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Abstract

Yield gaps of maize (Zea mays L.) in the smallholder farms of eastern India are outcomes of

a complex interplay of climatic variations, soil fertility gradients, socio-economic factors, and

differential management intensities. Several machine learning approaches were used in this

study to investigate the relative influences of multiple biophysical, socio-economic, and crop

management features in determining maize yield variability using several machine learning

approaches. Soil fertility status was assessed in 180 farms and paired with the surveyed

data on maize yield, socio-economic conditions, and agronomic management. The C&RT

relative variable importance plot identified farm size, total labor, soil factors, seed rate, fertil-

izer, and organic manure as influential factors. Among the three approaches compared for

classifying maize yield, the artificial neural network (ANN) yielded the least (25%) misclassi-

fication on validation samples. The random forest partial dependence plots revealed a posi-

tive association between farm size and maize productivity. Nonlinear support vector

machine boundary analysis for the eight top important variables revealed complex interac-

tions underpinning maize yield response. Notably, farm size and total labor synergistically

increased maize yield. Future research integrating these algorithms with empirical crop

growth models and crop simulation models for ex-ante yield estimations could result in fur-

ther improvement.

1 Introduction

The Sustainable Development Goals to eradicate poverty (Goal 1), hunger (Goal 2) and

improve human health and well-being (Goal 3) [1] will require a 60% to 110% increase in

global agricultural production. FAO’s State of the World series [2], and IFPRI’s visionary 2050

policy documents have identified food security as the global concern of the 21st Century.

Bridging the large yield gaps in smallholder farms of Asia and Africa, with significant regional
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and interpersonal variations, is necessary to reduce global food insecurity [3, 4]. The inten-

sively cultivated eastern part of India [5] is characterized by smallholder farms [6]. Inherently,

the smallholder farming systems function under a broad array of biophysical, climatic, and

socio-economic settings, and their improvement is often hindered by inadequate access to

land, fertile soil, capital, and labor [7, 8]. The interactions among these factors affect resource

use efficacy and the ability to produce optimal yield. Tittonell et al. [9] concluded that biophys-

ical and socio-economic factors, linked to diverse local climates, soil types, access to markets,

and socio-cultural and ethnic characteristics govern soil fertility and crop yield variation. In

fact, yield-gap analyses have recently taken adequate account of smallholder heterogeneity to

identify local/regional factors of yield variation [10, 11, 12, 13]. Understanding these determi-

nants of yield variability in smallholder systems is important to formulate informed policies to

close the yield gap for major food crops.

Maize (Zea mays L.) research in India has largely concentrated on crop management, crop

improvement, and removing biotic and abiotic constraints for enhancing maize yield. How-

ever, how these factors function within the structural, biophysical, and socio-economic

contexts of farming has been less explored [14, 15, 16]; therefore, assessing the relative signifi-

cances of soil and crop management, socio-economic and structural factors is important for

targeted site-specific management interventions [17, 18].

Methods of measuring yield variability and productivity gaps frequently utilize experimen-

tal results obtained at the local level [19] or at the regional/global level [20], with scant atten-

tion given to the inherent variability in farm conditions. The large variability in crop growth

and yield in time and space challenges the accuracy of existing models [21, 22]. An assessment

of the impacts of climatic, biophysical, management, and socio-economic determinants is nec-

essary to understand the causes of yield variability in farm fields [23]; however, our under-

standing of the interactions between these factors for predicting crop yield is still limited.

While one group of researchers used classical statistical methods, such as correlation, regres-

sion, and cluster analysis to analyze yield variability [24, 25], others preferred different pro-

cess-based models to study on-farm yield gaps [26, 27]. While the relative superiority of the

process-based crop growth models over empirical models is well established, the increased

demands of technological complexity and robust calibration–verification measures are the

main limiting factors for their broader application, particularly in smallholder farms of devel-

oping countries that lack financial and technical capacities [28]. Given that the empirical crop

growth models play a crucial role in identifying the hidden structure of the crop growth pro-

cess, the most deterministic models sometimes heavily rely on the former, i.e. process-based

models [29]. Investigating multiple interactions among the outcome and the explanatory vari-

ables often demands adaptive and non-parametric multivariate analyses, due to their ability to

negotiate non-linear relationships, thus overcoming the limitations of Euclidian distance-

based general linear models. Data collected by field surveys are a mix of continuous, discrete,

and categorical variables, and are often found to be highly skewed. To handle such complexi-

ties, classification and regression tree (C&RT) analysis has recently been employed by several

researchers to categorize relatively homogeneous observations in terms of target and explana-

tory variables [14, 30]. Further, techniques like support vector machine (SVM) and artificial

neural network (ANN) have been efficiently used to identify the complex and non-linear rela-

tionships between target and predictor variables.

This study is a continuation of the work by Banerjee et al. [14], and investigates the underly-

ing multifaceted links between maize yield and biophysical, socio-economic, and crop man-

agement factors by applying several multivariate machine learning approaches. We intend to

put forward a compelling case to the agricultural scientists and policymakers for using these

approaches to explain maize yield in smallholder farms. The specific objectives of this
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communication are: (i) to identify the key socio-economic, crop management, and biophysical

factors for predicting maize yield; (ii) to understand the underlying relationship between the

abovementioned factors for determining maize yield in small farms of two agroecological

zones of eastern India; and (iii) to compare the relative efficiency of different machine learning

approaches to classify maize yield variability.

