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Abstract: Generic object detection algorithms for natural images have been proven to have excellent
performance. In this paper, fabric defect detection on optical image datasets is systematically studied.
In contrast to generic datasets, defect images are multi-scale, noise-filled, and blurred. Back-light
intensity would also be sensitive for visual perception. Large-scale fabric defect datasets are collected,
selected, and employed to fulfill the requirements of detection in industrial practice in order to address
these imbalanced issues. An improved two-stage defect detector is constructed for achieving better
generalization. Stacked feature pyramid networks are set up to aggregate cross-scale defect patterns
on interpolating mixed depth-wise block in stage one. By sharing feature maps, center-ness and shape
branches merges cascaded modules with deformable convolution to filter and refine the proposed
guided anchors. After balanced sampling, the proposals are down-sampled by position-sensitive
pooling for region of interest, in order to characterize interactions among fabric defect images in
stage two. The experiments show that the end-to-end architecture improves the occluded defect
performance of region-based object detectors as compared with the current detectors.

Keywords: fabric defect; object detection; mixed kernels; cross-scale; cascaded center-ness; deformable
localization

1. Introduction

Industrial defect detection is important in manufacturing. Specifically, fabric defect control is the
main content of quality control in the textile industry, which would significantly increase the additional
processing costs of the fabric. The cost is derived from manual positioning and the detection of defects
and suspending to remove them. On the one hand, manual quality inspections are inefficient and
they must often be seen under good backlighting. On the other hand, there is no quantitative defect
classification indicator or boundary. This can result in false or mis-detection, and it is not conducive to
the late repair of defects or the removal of defects before they occur.

With the popularization of artificial intelligence, the automatic detection algorithm is gradually
replaced by the data-based intelligent learning algorithm from the traditional extraction method
based on feature values and low-dimensional pixel features. When compared with the traditional
algorithm, the heuristic learning algorithm has the advantages of high recognition precision, strong
generalization ability, no need to construct complex analytical relations, and small sensitivity range
for hyper-parameters. The intelligent detecting methods are divided into unsupervised learning
and supervised learning, both of which have gained good performance in defect detection. For the
former, Ahmed et al. [1] proposed to conduct the low rank and sparse decomposition jointly and
extract weaker defects feature based on wavelet integrated alternating dictionary matrix transformation;
Gao et al. [2] utilized an unsupervised sparse component extraction algorithm to detect micro defects in
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a thermography imaging system by building an internal sub-sparse grouping mechanism and adaptive
fine-tuning strategy; Wang et al. [3] established a successive optical flow for projecting the thermal
diffusion and constructed principal component analysis to further mine the spatial-transient patterns
for strengthening the detectability and sensitivity; Hamdi et al. [4] utilized non-extensive standard
deviation filtering and K-means to cluster fabric defect block; Mei et al. [5] reconstruct fabric defect
image patches with a convolutional denoising auto-encoder network at multiple Gaussian pyramid
levels and to synthesize the detection results from the corresponding resolution channels. For the latter,
detecting methods that are mainly based on convolutional deep learning [6] and researchers take an
effort in optimizing architecture. Li et al. introduced DetNet [7], which was specifically designed to
keep high resolution feature maps for prediction with dilated convolutions to increase receptive fields.
Ren et al. proposed the Region Proposal Network (RPN) [8] to generate proposals in a supervised
way based on sliding convolution filters. For each position, anchors (or initial estimates of bounding
boxes) of varying size and aspect ratios were proposed. Liu et al. [9] learned a lightweight scale aware
network to resize images, such that all objects were in a similar scale. Singh et al. [10] conducted
comprehensive experiments on small and blurred object detection. Girshick et al. [11] proposed the
Region of Interest Pooling (RoI-Pooling) layer to encode region features, which is similar to max-pooling,
but across (potentially) different sized regions. He et al. [12] proposed RoI-Align layer, which addressed
the quantization issue by bilinear interpolation at fractionally sampled positions within each grid
due to the misalignment of the object position from down-sampling operation. Based on RoI-Align,
Jiang et al. [13] presented PrRoI-Pooling, which avoided any quantization of coordinates and it had a
continuous gradient on the bounding box coordinates.

