and Atmospheric Administration's
Storm Surge Maximum of the Maximum data set (National
Oceanic and Atmospheric Administration National
Hurricane Center, 2019), massive flood events could occur
following category five hurricanes, with 63 of these facilities
potentially experiencing >20 feet of flooding. Given rising
storm surge levels with climate change, this is a public
health risk that is likely to grow in the future.

Awareness of natural hazard‐triggered industrial events has
been growing over the last decade (Cruz et al., 2006;
Nascimento & Alencar, 2016; Steinberg et al., 2008), particu-
larly in Europe (Nascimento & Alencar, 2016). In the United
States, the industry is already aware of these risks to their
operations and has pursued a $12 billion, 60‐mile sea wall
along the Gulf coast to protect refineries from sea level rise
(Weissert, 2018, August 22). However, natech events in the
United States remain poorly understood among the public
and infrequently studied compared with other
environmental health issues, such as air pollution and water
quality. They are also not adequately regulated at the
federal, state, or local level. The Chemical Safety Board's
investigation of the Arkema incident found that the
Occupational Safety and Health Administration and EPA
consider flooding and extreme weather hazards to be part
of a normal Process Hazard Analysis under Occupational
Safety and Health Administration's Process Safety
Management standard and EPA's Risk Management
Program but that neither agency explicitly requires such
extreme events to be addressed (U.S. Chemical Safety and
Hazard Investigation Board, 2018), a regulatory gap that puts
public health and safety at risk.

We focused this article on acute disasters, such as fires,
explosions, andmajor chemical releases, that could endanger
public health and safety. Slower, more chronic leakage of
chemicals into floodwaters, air, and soil is also a relatively
unexplored, and perhaps more pervasive, public health risk.
Colocation of extreme weather, chemical facilities, and
vulnerable communities is a potentially disastrous combina-
tion that is likely to worsen with climate change. When the
next hurricane hits, will we be prepared?

Data Availability

All data used in this analysis are publicly available from the
referenced sources.T
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