2 Materials and methods

2.1 Site description

The study was conducted in two districts of West Bengal, India: Malda in the ‘Old Alluvial’

and Bankura in the ‘Red and Lateritic’ agro-climatic zones. Together, these two zones cover an

area of 10,615 km2. The climate in Malda is hot and humid in the summer, with an average

annual rainfall of 1453 mm. The climate of Bankura is drier with an average annual rainfall of

1400 mm [14]. The population density is 446 and 881 inhabitant km-2 for Bankura and Malda,

respectively [31]. During the survey of secondary information, Banerjee et al [14] recorded sev-

eral features of farming in the area that are relevant for this study. First, the districts reflect dif-

ferent altitudes, soil types, ethnic groups, and land use patterns. Second, the total, net sown

area in the studied districts ranged from 260,000 ha to 345,000 ha. The cropping intensity ran-

ged from 164 to 183%. Farms in both the districts are predominantly small and marginal with

landholding of less than 1.0 ha. Three distinct crop seasons can be found in both the districts:

pre-kharif (March-May), kharif (June-October), and rabi (November-February). Maize has

emerged as an important crop in both Malda (during pre-kharif, kharif and rabi seasons) and

Bankura (during kharif season). Malda produced 20 thousand t of maize grain from 8620 ha,

greater than the acreage (172 hectares) and productivity (2.3 t ha-1) of Bankura [14, 31].

2.2 Farm surveys and soil laboratory characterization

The study was conducted on private agricultural land, with permission from the owners.

Ramakrishna Mission Vivekananda University’s ethics committee approved the locations by

involving farmer participants before the study began. Two Blocks (smaller administrative units

of community development comprised of village clusters) with the highest maize growing

areas were selected for the survey from 15 blocks of Malda and 22 blocks of Bankura districts

(Table 1). Three villages in each of the selected blocks were chosen in consultation with the

Program Coordinators of the Farm Science Centre (a First Line Extension agency of Indian

Council of Agricultural Research), the deputy director of agriculture, local non-governmental

organizations, and progressive farmers. The villages with high maize acreage under the identi-

fied maize growing seasons, were selected. Maize-growing farmers in the villages (30 farmers

from each village) were then selected for the detailed survey through systematic sampling [14].

Pre-survey interactions with farmers were carried out along with the survey of maize fields to

understand the existing status of maize cultivation. This was followed up with a day-long

stakeholder consultation, leading to the formulation of a structured interview schedule (see S1

File) [14]. The pre-tested questionnaires were used in the structured interviews with the own-

ers of 180 farms (90 farms per district). These were coupled with visits to the maize fields of

each household.

A total of 180 composite surface (0–60 cm) soil samples were collected from an equivalent

number of fields prior to maize planting. Each composite sample was a mixture of eight sub-

samples from each field. The samples were air-dried, ground, and passed through a 2 mm

sieve. Soils were analyzed for particle size [32], saturated paste pH [33], salinity [33], total

organic carbon [34], available S [35], available K, available P [36,37], and available N [38].
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We collected maize yield data from farmer’s reports and validated 20% of data (n = 36) with

allometric models defined by Tittonell et al. [39], which fell inside the 95% confidence interval.

Explanatory variables were grouped under socio-economic, management, structural, and soil-

related variables. The measurement of these variables is given in Table 2.

2.3 Soil spectral characterization

Traditionally, laboratory-based, routine, soil physicochemical analyses have been the basis for

our perception of soil quality and function; however, there is a pressing need for the develop-

ment of fast and cost-effective methodologies for soil analyses in precision agriculture. Hyper-

spectral diffuse reflectance spectroscopy, a rapid and non-destructive approach, has been used

as an alternative soil analytical approach for the last two decades [40]. We scanned 180 soil

samples using a portable ASD FieldSpec1 spectroradiometer (Analytical Spectral Devices,

CO, USA) [see S2 File (SM) for more details on spectral analysis and spectral modeling]. To

reduce the dimensionality of the spectral data (10-nm interval) in subsequent modeling analy-

sis, principal component analysis (PCA) was performed which selected the first two PCs

(SPC1, SPC 2) that summarized 90% of the total spectral variation. Additionally, PCA per-

formed on soil wet chemistry indices selected the first two PCs (PC1 and PC2) that together

explained 88% of the total variability. A significant correlation was found between clay and

organic carbon (p<0.0001). The PC1 explained 54% of total variation while PC2 explained

34% of the variation. Subsequently, all four abovementioned PCs (SPC1, SPC2, PC1, and PC2)

were incorporated in the “Soil Factors” in Table 2 as an alternative to using soil wet chemistry

data and soil spectral data to classify maize yield.

2.4 Multivariate modeling

2.4.1 Classification of maize yield. In the present study, we first used a C&RT algorithm

known for predicting quantitative or classifying categorical targets by recursively dividing the

dataset [41]. The C&RT analysis was done by SPM software (Salford Systems, San Diego, CA,

USA). Maize yield was used as a target variable, and socio-economic, management, and soil

factors (topography along with spectral and wet chemistry PCs) were used as explanatory

Table 1. Study locations in West Bengal, India.