Although generic models are simple and easy to deploy, they are either over-fitting or feature
extracting insufficiency. More targeted detectors for defect images need to be re-established, owing
to the dependence on the quality and manifold distribution of the dataset. A variety of imbalances
in the image data structure lead to the difficulty of defect identification. The main contributions of
this work lie in several aspects due to the misalignment of the object position from down-sampling
operation. Firstly, a large imbalanced fabric defect dataset is collected and especially selected for
training and validating a robust detector. Secondly, an efficient architecture for defect detection is
well-designed, along with improved sub-modules from generic architectures for object detection.
Third, the experiments reveal that overfitting and feature extracting sufficiency are the main causes for
the accuracy loss of defect detection. By simplifying models, not only is the accuracy improved, but
parameter space is also compressed, which reduces the inference delay and lays the foundation of
industrial real-time defect detection.

The remainder of this paper is structured, as follows: Section 2 introduces a dataset well-designed
on principles of imbalanced variance of real-scene fabric defect images aiming at exploring a robust
detector framework and validating its generalization when compared with others. Section 3 reveals
the general network configuration for fabric defect detection. A simplified backbone with mixed
convolution is proposed for avoiding over-fitting, a composite interpolating pyramid is used for
deep feature fusion and a cascaded center-ness refining block is provided for localization regression.
Section 4 states the experimental settings and related work in the comparison between proposed
network and other generic ones. The proposed modules for fabric defect are estimated effective on
location by an ablation study. Finally, Section 5 concludes the paper.

2. Data Space

The feature unwrapping of high-dimensional abstract data space is the core task of deep learning.
The data set connects the real scene and semantic algorithm. Therefore, the sample space approximation
considers the real space, according to the maximum likelihood principle. This study trains the
generalization ability in the corresponding unbalance of real data by constructing the imbalance of
sample data. To date, there is still no fabric defect dataset that is adequate and classic in the size, class, and
background variations. This paper proposes large-scale optical fabric images, which is named as Fabric
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Defects (FBDF) and consists of 2575 images covered by 20 defect categories and 4193 instances, in order to
address the aforementioned problems. All the raw defect instances and fabric images are collected from
textile mills in Guangdong Province, China. These images are selected from hundreds of fabric products
with classical defects and labeled in 20 classes according to product demand and expert experience.
Details and access are available in https://github.com/WuYou950731/Fabric-Defect-Detection.

2.1. Defect Class Selection

Selecting appropriate texture defect classes is the first step of constructing the dataset. Ambiguous
category and bounding is one of the major issues for industrial datasets, in other words, they are too
blurred to label accurately, despite experts making sure that it is a defect. Therefore, defect classes
selected need to be high-resolution and relatively salient when compared with background and other
categories. Some categories that are not common in real-world applications are not included in FBDF
and some fine-grained categories are considered as a child category. For example, some stains that are
common, clear, and play an important role in textile manufacturing environment analysis, such as oil
stains, rust strains, and dye stains, are labeled as the same. In addition, most of the defect categories
in existing datasets are selected from gray cloth, which are from the substrate with primary colors
rather than decorative patterns. However, defects appear not only in the production stage, but also
in transportation, sorting, and even cutting. Therefore, different patterns and backgrounds would
be taken into account in FBDF beside texture of fabric, which could be the interference of detectors.
By overall selecting classes and image properties, Table 1 shows the samples of FBDF.

Table 1. Samples of different classes of Fabric Defects (FBDF).

Feet Particles Knots Spandex Rg-Warp Stains
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• Large scale. FBDF consists of 2k optical fabric images and 4k defect instances that are manually
labeled with axis-aligned bounding boxes. The size of images is all 2446 × 1000 pixels and the
spatial resolution could be down to 0.5 mm. FBDF is collected from the Ali Cloud by the experts
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• Instance size and number variations. Spatial size variation represents actual feature of fabric
defects in industrial scene. This is not only because of the spatial resolutions of sensors, but also
due to between-class size variation (e.g., “Knots” vs. “Indentation Marks”) and within-class size
variation (e.g., “Rough Warp” vs. “Loose Warp”). There is a large range of size variations of
defect instances in the proposed FBDF dataset, as shown in Figure 1. For each class of fabric,
area, height-width ratio, and the number of instances are various and widely ranged. Few-shot
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recognition ability of detectors could be validated by number variation; multi-scale recognition
ability is from area and height-width ratio variation.
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per class. (b) Size ratio distribution of bounding boxes per class.

• Image variations. A highly desired characteristic for any defect detection system is its robustness
to image variations, concerning different textile, cloth pattern, back-light intensity, imaging
conditions, etc. Textile is mainly from denim, muslin, satin and so on. Back-light is controlled to
guarantee the sharpness of images. Because of the variations in viewpoint, translation is not that
important as compared to illumination, background, and defect appearance for each defect class,
so they are simplified in FBDF.

• Inter-class similarity and intra-class diversity. Inter-class similarity leads to False Positive
(FP) and intra-class diversity leads to False Negative (FN) in classifying module of detectors.
Comparable defect images in different class are collected without salient modification to obtain
the former. To increase the latter, different defect colors, shapes, and scales are taken into account
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when selecting images. “Spandex” instances present distinguished shapes, and “Jumps” and
“Star-jumps” instances are the opposite.

To sum up, FBDF are designed with the purpose of containing imbalanced image data, which are
common and practical in textile scenes. FBDF provides a criterion data space for them to learn, fit, and
represent to make detectors adapt to various environments, sizes, and classes.

3. Methodology

The state-of-the-art object detectors with deep learning can be mainly divided into two major
categories: two-stage detectors and one-stage detectors. For a two-stage detector, in the first stage, a
sparse set of proposals is generated; and, in the second stage, deep convolutional neural networks
encode the feature vectors of generated proposals, followed by making object class predictions.
A one-stage detector does not have a separate stage for proposal generation (or learning a proposal
generation). They typically consider all positions on the image as potential objects, and they try to
classify each region of interest as either background or a target object. Although two-stage detectors
generally fall short in terms of lower inference speeds, they often reported state-of-the-art results on
dark and low-saliency defect detection.

As shown in Figure 2, an end-to-end defect detector is composed by data input, backbone for
feature extraction, neck for feature fusion and enhancement, RPN for anchor generation, and head for
training or inference. In this section, more details of the framework and learning strategies of fabric
defect detection application will be introduced.
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Figure 2. End-to-end fabric defect detection architecture.

3.1. Backbone for Feature Extraction

Detectors are usually trained based on high-dimension semantic information by adopting
convolutional weights to reserve image spatial transformation. R-CNN (Region Convolutional Neural
Network) [11] showed the classification ability of backbone is consistent with the location ability in
detecting. Moreover, the amount of backbone parameters, which are positive correlation with detection
performance, is majority of that in detectors. In this section, the trade-off between latency and accuracy
of final forward inference is the main design principal. A lightweight mixed depth-wise convolutional
network is introduced for enhancing feature extraction within one single layer, since the imbalance of
multi-scale features derived from fabric defect.

Mixed convolution [17] utilized different receptive fields to fuse multi-scale local information by
diverse kernel and group sizes. Squeezed and excited [18] branch distinguished the salience of feature
layer with visual attention mechanism [19] and residual skip connection [20] deepened semantic
extraction and decoding. Inspired by these works, the configuration of network would contain these
sub-models and be adjusted for textile dataset in order to lower the burden of RoI extractor to recognize
occluded and blurred objects.

Mixed convolution (MC) partitions channels into groups and applies different kernel sizes to each
group, as shown in Figure 3. Group size g determines how many different types of kernels to use for a
single input tensor. In the extreme case of g = 1, a mixed convolution becomes equivalent to a vanilla
depth-wise convolution [21–23]. The experiments reveal that g = 5 is generally a safe choice for defect
detection, which is size-imbalanced and the maximum area ratio is near 25, as illustrated in Figure 1a.
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For kernel size per group, if two groups share the same kernel size, it is equivalent to merging these two
groups into a single one. Hence, each one should be restricted in different kernel size. Furthermore,
kernel size is design to starts from 3 × 3, and monotonically increases by two per group, since small-size
kernels generally possess less parameters and floating-point operations per second (FLOPS). Under
this circumstance, the kernel size for each group is predefined for any group size g, thus simplifying
the designing process. On the other hand, for channel size per group, exponential partition is more
generalized than equal partition, since a smaller kernel size fuses less global information, but acquire
more channels to compensate local details.
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Table 2 states the main specification for feature extraction backbone. SE denotes whether there is
a squeezed excited module in that block. AF means the type of nonlinear activation function. Here,
HS is for h-swish [24] and RE for ReLU. Batch normalization is used after convolution operations.
The stride could be deduced from other information of layer and, here, would be passed over. EXP
Size denotes the expansion of the convolution inherit from MobileNetv2 [23], which avoids the loss of
pixel feature appeared in ResNet, and the number of elements in the list reveals the times while using
Bneck [25]. The FPN column illustrates whether there is a head to introduce the feature map to FPN
layers [26]. Operators are mainly mixed convolution parameters and {3 × 3, 5 × 5, 7 × 7} means that
the group number is 3 and they are filtered by these kernels, respectively.