District Block Village Latitude (N) (In Degree

Decimal)

Longitude (E) (In Degree

Decimal)

Closely identified soil

series

Classificationa

Bankura Chatna Dalpur 23.34 86.91 Gangajalghati Fine-loamy, mixed, hyperthermic, Typic

UstochreptsKendua 23.37 86.96

Suyarabagra 23.49 86.96

Gangajal

Ghati

Bamundiha 23.49 87.23 Gangajalghati Fine-loamy, mixed, hyperthermic, Typic

UstochreptsKayamati 23.39 87.05

Shuyabasa 23.64 87.08

Malda English

Bazar

Madia 25.19 88.15 Alinagar Coarse-loamy, mixed, hyperthermic,

Typic UstifluventsNaraharipur 25.11 88.08

Niyamatpur 25.05 88.19

Gazole Bhabanipur 25.45 88.28 Dakshin

Harishchandrapur

Fine, mixed, hyperthermic, Aeric

EndoaqueptsDurgapur 25.52 88.32

Uttar

Maldanga

25.35 88.21

aNBSS&LUP (2001)

https://doi.org/10.1371/journal.pone.0229100.t001
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variables (Table 2) in this study. Among other multivariate models, random forest (RF), sup-

port vector machine (SVM), and artificial neural network (ANN) analyses were conducted

[42, 43, 44] [See S2 File SM for more details]. Maize yield (t ha-1) was converted a priori into

discrete classes [1st quartile (Q1), 2nd quartile (Q2), 3rd Quartile (Q3), and 4th quartile (Q4)] for

classification purpose. The ANN was run in the WEKA data mining package. We optimized

parameters of ANN via ‘CVParameterSelection’ module. Note that RF, SVM, and ANN were

Table 2. Explanatory variables used in the C&RT analysis.

Variables Description

Socio-economic
Farming experience Number of years the farm family is engaged in crop cultivation; measured in

years;

Ethnic origin The ethnic identity of the farm household as per the stipulation of Government

of India; Categorised as–Non-tribe– 1 and Scheduled Tribe– 2

Socio-Economic Status Class Measured by modified Kuppuswamy’s socio-economic scale (Kumar et al., 2012)

Household size Number of members in a farm family who share food from a single source;

Absolute number of members in a family

Members of the family working

in own farm

Number of members in a farm family who work within the farm completely or

partially for sustaining livelihood

Non-farm income Income (Indian Rupees) of the farm family in a year from non-farm sources

Wage earning Whether the farm family earns a wage from working in others’ farms; Yes = 1;

Otherwise = 0

Ownership of cultivable land Whether the farm family has own land, which is lawfully recorded; Yes = 1;

Otherwise = 0

Farm size Size of the homestead and owned cultivable land (ha) recorded lawfully

Topography of land Whether the land is ‘level’ or ‘undulated’ as perceived by the respondent; Level-

1, Undulated = 0

Management Factors
Leguminous crop in the

cropping sequence

Whether at least one leguminous crop is grown on the plot where the maize was

grown; Yes = 1; Otherwise = 0

Constraint in Irrigation Whether irrigation is a constraint in non-monsoon months; Yes = 1;

Otherwise = 0

Spacing R-R Spacing between two rows of Maize plant (cm)

Spacing P-P Spacing between two Maize plants within a row (cm)

Seed type Genetic nature of seed used in maize cultivation; Traditional-1; Hybrid-2

Seed rate Amount of maize seed used in cultivation plot (t ha-1)

Organic manure Amount of organic sources of plant nutrient used in maize cultivation plot (t ha-

1)

Fertilizer Amount of inorganic sources of plant nutrient used in maize cultivation plot (Kg

ha-1)

Insecticide Amount of active ingredient of plant protection chemicals used in maize

cultivation plot (g ha-1)

Total labour Total family and hired labour used for all operations related to maize cultivation

(man-hour ha-1)

The severity of soil problem Perceived strength of soil problem; No– 0; Light– 1; Moderate– 2

General and Structural variables
Agro-ecological region Bankura District = 1, Malda = 2

Distance to input Physical distance (km) of farms to farm input market

Distance to market Physical distance (km) of farms to farm output market

Soil variables
Principal component scores of the soil wet chemistry data (PC1 and PC2)

Principal component scores of the soil spectral data (SPC1 and S PC2)

https://doi.org/10.1371/journal.pone.0229100.t002
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applied on the whole dataset and further applied on a split of data (135 training 75% and 44

test 25%).

2.4.2 Predicting maize yield by RF regression. After establishing the influencing vari-

ables by the abovementioned classification algorithms, the RF regression was used to predict

the Maize yield using the whole dataset with full cross-validation. The coefficient of determina-

tion (R2), cross-validation RMSE (RMSEcv), residual prediction deviation (RPD), and bias

were used for judging model predictability.

3. Results

3.1 Maize yield and soil characterization

Although the overall productivity of Malda (3.79 t ha-1) surpassed the overall productivity of

Bankura (3.41 t ha-1) by 11.14%, no significant yield difference was observed between them.

Pooled total maize yield varied from 0.11–8.25 t ha-1 with Q1, Q2, Q3, and Q4 ranging from

0.11–1.86, 1.86–4.0, 4.0–4.81, and 4.81–8.25 t ha-1, respectively. Considerable variation in soil

properties was apparent between districts. Malda had finer-textured soils with higher OC

(21% higher), EC (61.54% higher), and pH (18.33%) (Fig 1). On the contrary, both the districts

had similar median available N (160 kg ha-1) with larger interquartile range (37.5% larger) was

found in Malda. A similar trend was obtained for available P.