Table 2. Specification for mixed convolution (MC) backbone.

Input Operator EXP Size AF SE FPN

2446 × 1000 × 3 3 × 3 - RE - -
896 × 448 × 16 3 × 3 {40, 72} RE - -
448 × 224 × 24 3 × 3, 5 × 5 {72, 72} HS

√ √

224 × 112 × 40 3 × 3 {72, 120, 240} HS
√

-
112 × 56 × 80 3 × 3, 5 × 5, 7 × 7 {200, 240} HS

√ √

56 × 28 × 112 3 × 3, 5 × 5, 7 × 7, 9 × 9, 11 × 11 {240, 480} RE
√ √

28 × 14 × 160 3 × 3, 5 × 5 {480, 672} HS
√ √

3.2. Neck for Feature Integrating and Refining

Multi-scale feature fusion aims to aggregate features at different resolution necks. Formally, the
multi-scale feature map of conventional FPN is defined as an iteration term:

Pout
i = Conv

(
Pin

i + Sample
(
Pout

i+1

))
(1)

in which,
→

P
in
=

(
Pin

l1
, Pin

l2
, . . .

)
(2)

Sample is an up-sampling or down-sampling operation for resolution matching, and Conv
represents convolutional feature processing. In Equation (1), pin

i is the i-th input feature layer with
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different pixel resolution. pout
i is the i-th output feature layer in the other back propagation path with the

same resolution as pin
i . In Equation (2),

→

P
in

represents the parallel feature input flow with interpolating
scales. As the foundation of scale fusion, FPN offers two crucial conclusions for defect detection use.
Firstly, the defect instance of any scale could be unified to the same resolution as long as stride and
kernel are well designed. Secondly, the sampling feature could reserve the most useful information of
defect image and defect position is different from background mainly lies in its pixel brightness. This
is slightly inconsistent with natural image dataset and more approaching to the principle of maximum
pooling. However, the simple top-down FPN is inherently limited by the one-way feature flow.

Fusing layers need to be cross-scale connected with each other, which derived from compression
or interpolation, to continue the strengthening features. Additionally, fusion operation focuses on
two aspects, aggregation path, and expansion path. For the former, PANet [27] adds an extraction
bottom-up path and CBNet [28] overlays parallel feature maps in different size. The latter outperforms
the former for defect classes in detection, since CBNet possesses more parameters and more aggregating
feature, as illustrated in Table 3. For the latter, as shown in Figure 4, NAS-FPN [29] treats up-sampling
equally to convolution by employing neural architecture search and utilize large-ratio connection to
deepen the above two operations. However, simplified configuration, especially unexplained topology
of NAS [30] detectors and EfficientDet [31] series, takes the efficiency as the loss of semantic precision.

Table 3. Performance of the state-of-the-art FPN baselines on FBDF.

Baseline Backbone AP AP50 AP75

FPN ResNet-50 34.29 52.01 36.68
NAS-FPN AmoebaNet 36.16 55.74 40.77

PANet VGG-16 39.51 60.17 42.14
EfficientDet EfficientNet-B4 46.39 65.68 50.27

CBNet ResNet-50 44.22 60.38 46.96
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(3) Repeat bidirectional (top-down & bottom-up) block. Unlike PANet, which only has one
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For low-salience defects, this paper proposes several designing principles for neck feature fusion:

(1) Compress feature extraction maps. Defect images share a common dark background and pixel
values of object instance have no big difference, so there is no need to enlarge the number of
kernels for a layer.