Fig 1. Box-and-whisker plots showing the variability of soil wet chemistry results. The mean and the median values are indicated by the cross and

crossbar, respectively.

https://doi.org/10.1371/journal.pone.0229100.g001
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The statistical moments of all measured soil variables for pooled data are shown in Table 3.

Except for available S, considerable variability was observed for pH (4.8–10), EC (0.0–0.8dS

m-1), available N (77–308 kg ha-1), available P (4.9–21.7 kg ha-1), available K (24.0–432.9 kg

ha-1), clay (10.8–44.8%), sand (17.2–83.2%), and silt (4–42%). Organic carbon was significantly

correlated with all parameters except available N, P, and S.

3.2 Use of principal components as proxy for soil chemical parameters and

spectra

Principal component loadings indicated the correlation among spectral wavelengths and soil

properties (Fig 2). Negative peaks in the SPC1 loadings specified the analyte of interest, and

positive peaks identified interfering components [45]. The SPC1 loading weights exhibited

pronounced negative contributions for wavebands between ~450–750 nm, 1050–1150 nm,

1250–1450 nm, 1700–1750 nm, 1900–2050 nm, and 2200–2240 nm, possibly arising from goe-

thite (electronic transition), aromatics (3υ1) [where, υi = fundamental mode], clay minerals

(kaolin doublet; 2υ1a and 2υ1b), alkyl asymmetric–symmetric doublet (2υ1), carboxylic acids

(3υ1), smectite (υ1+δa or υ1+δb) or illite (υ1+δ), respectively [46]. Conversely, SPC2 loading

weights indicated a negative contribution for ~1250–1850 nm and 1950–2150 nm regions to

varying magnitudes, arising from aromatics (3υ1) and amides (3υ1). The shoulder at 2137 nm

indicated polysaccharides like cellulose etc., which are part of the hard to decompose

organic C.

3.3 Classification and regression tree for selecting influential variables

To help categorize the maize yield dataset, we explained the variability arising from the inter-

actions among socio-economic, crop management, and biophysical variables. The whole data-

set was used for C&RT analysis (n = 179), with total maize grain yield as the target variable

(Fig 3). The tree had 14 terminal nodes (TN) where seed rate was the primary splitting node.

Average maize yield was 2.66 t ha-1 at a seeding rate of<27.78 kg ha-1. Average yield decreased

Table 3. Descriptive statistics of soil wet chemistry variables.

Variable Min Max Mean Std.

deviation

Correlation matrix

pH EC (dS

m-1)

OC

(%)

Available N

(kg ha-1)

Available P

(kg ha-1)

Available K

(kg ha-1)

Available S

(mg kg-1)

Clay

(%)

Sand

(%)

Silt

(%)

pH 4.8 10.0 6.7 1.0 -

EC (dS m-1) 0.0 0.8 0.2 0.1 Sa -

OC (%) 0.1 0.9 0.4 0.1 S S -

Available N

(kg ha-1)

77.0 308.0 175.9 36.9 NS NSa NS -

Available P

(kg ha-1)

4.9 21.7 11.3 3.9 S NS NS NS -

Available K

(kg ha-1)

24.0 432.9 134.8 90.4 S S S S S -

Available S

(mg kg-1)

0.2 0.9 0.3 0.1 S S NS NS NS NS -

Clay (%) 10.8 44.8 25.9 11.7 S S S S S S S -

Sand (%) 17.2 83.2 54.6 24.2 S S S S S S S S -

Silt (%) 4.0 42.0 19.4 12.7 S S S S S S S S S -

a S and NS are significantly and non-significantly different from 0 with α = 0.05, respectively.

https://doi.org/10.1371/journal.pone.0229100.t003
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(1.84 t ha-1) at a higher seeding rate perhaps due to differences in the methods of sowing, lead-

ing to differences in competition for resources among the plants. At splitting node 2, as

expected, lower seeding rate (<17.63 kg ha-1) resulted in lower average yield (2.40 t ha-1), and

comparatively higher yield was obtained with >17.63 kg ha-1 seeding rate, which was further

separated by farm size (splitting node 7). A combination of farm size above 0.31 ha with an

application of organic manure above 0.58 t ha-1 showed a synergistic effect in maize yield (TN

7, average yield = 3.66 t ha-1). This trend can be attributed to large farmers who applied both

organic and inorganic nutrient sources in sufficient amounts. The majority of cases had low

(<0.58 t ha-1) organic manure use (n = 53). There are several constraints to sourcing organic

manure in this region, such as farm size, inconvenience of organic techniques, unavailability

of biomass, higher production risk, lack of training of organic practices etc. [47]. The latter

group was further split by inorganic fertilizer use (sum of urea, SSP and MOP), where fertilizer

applied at rates above 975.84 kg ha-1 produced an average yield of 4 t ha-1 (TN 8). Average

yield (2.71 t ha-1) declined with lower rates of fertilizer, which represented the majority of

cases (n = 40). This node was, in turn, again divided by total labor (node 10). All four soil vari-

ables (PC1, PC2, SPC1, SPC2) appeared as splitting criteria at different hierarchy levels, indi-

cating that these were the dominant variables influencing yields.

The relative variable importance plot identified the key biophysical and management fac-

tors (Fig 4). Only those variables which have relative importance > 0.05 were retained for sim-

plicity. Farm size and total labor were the two most influential variables identified, followed by

Fig 2. Plot showing the loadings of spectral principal component 1 (SPC1) and spectral principal component 2 (SPC2).

https://doi.org/10.1371/journal.pone.0229100.g002
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soil variables. The other important variables which have predictor importance >0.6 were seed

rate, fertilizer, and organic manure. All these three factors represent the management intensity

of maize cultivation.

The C&RT illustrates the complexity of the data structure and the need to categorize the

yield variability arising from multiple interactions between different variables. Only the first

nine C&RT predictors (>0.5 relative importance) were retained and used in subsequent classi-

fications. Simplification of a complex dataset having large genotype-by-environment interac-

tion [48] [74] or reduced number of inputs variables for modeling crop yield [49,50] have been

common in the available literature, and the same has been applied to our dataset.

3.4 Classification

The RF perfectly classified the yield data with 0% misclassification both on the whole dataset

and the 75% training set (n = 135) (Table 4). Conversely, the 25% test set (n = 44) exhibited

lower classification accuracy with a 38% misclassification rate, classifying all but 17 samples by

yield classes. Classification by SVM almost resembled the RF classification when the full data-

set was used, producing 0.5% misclassification. On the contrary, the 25% test set (n = 44)

exhibited lower classification accuracy than its RF counterpart, exhibiting a 47% misclassifica-

tion rate. The SVM misclassification rate for the training set (n = 135) was much worse than

the RF training set misclassification rate. Overall, the ANN-MLP classification model had the

Fig 3. C&RT model overview for explaining maize yield variation. Splitting nodes, terminal nodes are denoted by N and TN, respectively. For more

details on C&RT interpretation, see [14].

https://doi.org/10.1371/journal.pone.0229100.g003
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best performance, producing the smallest misclassification rate on the test set (25%). The over-

all performance of the algorithms for predicting maize yield classes can be ranked as: ANN>

RF> SVM.

Using the whole dataset, the RF relative variable importance analysis based on the Gini cri-

terion exhibited an interesting trend. The leading influential variables were all the numeric

variables that complemented the C&RT important predictors (Fig 5), although with a slightly

different ranking. Furthermore, Fig 6 shows the partial dependence plot of the four leading

influential variables (farm size, SPC1, SPC2, and total labor), as identified in Fig 5. Since the

response variable (total maize yield) had four categories, each variable had four partial

Fig 4. C&RT relative variable importance plot for explaining maize yield variation.

https://doi.org/10.1371/journal.pone.0229100.g004
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dependence functions, one for each class. For example, for variable farm size, it was revealed

that for logits (i.e., the log of fraction of votes) of having class 1 (Q1, the first quartile of the

total maize yield), total yield decreased sharply when the farm size increased from a low value.

The rate of decrease in the logit slowed down when the farm size was larger. Note that the hash

marks at the bottom of the plot indicated the deciles of the variable (e.g. farm size). Therefore,

during interpretation, more attention was given to the dense area of the hash marks instead of

the sparse area (e.g. when the farm size was greater than 2). Farm size and maize productivity

demonstrated a positive relationship at different scales of farm size. This was rather interesting,

indicating the differential magnitude of such association for both smallholders and relatively

larger farmers. In the first plot, the initially high probability of being in class 1 (low produc-

tion) may reflect the inability of smallholders to apply sufficient levels of farm inputs. This

trend, however, slowed down for greater farm sizes due to the diminishing returns to produc-

tion inputs [51]. While visualizing the SPC1 effect, a decreasing score below 2 (i.e. increasing

impacts of soil organic matter and clay) was accompanied by a consistently increasing

Table 4. Confusion matrix showing classification of maize yield using the random forest (RF) and support vector machine (SVM), and artificial neural network

(ANN) classifications. The weighted kappa coefficients are also given (n = 179).

RF Using whole dataset (κ = 1) 75% training set (κ = 1) 25% test set (κ = 0.63)

Measured

Q1

Measured

Q2

Measured

Q3

Measured

Q4

Measured

Q1

Measured

Q2

Measured

Q3

Measured

Q4

Measured

Q1

Measured

Q2

Measured

Q3

Measured

Q4

Predicted

Q1

46 0 0 0 35 0 0 0 8 1 2 0

Predicted

Q2

0 44 0 0 0 33 0 0 1 8 2 4

Predicted

Q3

0 0 44 0 0 0 34 0 1 1 4 1

Predicted

Q4

0 0 0 45 0 0 0 33 1 1 2 7

Overall misclassification 0% Overall misclassification 0% Overall misclassification 38%

SVM Using whole dataset (κ = 0.98) 75% training set (κ = 0.59) 25% test set (κ = 0.54)

Measured

Q1

Measured

Q2

Measured

Q3

Measured

Q4

Measured

Q1

Measured

Q2

Measured

Q3

Measured

Q4

Measured

Q1

Measured

Q2

Measured

Q3

Measured

Q4

Predicted

Q1

46 0 0 0 18 3 1 2 6 0 0 0

Predicted

Q2

0 44 1 0 3 18 4 2 1 2 1 2

Predicted

Q3

0 0 43 0 4 7 17 8 1 2 8 1

Predicted

Q4

0 0 0 45 8 6 11 23 5 6 2 7

Overall misclassification 0.50% Overall misclassification 43% Overall misclassification 47%