(2) Add cross-scale fusion without extra computations. Nodes derived from one input edge are
supposed to remove for its low-level semantic representation and aggregation between input and
output from the same level made defect region more visually clear.

(3) Repeat bidirectional (top-down & bottom-up) block. Unlike PANet, which only has one
bidirectional block, the network that is proposed in this paper advices cascaded modules to
enable more high-level feature fusion.

(4) Keep no same lateral size in a repeated block. Unlike EfficientDet (stacking Bi-FPN) that keep
the lateral sizes of up-sampling and down-sampling the same, this paper applies the interpolating
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layer for approximately continuous extension of scale, as shown in Figure 5. Feature loss could
be reduced with least amount of extra latency by this way.
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After setting the general fusion operation, weighted pixel analysis is necessary for feature
refinement. Since different input layers are at distinguished resolutions, they usually unequally
contribute to the output. Previous fusion methods treat all inputs equally without distinction and
cause bounding regression drift. Based on conventional resolution resizing and summing up, the
paper proposes to weight the salience of feature layer, as follows:
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In Equations (3) and (4), the feature flow between Mi and Mi+1 mainly build up on two kind of
blocks BL and BH, which reveal the j-th module, i-th layer, and extraction path as well as interpolating
path. Moreover, learnable weight wi is scalar in the feature level, which is comparably accurate to tensor
in pixel level, yet with minimal time costs. Normalization is resorted to bound the data fluctuation and
h-swish replaces Softmax to assign probability to each weight here ranges from 0 to 1 and it alleviates
the truncation error at the origin point. ε = 0.001 is a disturbance constant to avoid numerical instability.

3.3. Anchor Sampling and Refining

Region anchors, which are the cornerstone of learning-based detection, play a role in predicting
proposals from predefined fixed-size candidates. Selecting positive instances from a large set of
densely distributed anchors manually is time-consuming and limited to finite size variance. Some
defect instances contained extreme sizes and regression distance between ground truth and anchor
may be great. Therefore, in the first stage, the detection pipelines of this paper focus on guided
anchor (GA-Net) [32] mechanism to predict centers and sizes of proposals from FPN outputs and, in
the second stage, regression and classification are conducted after feature fusion and alignment by
position-sensitive (PS) RoI-Align [33], as shown in Figure 6.
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where (w, h) are the output of shape prediction, si is the stride for different layer L, and β is a scale 
factor, depending on size of image data. The nonlinear mapping normalizes the shape space from 
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dense sampler, a large number of anchors are selected, suppressed, and regressed to 256 proposals 
for stage two. As shown in Figure 7, yellow boxes are the maximum-IOU (Intersection Over Union) 
candidates chosen after coarsely locating irregularly-shaped defect instances, which are named 
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Figure 6. Cascaded Guided-Region Proposal Network (CG-RPN) with semantics-guided refinement.

3.3.1. Stage for Proposal Generation

All of the proposals would be regressed to bounding boxes of final prediction, thus the quality of
generator is crucial. Following the paradigm of GA-Net, RPN comprised of two branches for location
and shape prediction, respectively. Given a FPN input F, the location prediction branch Ct (Center-ness)
yields a probability map that indicates the Sigmoid scores for centers of the objects by Conv1*1, while
the shape prediction branch Sp (Shape) predicts the location-dependent sizes. This branch will lead
shapes to the highest coverage with the nearest ground-truth bounding box. Two channels represent
two variables height and width but it is necessary to be transformed by Equation (5) for the large range
and instability of them.
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where (w, h) are the output of shape prediction, si is the stride for different layer L, and β is a scale
factor, depending on size of image data. The nonlinear mapping normalizes the shape space from
approximately (0, 2000) to (0, 1), leading to an easier and stable learning target. Since it allows for
arbitrary aspect ratios, our scheme can better capture those extremely tall or wide defect instances and
encode them to a consistent representation.