ANN Using whole dataset (κ = 1) 75% training set (κ = 1) 25% test set (κ = 0.76)

Measured

Q1

Measured

Q2

Measured

Q3

Measured

Q4

Measured

Q1

Measured

Q2

Measured

Q3

Measured

Q4

Measured

Q1

Measured

Q2

Measured

Q3

Measured

Q4

Predicted

Q1

46 0 0 0 35 0 0 0 9 0 1 0

Predicted

Q2

0 44 0 0 0 33 0 0 1 9 0 1

Predicted

Q3

0 0 44 0 0 0 34 0 1 1 7 1

Predicted

Q4

0 0 0 45 0 0 0 33 0 1 2 10

Overall misclassification 0% Overall misclassification 0% Overall misclassification 25%

https://doi.org/10.1371/journal.pone.0229100.t004
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probability of being in class 3 (higher yield). With a decreasing SPC2 score, a sharp increase in

probability was observed in classes 2 and 3 for most cases. We produced the RF proximity plot

using the whole dataset to observe the clustering structure among the samples and to identify

the outliers in the data, we produced the RF proximity plot using the whole dataset, which

gave an indication of the observations that were effectively close together, as determined by

the random forest classifier (Fig 7). Note that a proximity plot is based on similarities between

cases, i.e. the number of times that cases were placed in the same terminal nodes [52]. How-

ever, in our case, a big overlap was observed between classes 1 and 2, with three outliers (on

the upper right) in class 1, although intraclass variability was evident from the sparse nature of

cases. Further, both class 3 and class 4 seemed to have two subclasses.

Fig 8 illustrates complex interactions through nonlinear SVM (using the Gaussian kernel)

boundary for the leading eight influential variables, as identified in Fig 5. We used only the

bivariate model since it is very difficult to visualize the boundary for a model with more than

two variables. The nonlinearity and complex interaction for the SVM boundary in the SVM

pairwise plot were apparent. For example, in the first plot (farm size vs. SPC1), class 2 domi-

nated the upper (large farm size) and lower right corner (small farm size and large SPC1

value). Class 3 spanned the range of SPiC1 with median values for farm size. Class 4 had two

clusters, both having SPC1 values around zero. The class 1 area appeared when farm size was

small and the majority area was at the lower-left corner (small farm size and small SPC1

value). While visualizing the interaction between SPC2 with farm size, it was obvious that

although class 2 spanned the range of farm sizes, the coverage under class 2 was more

Fig 5. The random forest relative variable importance plot using the whole dataset based on the Gini criterion. Farm size, agro-ecological region,

seed type, legume crop, socio-economic status class, land ownership, ethnic origin, topography, irrigation constraint, severity of soil problem, organic

manure, seed rate, and total labor are denoted as Farm, AE, Seed, Legu, SES, land, Ethnic, Topo, Irrigation, Severity, Organic, SRate, and Labor,

respectively.

https://doi.org/10.1371/journal.pone.0229100.g005
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pronounced when farm size exceeded 2 ha (large farm size). One noticeable pattern was the

clustering tendency of class 1 (lower yield) around small farm size in the first seven plots,

except the farm vs. SPC2 plot. Excessive use of fertilizer lowered the yield irrespective of farm

size (farm vs. fertilizer). A synergistic relationship between farm size and total labor for

increasing yield was observed from the farm vs. labor plot. A visual inspection of SPC1 vs.

SPC2, PC2, seed rate, fertilizer, and labor revealed a subtle trend of clustering class 3 and 4

(higher yields) when SPC1 score tended below 0 (higher organic matter or clay). A synergistic

effect between low SPC1 score and high seed rate was evident (a cluster of class 4 at the lower

right corner of SPC1 vs. seed rate). Moreover, fields with the high impact of organic matter or

clay produced less (class 1) after the fertilizer application reached a threshold. Seeding rate was

positively related to fertilizer dose and labor, while fertilizer dose was positively correlated with

total labor. Among other positive interactions, PC1 vs. PC2, PC1 vs. labor, and PC1 vs. seed

rate were important, as interpreted from the distribution of class 4. In the PC1 vs. fertilizer

plot, a pronounced presence of class 1 realistically revealed the negative effect of over-fertiliza-

tion on a fertile field. Summarily, we suggested that the interpretation of causal relationships

needed a cautious approach, because many biophysical and management variables seemed to

be highly correlated with each other.

Fig 6. Partial dependence plot on the leading four influential variables (farm size, SPC1, SPC2, and total labor), as identified in

classification and regression tree relative variable importance plot (cf. Fig 6). At the top, 1,2,3,4 (individual class) represents the

1st quartile (Q1), 2nd quartile (Q2), 3rd Quartile (Q3), and 4th quartile (Q4) of total maize yield, respectively.

https://doi.org/10.1371/journal.pone.0229100.g006
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3.5 Yield prediction

The random forest regression was sufficiently able to capture the intricacy in the non-linear

data structure and to predict the total maize yield, indicated by an R2 value of 0.94

(RMSE = 846 kg ha-1). The RF regression variable importance plot (Fig 9a) exhibits explana-

tory variables, arranged according to their relative contribution to the overall prediction pro-

cess. Subsequently, the partial dependence plots of all the eight variables provided a more

straightforward interpretation of the relative influence of different biophysical attributes and

land management factors on total maize yield (Fig 9b). Total yield increased sharply when the

farm size increased from a low value. Subsequently, the rate of increase slowed down and

reached a plateau when the farm size was large. Yield increased rapidly only when the seeding

rate and total labor increased from a low value. In general, a positive contribution of soil avail-

able P on total yield can be inferred when PC2 score was positive.

4. Discussion

Yield variability of maize among different villages within a block was inherently large, likely

due to difference in sowing dates [53], growing environments [54], and choices of cultivar

[55]. The higher inter-quartile range of soil properties for Malda could be largely explained by

higher variation in nutrient management intensity owing to greater socio-economic variability

between sub-locations and inherent variation in soil properties. Apart from other factors, soil

Fig 7. Proximity plot for the random forest classifier using the whole dataset (n = 179). Four different categories:

1,2,3,4 (individual class) represent 1st quartile (Q1), 2nd quartile (Q2), 3rd Quartile (Q3), and 4th quartile (Q4) of total

maize yield, respectively. The proximity matrix is represented by two dimensions (Dim 1 and Dim 2) using

multidimensional scaling.

https://doi.org/10.1371/journal.pone.0229100.g007
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Fig 8. Complex interactions through nonlinear support vector machine (using the Gaussian kernel) boundary for

the whole data with the leading eight influential variables, as identified in classification and regression tree

relative variable importance plot (cf. Fig 6). Four different categories: 1,2,3,4 (individual class) represent 1st quartile

(Q1), 2nd quartile (Q2), 3rd Quartile (Q3), and 4th quartile (Q4) of total maize yield, respectively.

https://doi.org/10.1371/journal.pone.0229100.g008
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texture explained OC variability because of the greater capacity of soil richer in clay and silt for

physicochemical carbon stabilization in soils richer in clay and silt [56].

Spectral analysis (in terms of SPC1 and SPC 2) was sufficiently sensitive to capture spectral

features of soil OC and clay minerals. Assigning precise wavebands for individual soil parame-

ters was difficult due to the complex nature of soil matrix. Consequently, determining the

relationship between the size of the PC score and the loading was not straightforward. For sim-

plicity, we used negative spectral scores for each SPC1 and SPC2 as comprehensive indicators

of both soil OC and clay content. In contrast, PC1 had significantly larger positive loadings on

clay (0.972) and OC (0.543) while PC2 had significantly larger positive loading on available P

(0.482) than rest of the variables with minor positive and negative loadings. The larger the

absolute value of loading weight, the greater the contribution of the corresponding input

Fig 9. Plots showing a) RF variable importance plot where explanatory variables are arranged according to their relative contribution to the overall

prediction process. Seed rate, farm size, and total labor are denoted as SRate, Farm, and Labor, respectively and b) partial dependence plots on the eight

influential variables (farm size, SPC1, SPC2, PC1, PC2, seed rate, fertilizer, and total labor) used in random forest regression. The y-axes in all the plots

represent total maize yield (kg ha-1).

https://doi.org/10.1371/journal.pone.0229100.g009
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variable to the output. Thus, clay and OC were the most influential variables in PC1 while

available P was most influential in PC2. Large positive values of PC1 represented large values

of clay and OC, while large positive values of PC2 were associated with high soil available P.

To aid interpretation, we used PC1 to denote the combined effect of clay and OC while PC2

denoted available soil P.

In the C&RT analysis, the appearance of seeding rate as the primary splitting node stems

from the fact that most of the farmers in Malda sow maize seeds with specific row arrange-

ments (line sowing method) while the farmers of Bankura prefer broadcasting with a higher

seeding rate. Data suggested optimum seeding rates in the range of 17.63–27.78 kg ha-1 (the

wide range might be attributed to variations in biophysical conditions of farms), which is close

to the recommendations of the state department of agriculture. It is well known that optimum

plant stand is key to achieving resource use efficiency and higher productivity in maize, and

this is critical in situations where farm resources are scarce and optimum nutrient manage-

ment is not assured [57]. Nutrient management in relation to soil fertility variation is perhaps

the most important factor influencing maize yield gap [9, 58, 59], and fertilizer is probably the

easiest but the costliest option to offset soil fertility constraints for maize productivity [16, 60].

However, its return to maize yield is a complex phenomenon that goes beyond cost-benefit

rationale [61, 62].

The variable ‘agro-ecological region’, represented by two districts, was not selected by

C&RT as an explanatory variable, suggesting that site effects were explained instead by the bio-

physical and management variables. Notably, it was observed that seeding rate, organic

manure, and total labour showed more than one threshold value that reappeared as splitting

criteria, signifying their multi-modal distribution in the dataset. These variables did not have a

monotonous relationship with maize yield and had optimal quantitative ranges associated

with higher maize yields (in combination with ranges of other variables). This was expected

since maize yield variability, like that of many other crops, is governed by complex interactions

of climatic, socio-economic, and crop management practices [39, 63, 64].

According to Tittonell et al. [65], soil fertility and fertilizer use can be used as reliable proxy

measurements to explain yield variability This conclusion was corroborated by the C&RT vari-

able importance plot (Fig 4).