A further size-adaptation offset map is introduced, as the anchor shapes are supposed to be
changeable to capture defects within different ranges. With these branches, a set of anchors are generated
by selecting the center-ness whose predicted probabilities are above a slightly lower threshold and
several shapes with the top probability at each of the chosen feature position. Subsequently, the
center-ness threshold is increased for the refinement of the next anchor-selection module and the
policy for shapes of anchors is unchanged. Increasing thresholds are set in different sub-modules
to include more probable central points and deal with the misalignment of extreme shaped defects.
Center-ness is shifted and updated after DF convolution. By this way, with the aid of dense sampler,
a large number of anchors are selected, suppressed, and regressed to 256 proposals for stage two.
As shown in Figure 7, yellow boxes are the maximum-IOU (Intersection Over Union) candidates
chosen after coarsely locating irregularly-shaped defect instances, which are named cascaded guided
RPN (CG-RPN). The red points denote strongly semantic feature positions and blue triangles represent
centroids of them.
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3.3.2. Stage for Bounding Box Generation

The bounding boxes need to be regressed and filtered from a large amount of low-quality
anchors and Non-maximum Suppression (NMS) [34] are operated to filter the overlaying ones by local
maximum search, whose result is shown in Figure 8. On the other hand, multi-classifying branch fixes
the output size of full-connection layer so RoI-Align along with adapting pooling aggregates different
fields into shape-identical feature map.
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Moreover, the loss of the proposed detector is divided into four parts: location branch and final
classification branch are similar and Focal Loss (FL) [35] and Cross Entropy (CE) Loss optimize them.
Shape branch, which compares IOUs by manually assigning central area ranges, use Bounded IOU
Loss (BI) conducted by height and width and regression branch is common with Smooth L1 Loss (SM),
as following:

L = FCloc + BIshape + CEcls + SMreg (7)

where CE and SM are applied in stage two and smoothing factor is set 0.04 to avoid sensitivity to
outliers and suppress gradient explosion. BI derived from SM along with parameters of bounding
boxes. γ in FC loss is 2 for balancing positive and negative samples.

3.4. Evaluation Metrics for Imbalanced Detection for Defects

Imbalanced detection needs to be evaluated by average recognition precision and variance
fluctuation among different categories. Similarity, between ground truth and predicting bounding
boxes is proportional to the recognition ability of detectors. Similarity is denoted by IOU based on
the Jaccard Index, which evaluates the overlap between two bounding boxes, as shown in Figure 9
and Equation (8), By comparing with confidence threshold, IOU of every instance in every category
would divide the prediction results into three aspects: True Positive (TP) denotes a correct detection
with IOU ≥ threshold, FP denotes a wrong detection with IOU < threshold and FN reveals a ground
truth not detected. After counting the number of instances in distinguished quality, a balanced metrics
of AP (Average Precision) could be calculated and used for representing the average performance of
detection. In Figure 1, the dashed curve is the Recall-Precision Curve, which is denoted by blue bins
and whose area is no more than 1 for facilitating consistency with probability. AP could be calculated
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in Equation (9), in which b is the number of bins and here is 11. P and ∆r are the height and width of
each bin, respectively.

IOU(c,i) =
area(SPred ∩ SGT)

area(SPred ∪ SGT)
(8)

AP =
n∑

b=1

P(b)∆r(b) (9)
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For each single class, precision is the ability of a model to only identify the relevant objects. It is
the percentage of correct positive predictions and it is given by TP/(TP + FP). Recall is the ability of
a model to find all of the relevant cases (all ground truth bounding boxes). It is the percentage of
true positive detected among all of the relevant ground truths and it is given by TP/(TP + FN). AP is
different among every category due to the imbalance of fabric defects in inter-class and intra-class.
Firstly, the mean AP of all categories could be used as the overall performance of detectors and it is
named mAP (usually use AP as default). Secondly, for inter-class imbalance, which means that the
data distribution of every class significantly differs from each other, the PR curve is better than ROC
(Receiver Operating Characteristic), since ROC considers both positive and negative examples. AP
focuses on positive ones and Variance Precision (VP) illustrates the inter-class accuracy stability, as in
Equation (10). Thirdly, intra-class imbalance mainly lies in size-variance and the AP for small, medium,
and large objects is divided by cross scale 962 and 2562.

VP =
1
C

√√√ C∑
k=1

(APk −mAP)2 (10)

4. Experiments and Discussion

4.1. Experimental Settings

The experiments are performed on FBDF to validate whether the modules above could solve the
imbalance of the textile industrial scenes. The validation dataset is evenly split from the whole at
splitting ratio of 0.2. Additionally image size does not need to be resized and without changing the
aspect ratio. Mini-batch stochastic gradient descent and batch normalization [36] are implemented over
two TITAN RTX GPUs with 18 images per worker on one GPU. The training epochs are uniformed
to 20 and learning rate is decreased every four epochs with a decreasing rate of 0.1. The evaluation
metrics is AP at different IOU thresholds (from 0.5 to 0.95). 200 instances of every class from these
images are randomly split as the pre-trained classification dataset, with which all backbones of the
architectures are initialized, in order to further strengthen feature extraction.
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4.2. Main Result

The proposed scheme can be evaluated with other state-of-the-art well-designed methods, as the
comparison in Table 4. MC-Net and CI-FPN along with Mixed-16, which is short for Defect-Net and
composite interpolating FPN along with mixed convolution network of 16 layers, achieves a remarkable
improvement, especially for small defects. It reports a testing AP of 72.6%, an improvement of 12.1%
over 60.5%, being achieved by cascaded FPN under the same setting. When using the light-weight
backbone (i.e., Mixed-16), the AP improvement over Mixed-16 is 6.7% and APS improves 29.1%, which
prove the availability of mixed convolution. The phenomenon of the increasing from 60.5% (Cascaded
R-CNN) to 65.9% (DF-Net + CI-FPN + ResNet50) and 65.9% to 72.6% (MC-Net + CI-FPN + Mixed-16)
prove the guessing of over-fitting from large-scale backbone, especially for small defects. The VP of
generic baselines is larger than that of the proposed architecture on average. VP of MC-Net along with
CI-FPN and Mixed-16 is the lowest and FCOS is the second one, which reveals that the range of AP for
different categories is narrow and distribution is relatively even. However, it does not mean that the
more VP is, the higher accuracy detector possesses. Take YOLOv3 as an example, the experiments
show that the APs of 11 classes are less than 30% in spite of 10.8 in VP. Additionally, Cascaded-FPN
gains 0.3 VP larger than Libra-FPN-RetinaNet, but 4.5% AP larger than that. Therefore, the ability for
addressing the imbalance of detectors should be evaluated by a combination of AP and VP.

Table 4. Accuracy of different detectors on FBDF testing set.

Method Backbone AP AP50 AP75 APS APL VP

Faster R-CNN VGG-16 42.6 57.7 45.8 22.4 53.6 14.2
Faster + FPN ResNet-50 53.3 69.0 57.7 39.3 64.7 13.8

RetinaNet + FPN ResNet-50 55.7 73.3 60.9 42.7 66.5 12.6
YOLOv3 [37] DarkNet-53 35.5 52.5 36.2 19.4 50.5 10.8
SSD-513 [38] ResNet-101 32.9 54.9 34.1 12.2 48.4 12.9

Cascaded [39] + FPN ResNet-50 60.5 75.2 66.3 47.1 71.0 11.5
CornerNet [40] Hourglass-52 36.4 53.0 39.8 19.9 51.2 13.0
CenterNet [41] Hourglass-52 39.5 57.5 40.6 22.7 54.3 12.6

Libra-FPN-RetinaNet [42] ResNet-50 56.9 71.4 60.2 38.5 68.9 11.2
FCOS [43] ResNet-50 33.0 49.8 34.4 19.2 44.3 10.3

MC-Net + CI-FPN ResNet-50 65.9 79.5 68.0 48.3 77.3 10.7
MC-Net + CI-FPN Mixed-16 72.6 86.3 73.6 50.9 80.4 9.7

4.3. Ablation Experiments

Backbone extraction. As MC-Net uses a light-weight powerful backbone, Figure 10 reveals how
much each of them contributes to the accuracy and efficiency improvements. Faster R-CNN along
with FPN is our baseline for comparison of different backbone. First, the RestNet series are heavy and
low-efficiency, which achieve a relatively low accuracy and ResNet-101, along with ResNet-152 are
even worse, and are thus are not shown in the figure. When replacing with MobileNet, AP increases
from 53% to 61% over MobileNetv3-Large [44] without cropping the images. Mixed series achieve a
similar performance with EfficientNet series and Mixed-16 gains the top AP of 67.2% based on FBDF
and slightly decreasing from Mixed-20 is due to the redundancy of the weights.