Yield variability was also attributable to differences in farm size and productivity. Efficiency

of farm size increases with the number of family members of working age and with the house-

hold’s working capital or resource endowment [66]. Farm size is widely believed to be related

to the adoption of new technologies and to crop productivity [67, 68, 69, 70]. The nature of

such relationships is subject to debate and depends on the level of technology being employed

in farming. The efficiency of input management is reported to have a positive relationship

with farm size when crop management is technology-intensive [71, 72]. Moreover, resource-

rich, large farmers have better access to credit [67, 73] and are believed to invest more in maize

production, especially in external sources of plant nutrients [58] [55]. Literature also suggests

that large farmers are more likely than smallholders to adopt improved technologies [70, 74],

and thus more likely to achieve higher yield. Since maize is grown as a cash crop (by selling to

the animal feed industry), it requires higher management intensity that can mostly be main-

tained by resource-rich farmers when input support from public extension agencies is either

absent or insignificant. The family remains the main source of farm labor in small farms. Nota-

bly, efficiency of small family farms depends on the extent of family labor use, which is not

available to the increasingly divided nuclear families. This is critically challenging to policy-

makers, since the majority of farm households studied operated in farms below one hectare in

size. Among other influential factors observed in the C&RT (Fig 4), organic manure provides

both crop nutrient needs and improves soil health, both of which are necessary for sustaining
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long-term productivity [75, 76]. Management factors are also influenced by climatic and bio-

physical conditions under different socio-economic settings of farmers.

A misclassification rate between 47 and 0% is large but realistic, based on the complex inter-

actions among several biophysical, management, and socio-economic factors affecting maize

yield. Such interactions are common in smallholder systems [63,77], which are often non-lin-

ear, have differential trends at different magnitudes, and affected by outliers. The rate of mis-

classification was also found to be close to other studies [78]. More samples in the training set

could have improved the probability of a better classification. Furthermore, the intricate initial

parameterization of ANN needs due consideration.

In the RF proximity plot (Fig 7), farms having low yields showed intra-class variability in

terms of differing farm sizes, resource-endowments, soil fertility gradients, management inten-

sities, and interactions among them. Larger yield classes (mostly large holders) are likely

grouped by agro-ecological zones or growing seasons, but their effects are largely masked by

highly variable management intensity among smallholders.

Although RF regression was able to satisfactorily predict maize yield, we refrained from

over-interpreting the model prediction accuracy. Our main objective was to test the capability

of a new methodological framework to help explain different factors and their interactions that

affect maize yield. Our objective was not to develop a laboratory-grade predictive model.

Moreover, Jame and Cutforth [26] argued that more than 10 years of continuous data are

often required to confidently predict crop growth in any empirical model. Seasonal and cross-

seasonal validations were beyond the scope of this study, due to data insufficiency and require-

ments for future experiments to draw stronger conclusions. Additionally, retaining a part of

the dataset for cross-validation to prevent overfitting is not a desirable characteristic for an

empirical model building tool [21].

In the RF partial dependence plots (Fig 9b), the positive relationship between farm size and

total yield may be explained from low input use of smallholder farmers. Typical explanations

for lower yields on small farms are diminished returns, the presence of frictions in the land,

and reduced access to credit and insurance markets [51]. Small farmers do, however, often

have advantages in labor supervision because of their high reliance on family labor [79,80]. For

resource-rich farmers, increased marginal costs of supervision can result in higher land to

labor ratios and lead to decreased output per unit area, even though farm size is larger. Seeding

rates higher than optimum increase competition among plants for resources, lead to plateaus

or even decreases in maize yield [81]. Note that a sharp dip of total yield was identified at the

beginning of the yield vs. labor curve in this study. This fact suggests a typical diminishing

marginal return on labor, presumably due to under-employed family labor spending less pro-

ductive hours on their own farm. This is common in smallholder farms when farming is not

highly technology-driven. A somewhat similar trend with farm size was observed with fertil-

izer, where a sharp decrease in yield occurred after a certain level of fertilization was achieved,

perhaps due to nutrient imbalance [82], which is common in many parts of eastern India.

Since there is a subsequent rise in yield after the sharp decline, the decline might be attributed

to a given geographical region where imbalanced fertilization is common among farmers.

5. Conclusion

The yield gap of maize in eastern India is a complex interplay of climatic variations, soil fertil-

ity gradients, differential management intensities and farmer socioeconomics. With an

increasing shift to maize-based cropping systems in eastern India replacing the conventional

rice-based system, understanding maize yield determinants has become critical for creating

effective interventions. This study has drawn upon a host of complex interacting yield
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determining factors, using machine learning approaches like PSR, C&RT, RF, SVM, and ANN

to identify important biophysical, socio-economic, and crop management factors for explain-

ing maize yield. The C&RT relative variable importance plot identified farm size, total labor,

soil factors, seed rate, fertilizer, and organic manure as influential factors. Among three classi-

fication approaches compared for classifying maize yield classes, ANN produced the smallest

misclassification rate on the test set and outperformed RF and SVM. In the RF classification

scheme, all the numeric variables appeared as the leading influential variables to classify maize

yield. Moreover, the RF partial dependence plots exhibited a positive relationship between

farm size and maize productivity. A nonlinear SVM boundary for the leading eight influential

variables revealed complex interactions between influential factors in determining maize yield

response. These algorithms may be used both in future empirical studies and in developing

efficient crop simulation models for ex-ante yield estimations of field crops.
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