Along with the variant improvement for Faster R-CNN, the MC module is still efficient for other
detectors in defect detection. In Table 5, Cascaded FPN gains 6.0% promotion from 66.5% on the
ResNet-50 backbone and the average improvement of small instances is 5.5%, which proves MC-Net
could extract more and deep feature from the low-salience defects.

Neck fusion. In Figure 11, the AP of composite interpolating FPN is rising with the model
complexity expanding. Bn is short for n blocks of two-way information flow. Notably, when three
blocks are employed along with inter-layer and intra-block cross-scale connections, the scheme is the
most accurate one, with 72.3% (AP), 50.9% (APS), and 36.4 MB training parameters.
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Table 5. Performance of Mixed-16 applied in some generic detectors.

Method Backbone AP AP50 AP75 APS APL

Faster + FPN Mixed-16 59.2(5.9) 74.2 63.6 43.0 70.1
RetinaNet + FPN Mixed-16 61.9(6.2) 79.8 66.7 46.5 73.0
Cascaded R-CNN Mixed-16 63.6(4.5) 78.4 80.1 47.5 72.8
Cascaded + FPN Mixed-16 66.5(6.0) 83.5 72.5 59.8 77.9
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Proposals generation. With the deployment of CG-RPN, three feature adaption modules would
refine the anchor centers and shapes in stage one. The center-ness thresholds are 0.3, 0.5, and 0.7 in
different cycles and, in regression branch, every position in feature map choose three anchors with
aspect ratios of 0.5, 1.0, and 2.0 to enlarge the search space. In Figure 11, the left one is from common
Faster R-CNN and the right one is from CG-RPN and less low-quality proposals is reserved here. In
Table 6, different center-ness configurations are displayed and the tuple (0.3, 0.5, 0.7) is better than the
others in AP, since it introduces more computing parameters and relaxes the hard border of whether
belonging to positive instances.

Table 6. Performance of CG-RPN with different center-ness threshold tuples.

Tuple Mean IOU (Post) AP APS

(0.5) 46.5 71.4 39.1
(0.5, 0.7) 59.7 75.8 44.8
(0.3, 0.5) 53.6 72.9 41.3

(0.3, 0.5, 0.7) 56.8 76.1 46.5
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Additionally, from the pre-trained model of MC-Net with CI-FPN, several bounding boxes and
confidence values are shown in Figures 12 and 13.
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5. Conclusions 
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Figure 13. Visualization of the best bounding boxes of defects from MC-Net along with CI-FPN.

For Area Under Curve (AUC), the MC-Net along with Mixed-16 gains better performance than
AP: 76.9% for mean AUC, 55.4% for small defects and 82.6% for large defects. For ConerNet and
CenterNet, the mean AUC increases 3.5% and 4.3% and some small promotions in accuracy appear
in other detecting systems. However, in textile industry, positive examples draw more attention
than negative examples and a detector that is robust to sensitive metrics. When negative examples
increase a lot, the curve does not change a lot, which is equivalent to generating a large number of
FP. In the context of imbalanced categories, the large number of negative cases makes the growth of
FPR (FPR = FP/(FP + TN); TPR = TP/(TP + FN)) not obvious, resulting in an ROC curve that shows an
overly optimistic effect estimate. Finally, misdetection would lead to constant interruptions of machine
tools, which results in low efficiency in manufacturing. Therefore, in this work, the ROC curve is
replaced for the PR curve.

5. Conclusions

This study solves the problem of the imbalanced detection for fabric defect. Firstly, a large-scale,
publicly available dataset for defect detection in optical fabric defect images is released, which enables
the community to validate and develop data-driven defect detection methods. Secondly, several
modules to refine traditional inefficient network are designed, including mix convolutional backbone,
interpolating FPN, and cascaded guided anchor, etc., in order to improve recognition performance
of occluded and size-variant defects Finally, the study shows the importance of these frameworks in
defect detecting and provides a scheme for precisely meeting the needs of the textile industry.
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